Properties

Label 20.4.a.a
Level $20$
Weight $4$
Character orbit 20.a
Self dual yes
Analytic conductor $1.180$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 20 = 2^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 20.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(1.18003820011\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 4 q^{3} + 5 q^{5} - 16 q^{7} - 11 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 4 q^{3} + 5 q^{5} - 16 q^{7} - 11 q^{9} - 60 q^{11} + 86 q^{13} + 20 q^{15} + 18 q^{17} + 44 q^{19} - 64 q^{21} + 48 q^{23} + 25 q^{25} - 152 q^{27} - 186 q^{29} + 176 q^{31} - 240 q^{33} - 80 q^{35} + 254 q^{37} + 344 q^{39} + 186 q^{41} - 100 q^{43} - 55 q^{45} + 168 q^{47} - 87 q^{49} + 72 q^{51} - 498 q^{53} - 300 q^{55} + 176 q^{57} - 252 q^{59} - 58 q^{61} + 176 q^{63} + 430 q^{65} - 1036 q^{67} + 192 q^{69} + 168 q^{71} + 506 q^{73} + 100 q^{75} + 960 q^{77} + 272 q^{79} - 311 q^{81} + 948 q^{83} + 90 q^{85} - 744 q^{87} - 1014 q^{89} - 1376 q^{91} + 704 q^{93} + 220 q^{95} - 766 q^{97} + 660 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 4.00000 0 5.00000 0 −16.0000 0 −11.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 20.4.a.a 1
3.b odd 2 1 180.4.a.a 1
4.b odd 2 1 80.4.a.c 1
5.b even 2 1 100.4.a.a 1
5.c odd 4 2 100.4.c.a 2
7.b odd 2 1 980.4.a.c 1
7.c even 3 2 980.4.i.e 2
7.d odd 6 2 980.4.i.n 2
8.b even 2 1 320.4.a.d 1
8.d odd 2 1 320.4.a.k 1
9.c even 3 2 1620.4.i.d 2
9.d odd 6 2 1620.4.i.j 2
11.b odd 2 1 2420.4.a.d 1
12.b even 2 1 720.4.a.k 1
15.d odd 2 1 900.4.a.m 1
15.e even 4 2 900.4.d.k 2
16.e even 4 2 1280.4.d.n 2
16.f odd 4 2 1280.4.d.c 2
20.d odd 2 1 400.4.a.o 1
20.e even 4 2 400.4.c.j 2
40.e odd 2 1 1600.4.a.p 1
40.f even 2 1 1600.4.a.bl 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
20.4.a.a 1 1.a even 1 1 trivial
80.4.a.c 1 4.b odd 2 1
100.4.a.a 1 5.b even 2 1
100.4.c.a 2 5.c odd 4 2
180.4.a.a 1 3.b odd 2 1
320.4.a.d 1 8.b even 2 1
320.4.a.k 1 8.d odd 2 1
400.4.a.o 1 20.d odd 2 1
400.4.c.j 2 20.e even 4 2
720.4.a.k 1 12.b even 2 1
900.4.a.m 1 15.d odd 2 1
900.4.d.k 2 15.e even 4 2
980.4.a.c 1 7.b odd 2 1
980.4.i.e 2 7.c even 3 2
980.4.i.n 2 7.d odd 6 2
1280.4.d.c 2 16.f odd 4 2
1280.4.d.n 2 16.e even 4 2
1600.4.a.p 1 40.e odd 2 1
1600.4.a.bl 1 40.f even 2 1
1620.4.i.d 2 9.c even 3 2
1620.4.i.j 2 9.d odd 6 2
2420.4.a.d 1 11.b odd 2 1

Hecke kernels

This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(\Gamma_0(20))\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 4 \) Copy content Toggle raw display
$5$ \( T - 5 \) Copy content Toggle raw display
$7$ \( T + 16 \) Copy content Toggle raw display
$11$ \( T + 60 \) Copy content Toggle raw display
$13$ \( T - 86 \) Copy content Toggle raw display
$17$ \( T - 18 \) Copy content Toggle raw display
$19$ \( T - 44 \) Copy content Toggle raw display
$23$ \( T - 48 \) Copy content Toggle raw display
$29$ \( T + 186 \) Copy content Toggle raw display
$31$ \( T - 176 \) Copy content Toggle raw display
$37$ \( T - 254 \) Copy content Toggle raw display
$41$ \( T - 186 \) Copy content Toggle raw display
$43$ \( T + 100 \) Copy content Toggle raw display
$47$ \( T - 168 \) Copy content Toggle raw display
$53$ \( T + 498 \) Copy content Toggle raw display
$59$ \( T + 252 \) Copy content Toggle raw display
$61$ \( T + 58 \) Copy content Toggle raw display
$67$ \( T + 1036 \) Copy content Toggle raw display
$71$ \( T - 168 \) Copy content Toggle raw display
$73$ \( T - 506 \) Copy content Toggle raw display
$79$ \( T - 272 \) Copy content Toggle raw display
$83$ \( T - 948 \) Copy content Toggle raw display
$89$ \( T + 1014 \) Copy content Toggle raw display
$97$ \( T + 766 \) Copy content Toggle raw display
show more
show less