Properties

Label 20.4
Level 20
Weight 4
Dimension 17
Nonzero newspaces 3
Newform subspaces 4
Sturm bound 96
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 20 = 2^{2} \cdot 5 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 3 \)
Newform subspaces: \( 4 \)
Sturm bound: \(96\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(20))\).

Total New Old
Modular forms 46 25 21
Cusp forms 26 17 9
Eisenstein series 20 8 12

Trace form

\( 17 q - 2 q^{2} + 4 q^{3} + 15 q^{5} + 8 q^{6} - 16 q^{7} - 44 q^{8} - 109 q^{9} - 74 q^{10} - 20 q^{11} - 80 q^{12} + 128 q^{13} + 172 q^{15} + 184 q^{16} - 116 q^{17} + 306 q^{18} - 124 q^{19} + 316 q^{20}+ \cdots - 1300 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(20))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
20.4.a \(\chi_{20}(1, \cdot)\) 20.4.a.a 1 1
20.4.c \(\chi_{20}(9, \cdot)\) 20.4.c.a 2 1
20.4.e \(\chi_{20}(3, \cdot)\) 20.4.e.a 2 2
20.4.e.b 12

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(20))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(20)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 1}\)