Properties

Label 20.32.e.a
Level $20$
Weight $32$
Character orbit 20.e
Analytic conductor $121.754$
Analytic rank $0$
Dimension $2$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [20,32,Mod(3,20)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(20, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 32, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("20.3");
 
S:= CuspForms(chi, 32);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 20 = 2^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 32 \)
Character orbit: \([\chi]\) \(=\) 20.e (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(121.754265638\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 32768 i - 32768) q^{2} + 2147483648 i q^{4} + ( - 66349305331 i + 15949374758) q^{5} + ( - 70368744177664 i + 70368744177664) q^{8} - 617673396283947 i q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + ( - 32768 i - 32768) q^{2} + 2147483648 i q^{4} + ( - 66349305331 i + 15949374758) q^{5} + ( - 70368744177664 i + 70368744177664) q^{8} - 617673396283947 i q^{9} + (16\!\cdots\!64 i - 26\!\cdots\!52) q^{10} + \cdots + ( - 51\!\cdots\!24 i + 51\!\cdots\!24) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 65536 q^{2} + 31898749516 q^{5} + 140737488355328 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 65536 q^{2} + 31898749516 q^{5} + 140737488355328 q^{8} - 53\!\cdots\!04 q^{10}+ \cdots + 10\!\cdots\!48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/20\mathbb{Z}\right)^\times\).

\(n\) \(11\) \(17\)
\(\chi(n)\) \(-1\) \(i\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3.1
1.00000i
1.00000i
−32768.0 + 32768.0i 0 2.14748e9i 1.59494e10 + 6.63493e10i 0 0 7.03687e13 + 7.03687e13i 6.17673e14i −2.69676e15 1.65150e15i
7.1 −32768.0 32768.0i 0 2.14748e9i 1.59494e10 6.63493e10i 0 0 7.03687e13 7.03687e13i 6.17673e14i −2.69676e15 + 1.65150e15i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
5.c odd 4 1 inner
20.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 20.32.e.a 2
4.b odd 2 1 CM 20.32.e.a 2
5.c odd 4 1 inner 20.32.e.a 2
20.e even 4 1 inner 20.32.e.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
20.32.e.a 2 1.a even 1 1 trivial
20.32.e.a 2 4.b odd 2 1 CM
20.32.e.a 2 5.c odd 4 1 inner
20.32.e.a 2 20.e even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} \) acting on \(S_{32}^{\mathrm{new}}(20, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + \cdots + 2147483648 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + \cdots + 46\!\cdots\!25 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 36\!\cdots\!98 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots + 41\!\cdots\!82 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 41\!\cdots\!16 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 14\!\cdots\!02 \) Copy content Toggle raw display
$41$ \( (T - 17\!\cdots\!92)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 11\!\cdots\!38 \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( (T + 84\!\cdots\!88)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 14\!\cdots\!58 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 15\!\cdots\!56 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 22\!\cdots\!62 \) Copy content Toggle raw display
show more
show less