Defining parameters
| Level: | \( N \) | \(=\) | \( 20 = 2^{2} \cdot 5 \) |
| Weight: | \( k \) | \(=\) | \( 3 \) |
| Character orbit: | \([\chi]\) | \(=\) | 20.d (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 20 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 3 \) | ||
| Sturm bound: | \(9\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(20, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 8 | 8 | 0 |
| Cusp forms | 4 | 4 | 0 |
| Eisenstein series | 4 | 4 | 0 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(20, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 20.3.d.a | $1$ | $0.545$ | \(\Q\) | \(\Q(\sqrt{-5}) \) | \(-2\) | \(4\) | \(-5\) | \(-4\) | \(q-2q^{2}+4q^{3}+4q^{4}-5q^{5}-8q^{6}+\cdots\) |
| 20.3.d.b | $1$ | $0.545$ | \(\Q\) | \(\Q(\sqrt{-5}) \) | \(2\) | \(-4\) | \(-5\) | \(4\) | \(q+2q^{2}-4q^{3}+4q^{4}-5q^{5}-8q^{6}+\cdots\) |
| 20.3.d.c | $2$ | $0.545$ | \(\Q(\sqrt{-1}) \) | \(\Q(\sqrt{-1}) \) | \(0\) | \(0\) | \(6\) | \(0\) | \(q+\beta q^{2}-4 q^{4}+(-2\beta+3)q^{5}-4\beta q^{8}+\cdots\) |