Properties

Label 20.2.a.a.1.1
Level 20
Weight 2
Character 20.1
Self dual yes
Analytic conductor 0.160
Analytic rank 0
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 20 = 2^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 20.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(0.159700804043\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0\) of \(x\)
Character \(\chi\) \(=\) 20.1

$q$-expansion

\(f(q)\) \(=\) \(q-2.00000 q^{3} -1.00000 q^{5} +2.00000 q^{7} +1.00000 q^{9} +O(q^{10})\) \(q-2.00000 q^{3} -1.00000 q^{5} +2.00000 q^{7} +1.00000 q^{9} +2.00000 q^{13} +2.00000 q^{15} -6.00000 q^{17} -4.00000 q^{19} -4.00000 q^{21} +6.00000 q^{23} +1.00000 q^{25} +4.00000 q^{27} +6.00000 q^{29} -4.00000 q^{31} -2.00000 q^{35} +2.00000 q^{37} -4.00000 q^{39} +6.00000 q^{41} -10.0000 q^{43} -1.00000 q^{45} -6.00000 q^{47} -3.00000 q^{49} +12.0000 q^{51} -6.00000 q^{53} +8.00000 q^{57} +12.0000 q^{59} +2.00000 q^{61} +2.00000 q^{63} -2.00000 q^{65} +2.00000 q^{67} -12.0000 q^{69} -12.0000 q^{71} +2.00000 q^{73} -2.00000 q^{75} +8.00000 q^{79} -11.0000 q^{81} +6.00000 q^{83} +6.00000 q^{85} -12.0000 q^{87} -6.00000 q^{89} +4.00000 q^{91} +8.00000 q^{93} +4.00000 q^{95} +2.00000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.00000 −1.15470 −0.577350 0.816497i \(-0.695913\pi\)
−0.577350 + 0.816497i \(0.695913\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 2.00000 0.755929 0.377964 0.925820i \(-0.376624\pi\)
0.377964 + 0.925820i \(0.376624\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 2.00000 0.516398
\(16\) 0 0
\(17\) −6.00000 −1.45521 −0.727607 0.685994i \(-0.759367\pi\)
−0.727607 + 0.685994i \(0.759367\pi\)
\(18\) 0 0
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) −4.00000 −0.872872
\(22\) 0 0
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 4.00000 0.769800
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.00000 −0.338062
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) −4.00000 −0.640513
\(40\) 0 0
\(41\) 6.00000 0.937043 0.468521 0.883452i \(-0.344787\pi\)
0.468521 + 0.883452i \(0.344787\pi\)
\(42\) 0 0
\(43\) −10.0000 −1.52499 −0.762493 0.646997i \(-0.776025\pi\)
−0.762493 + 0.646997i \(0.776025\pi\)
\(44\) 0 0
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) 0 0
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 12.0000 1.68034
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 8.00000 1.05963
\(58\) 0 0
\(59\) 12.0000 1.56227 0.781133 0.624364i \(-0.214642\pi\)
0.781133 + 0.624364i \(0.214642\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 0 0
\(63\) 2.00000 0.251976
\(64\) 0 0
\(65\) −2.00000 −0.248069
\(66\) 0 0
\(67\) 2.00000 0.244339 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(68\) 0 0
\(69\) −12.0000 −1.44463
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) 2.00000 0.234082 0.117041 0.993127i \(-0.462659\pi\)
0.117041 + 0.993127i \(0.462659\pi\)
\(74\) 0 0
\(75\) −2.00000 −0.230940
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 0 0
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) 0 0
\(85\) 6.00000 0.650791
\(86\) 0 0
\(87\) −12.0000 −1.28654
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 0 0
\(91\) 4.00000 0.419314
\(92\) 0 0
\(93\) 8.00000 0.829561
\(94\) 0 0
\(95\) 4.00000 0.410391
\(96\) 0 0
\(97\) 2.00000 0.203069 0.101535 0.994832i \(-0.467625\pi\)
0.101535 + 0.994832i \(0.467625\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) 14.0000 1.37946 0.689730 0.724066i \(-0.257729\pi\)
0.689730 + 0.724066i \(0.257729\pi\)
\(104\) 0 0
\(105\) 4.00000 0.390360
\(106\) 0 0
\(107\) −6.00000 −0.580042 −0.290021 0.957020i \(-0.593662\pi\)
−0.290021 + 0.957020i \(0.593662\pi\)
\(108\) 0 0
\(109\) 2.00000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) −4.00000 −0.379663
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) −6.00000 −0.559503
\(116\) 0 0
\(117\) 2.00000 0.184900
\(118\) 0 0
\(119\) −12.0000 −1.10004
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) −12.0000 −1.08200
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 2.00000 0.177471 0.0887357 0.996055i \(-0.471717\pi\)
0.0887357 + 0.996055i \(0.471717\pi\)
\(128\) 0 0
\(129\) 20.0000 1.76090
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) −8.00000 −0.693688
\(134\) 0 0
\(135\) −4.00000 −0.344265
\(136\) 0 0
\(137\) 18.0000 1.53784 0.768922 0.639343i \(-0.220793\pi\)
0.768922 + 0.639343i \(0.220793\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 12.0000 1.01058
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −6.00000 −0.498273
\(146\) 0 0
\(147\) 6.00000 0.494872
\(148\) 0 0
\(149\) −6.00000 −0.491539 −0.245770 0.969328i \(-0.579041\pi\)
−0.245770 + 0.969328i \(0.579041\pi\)
\(150\) 0 0
\(151\) 20.0000 1.62758 0.813788 0.581161i \(-0.197401\pi\)
0.813788 + 0.581161i \(0.197401\pi\)
\(152\) 0 0
\(153\) −6.00000 −0.485071
\(154\) 0 0
\(155\) 4.00000 0.321288
\(156\) 0 0
\(157\) −22.0000 −1.75579 −0.877896 0.478852i \(-0.841053\pi\)
−0.877896 + 0.478852i \(0.841053\pi\)
\(158\) 0 0
\(159\) 12.0000 0.951662
\(160\) 0 0
\(161\) 12.0000 0.945732
\(162\) 0 0
\(163\) −10.0000 −0.783260 −0.391630 0.920123i \(-0.628089\pi\)
−0.391630 + 0.920123i \(0.628089\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 18.0000 1.39288 0.696441 0.717614i \(-0.254766\pi\)
0.696441 + 0.717614i \(0.254766\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) −4.00000 −0.305888
\(172\) 0 0
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) 0 0
\(175\) 2.00000 0.151186
\(176\) 0 0
\(177\) −24.0000 −1.80395
\(178\) 0 0
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 0 0
\(183\) −4.00000 −0.295689
\(184\) 0 0
\(185\) −2.00000 −0.147043
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 8.00000 0.581914
\(190\) 0 0
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 0 0
\(193\) 26.0000 1.87152 0.935760 0.352636i \(-0.114715\pi\)
0.935760 + 0.352636i \(0.114715\pi\)
\(194\) 0 0
\(195\) 4.00000 0.286446
\(196\) 0 0
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) −4.00000 −0.282138
\(202\) 0 0
\(203\) 12.0000 0.842235
\(204\) 0 0
\(205\) −6.00000 −0.419058
\(206\) 0 0
\(207\) 6.00000 0.417029
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −16.0000 −1.10149 −0.550743 0.834675i \(-0.685655\pi\)
−0.550743 + 0.834675i \(0.685655\pi\)
\(212\) 0 0
\(213\) 24.0000 1.64445
\(214\) 0 0
\(215\) 10.0000 0.681994
\(216\) 0 0
\(217\) −8.00000 −0.543075
\(218\) 0 0
\(219\) −4.00000 −0.270295
\(220\) 0 0
\(221\) −12.0000 −0.807207
\(222\) 0 0
\(223\) −10.0000 −0.669650 −0.334825 0.942280i \(-0.608677\pi\)
−0.334825 + 0.942280i \(0.608677\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) −6.00000 −0.398234 −0.199117 0.979976i \(-0.563807\pi\)
−0.199117 + 0.979976i \(0.563807\pi\)
\(228\) 0 0
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) 6.00000 0.391397
\(236\) 0 0
\(237\) −16.0000 −1.03931
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) 14.0000 0.901819 0.450910 0.892570i \(-0.351100\pi\)
0.450910 + 0.892570i \(0.351100\pi\)
\(242\) 0 0
\(243\) 10.0000 0.641500
\(244\) 0 0
\(245\) 3.00000 0.191663
\(246\) 0 0
\(247\) −8.00000 −0.509028
\(248\) 0 0
\(249\) −12.0000 −0.760469
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −12.0000 −0.751469
\(256\) 0 0
\(257\) −6.00000 −0.374270 −0.187135 0.982334i \(-0.559920\pi\)
−0.187135 + 0.982334i \(0.559920\pi\)
\(258\) 0 0
\(259\) 4.00000 0.248548
\(260\) 0 0
\(261\) 6.00000 0.371391
\(262\) 0 0
\(263\) −18.0000 −1.10993 −0.554964 0.831875i \(-0.687268\pi\)
−0.554964 + 0.831875i \(0.687268\pi\)
\(264\) 0 0
\(265\) 6.00000 0.368577
\(266\) 0 0
\(267\) 12.0000 0.734388
\(268\) 0 0
\(269\) 18.0000 1.09748 0.548740 0.835993i \(-0.315108\pi\)
0.548740 + 0.835993i \(0.315108\pi\)
\(270\) 0 0
\(271\) 20.0000 1.21491 0.607457 0.794353i \(-0.292190\pi\)
0.607457 + 0.794353i \(0.292190\pi\)
\(272\) 0 0
\(273\) −8.00000 −0.484182
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 26.0000 1.56219 0.781094 0.624413i \(-0.214662\pi\)
0.781094 + 0.624413i \(0.214662\pi\)
\(278\) 0 0
\(279\) −4.00000 −0.239474
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) 14.0000 0.832214 0.416107 0.909316i \(-0.363394\pi\)
0.416107 + 0.909316i \(0.363394\pi\)
\(284\) 0 0
\(285\) −8.00000 −0.473879
\(286\) 0 0
\(287\) 12.0000 0.708338
\(288\) 0 0
\(289\) 19.0000 1.11765
\(290\) 0 0
\(291\) −4.00000 −0.234484
\(292\) 0 0
\(293\) −30.0000 −1.75262 −0.876309 0.481749i \(-0.840002\pi\)
−0.876309 + 0.481749i \(0.840002\pi\)
\(294\) 0 0
\(295\) −12.0000 −0.698667
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 12.0000 0.693978
\(300\) 0 0
\(301\) −20.0000 −1.15278
\(302\) 0 0
\(303\) −12.0000 −0.689382
\(304\) 0 0
\(305\) −2.00000 −0.114520
\(306\) 0 0
\(307\) 2.00000 0.114146 0.0570730 0.998370i \(-0.481823\pi\)
0.0570730 + 0.998370i \(0.481823\pi\)
\(308\) 0 0
\(309\) −28.0000 −1.59286
\(310\) 0 0
\(311\) 12.0000 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(312\) 0 0
\(313\) −22.0000 −1.24351 −0.621757 0.783210i \(-0.713581\pi\)
−0.621757 + 0.783210i \(0.713581\pi\)
\(314\) 0 0
\(315\) −2.00000 −0.112687
\(316\) 0 0
\(317\) −6.00000 −0.336994 −0.168497 0.985702i \(-0.553891\pi\)
−0.168497 + 0.985702i \(0.553891\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 12.0000 0.669775
\(322\) 0 0
\(323\) 24.0000 1.33540
\(324\) 0 0
\(325\) 2.00000 0.110940
\(326\) 0 0
\(327\) −4.00000 −0.221201
\(328\) 0 0
\(329\) −12.0000 −0.661581
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) 0 0
\(333\) 2.00000 0.109599
\(334\) 0 0
\(335\) −2.00000 −0.109272
\(336\) 0 0
\(337\) 2.00000 0.108947 0.0544735 0.998515i \(-0.482652\pi\)
0.0544735 + 0.998515i \(0.482652\pi\)
\(338\) 0 0
\(339\) 12.0000 0.651751
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −20.0000 −1.07990
\(344\) 0 0
\(345\) 12.0000 0.646058
\(346\) 0 0
\(347\) −30.0000 −1.61048 −0.805242 0.592946i \(-0.797965\pi\)
−0.805242 + 0.592946i \(0.797965\pi\)
\(348\) 0 0
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) 0 0
\(351\) 8.00000 0.427008
\(352\) 0 0
\(353\) 18.0000 0.958043 0.479022 0.877803i \(-0.340992\pi\)
0.479022 + 0.877803i \(0.340992\pi\)
\(354\) 0 0
\(355\) 12.0000 0.636894
\(356\) 0 0
\(357\) 24.0000 1.27021
\(358\) 0 0
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 22.0000 1.15470
\(364\) 0 0
\(365\) −2.00000 −0.104685
\(366\) 0 0
\(367\) −22.0000 −1.14839 −0.574195 0.818718i \(-0.694685\pi\)
−0.574195 + 0.818718i \(0.694685\pi\)
\(368\) 0 0
\(369\) 6.00000 0.312348
\(370\) 0 0
\(371\) −12.0000 −0.623009
\(372\) 0 0
\(373\) 26.0000 1.34623 0.673114 0.739538i \(-0.264956\pi\)
0.673114 + 0.739538i \(0.264956\pi\)
\(374\) 0 0
\(375\) 2.00000 0.103280
\(376\) 0 0
\(377\) 12.0000 0.618031
\(378\) 0 0
\(379\) −28.0000 −1.43826 −0.719132 0.694874i \(-0.755460\pi\)
−0.719132 + 0.694874i \(0.755460\pi\)
\(380\) 0 0
\(381\) −4.00000 −0.204926
\(382\) 0 0
\(383\) 6.00000 0.306586 0.153293 0.988181i \(-0.451012\pi\)
0.153293 + 0.988181i \(0.451012\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −10.0000 −0.508329
\(388\) 0 0
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) −36.0000 −1.82060
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −8.00000 −0.402524
\(396\) 0 0
\(397\) 2.00000 0.100377 0.0501886 0.998740i \(-0.484018\pi\)
0.0501886 + 0.998740i \(0.484018\pi\)
\(398\) 0 0
\(399\) 16.0000 0.801002
\(400\) 0 0
\(401\) −30.0000 −1.49813 −0.749064 0.662497i \(-0.769497\pi\)
−0.749064 + 0.662497i \(0.769497\pi\)
\(402\) 0 0
\(403\) −8.00000 −0.398508
\(404\) 0 0
\(405\) 11.0000 0.546594
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −34.0000 −1.68119 −0.840596 0.541663i \(-0.817795\pi\)
−0.840596 + 0.541663i \(0.817795\pi\)
\(410\) 0 0
\(411\) −36.0000 −1.77575
\(412\) 0 0
\(413\) 24.0000 1.18096
\(414\) 0 0
\(415\) −6.00000 −0.294528
\(416\) 0 0
\(417\) 8.00000 0.391762
\(418\) 0 0
\(419\) 36.0000 1.75872 0.879358 0.476162i \(-0.157972\pi\)
0.879358 + 0.476162i \(0.157972\pi\)
\(420\) 0 0
\(421\) 26.0000 1.26716 0.633581 0.773676i \(-0.281584\pi\)
0.633581 + 0.773676i \(0.281584\pi\)
\(422\) 0 0
\(423\) −6.00000 −0.291730
\(424\) 0 0
\(425\) −6.00000 −0.291043
\(426\) 0 0
\(427\) 4.00000 0.193574
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 36.0000 1.73406 0.867029 0.498257i \(-0.166026\pi\)
0.867029 + 0.498257i \(0.166026\pi\)
\(432\) 0 0
\(433\) 2.00000 0.0961139 0.0480569 0.998845i \(-0.484697\pi\)
0.0480569 + 0.998845i \(0.484697\pi\)
\(434\) 0 0
\(435\) 12.0000 0.575356
\(436\) 0 0
\(437\) −24.0000 −1.14808
\(438\) 0 0
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) 6.00000 0.285069 0.142534 0.989790i \(-0.454475\pi\)
0.142534 + 0.989790i \(0.454475\pi\)
\(444\) 0 0
\(445\) 6.00000 0.284427
\(446\) 0 0
\(447\) 12.0000 0.567581
\(448\) 0 0
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −40.0000 −1.87936
\(454\) 0 0
\(455\) −4.00000 −0.187523
\(456\) 0 0
\(457\) 26.0000 1.21623 0.608114 0.793849i \(-0.291926\pi\)
0.608114 + 0.793849i \(0.291926\pi\)
\(458\) 0 0
\(459\) −24.0000 −1.12022
\(460\) 0 0
\(461\) 30.0000 1.39724 0.698620 0.715493i \(-0.253798\pi\)
0.698620 + 0.715493i \(0.253798\pi\)
\(462\) 0 0
\(463\) 14.0000 0.650635 0.325318 0.945605i \(-0.394529\pi\)
0.325318 + 0.945605i \(0.394529\pi\)
\(464\) 0 0
\(465\) −8.00000 −0.370991
\(466\) 0 0
\(467\) −30.0000 −1.38823 −0.694117 0.719862i \(-0.744205\pi\)
−0.694117 + 0.719862i \(0.744205\pi\)
\(468\) 0 0
\(469\) 4.00000 0.184703
\(470\) 0 0
\(471\) 44.0000 2.02741
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −4.00000 −0.183533
\(476\) 0 0
\(477\) −6.00000 −0.274721
\(478\) 0 0
\(479\) −24.0000 −1.09659 −0.548294 0.836286i \(-0.684723\pi\)
−0.548294 + 0.836286i \(0.684723\pi\)
\(480\) 0 0
\(481\) 4.00000 0.182384
\(482\) 0 0
\(483\) −24.0000 −1.09204
\(484\) 0 0
\(485\) −2.00000 −0.0908153
\(486\) 0 0
\(487\) 26.0000 1.17817 0.589086 0.808070i \(-0.299488\pi\)
0.589086 + 0.808070i \(0.299488\pi\)
\(488\) 0 0
\(489\) 20.0000 0.904431
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) −36.0000 −1.62136
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −24.0000 −1.07655
\(498\) 0 0
\(499\) −4.00000 −0.179065 −0.0895323 0.995984i \(-0.528537\pi\)
−0.0895323 + 0.995984i \(0.528537\pi\)
\(500\) 0 0
\(501\) −36.0000 −1.60836
\(502\) 0 0
\(503\) −18.0000 −0.802580 −0.401290 0.915951i \(-0.631438\pi\)
−0.401290 + 0.915951i \(0.631438\pi\)
\(504\) 0 0
\(505\) −6.00000 −0.266996
\(506\) 0 0
\(507\) 18.0000 0.799408
\(508\) 0 0
\(509\) 6.00000 0.265945 0.132973 0.991120i \(-0.457548\pi\)
0.132973 + 0.991120i \(0.457548\pi\)
\(510\) 0 0
\(511\) 4.00000 0.176950
\(512\) 0 0
\(513\) −16.0000 −0.706417
\(514\) 0 0
\(515\) −14.0000 −0.616914
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 12.0000 0.526742
\(520\) 0 0
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) 0 0
\(523\) 14.0000 0.612177 0.306089 0.952003i \(-0.400980\pi\)
0.306089 + 0.952003i \(0.400980\pi\)
\(524\) 0 0
\(525\) −4.00000 −0.174574
\(526\) 0 0
\(527\) 24.0000 1.04546
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 12.0000 0.520756
\(532\) 0 0
\(533\) 12.0000 0.519778
\(534\) 0 0
\(535\) 6.00000 0.259403
\(536\) 0 0
\(537\) 24.0000 1.03568
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 14.0000 0.601907 0.300954 0.953639i \(-0.402695\pi\)
0.300954 + 0.953639i \(0.402695\pi\)
\(542\) 0 0
\(543\) 20.0000 0.858282
\(544\) 0 0
\(545\) −2.00000 −0.0856706
\(546\) 0 0
\(547\) 26.0000 1.11168 0.555840 0.831289i \(-0.312397\pi\)
0.555840 + 0.831289i \(0.312397\pi\)
\(548\) 0 0
\(549\) 2.00000 0.0853579
\(550\) 0 0
\(551\) −24.0000 −1.02243
\(552\) 0 0
\(553\) 16.0000 0.680389
\(554\) 0 0
\(555\) 4.00000 0.169791
\(556\) 0 0
\(557\) −30.0000 −1.27114 −0.635570 0.772043i \(-0.719235\pi\)
−0.635570 + 0.772043i \(0.719235\pi\)
\(558\) 0 0
\(559\) −20.0000 −0.845910
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −18.0000 −0.758610 −0.379305 0.925272i \(-0.623837\pi\)
−0.379305 + 0.925272i \(0.623837\pi\)
\(564\) 0 0
\(565\) 6.00000 0.252422
\(566\) 0 0
\(567\) −22.0000 −0.923913
\(568\) 0 0
\(569\) 30.0000 1.25767 0.628833 0.777541i \(-0.283533\pi\)
0.628833 + 0.777541i \(0.283533\pi\)
\(570\) 0 0
\(571\) 8.00000 0.334790 0.167395 0.985890i \(-0.446465\pi\)
0.167395 + 0.985890i \(0.446465\pi\)
\(572\) 0 0
\(573\) 24.0000 1.00261
\(574\) 0 0
\(575\) 6.00000 0.250217
\(576\) 0 0
\(577\) −22.0000 −0.915872 −0.457936 0.888985i \(-0.651411\pi\)
−0.457936 + 0.888985i \(0.651411\pi\)
\(578\) 0 0
\(579\) −52.0000 −2.16105
\(580\) 0 0
\(581\) 12.0000 0.497844
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −2.00000 −0.0826898
\(586\) 0 0
\(587\) −6.00000 −0.247647 −0.123823 0.992304i \(-0.539516\pi\)
−0.123823 + 0.992304i \(0.539516\pi\)
\(588\) 0 0
\(589\) 16.0000 0.659269
\(590\) 0 0
\(591\) −36.0000 −1.48084
\(592\) 0 0
\(593\) 18.0000 0.739171 0.369586 0.929197i \(-0.379500\pi\)
0.369586 + 0.929197i \(0.379500\pi\)
\(594\) 0 0
\(595\) 12.0000 0.491952
\(596\) 0 0
\(597\) −16.0000 −0.654836
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −10.0000 −0.407909 −0.203954 0.978980i \(-0.565379\pi\)
−0.203954 + 0.978980i \(0.565379\pi\)
\(602\) 0 0
\(603\) 2.00000 0.0814463
\(604\) 0 0
\(605\) 11.0000 0.447214
\(606\) 0 0
\(607\) −22.0000 −0.892952 −0.446476 0.894795i \(-0.647321\pi\)
−0.446476 + 0.894795i \(0.647321\pi\)
\(608\) 0 0
\(609\) −24.0000 −0.972529
\(610\) 0 0
\(611\) −12.0000 −0.485468
\(612\) 0 0
\(613\) 2.00000 0.0807792 0.0403896 0.999184i \(-0.487140\pi\)
0.0403896 + 0.999184i \(0.487140\pi\)
\(614\) 0 0
\(615\) 12.0000 0.483887
\(616\) 0 0
\(617\) −6.00000 −0.241551 −0.120775 0.992680i \(-0.538538\pi\)
−0.120775 + 0.992680i \(0.538538\pi\)
\(618\) 0 0
\(619\) 20.0000 0.803868 0.401934 0.915669i \(-0.368338\pi\)
0.401934 + 0.915669i \(0.368338\pi\)
\(620\) 0 0
\(621\) 24.0000 0.963087
\(622\) 0 0
\(623\) −12.0000 −0.480770
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −12.0000 −0.478471
\(630\) 0 0
\(631\) −28.0000 −1.11466 −0.557331 0.830290i \(-0.688175\pi\)
−0.557331 + 0.830290i \(0.688175\pi\)
\(632\) 0 0
\(633\) 32.0000 1.27189
\(634\) 0 0
\(635\) −2.00000 −0.0793676
\(636\) 0 0
\(637\) −6.00000 −0.237729
\(638\) 0 0
\(639\) −12.0000 −0.474713
\(640\) 0 0
\(641\) −18.0000 −0.710957 −0.355479 0.934684i \(-0.615682\pi\)
−0.355479 + 0.934684i \(0.615682\pi\)
\(642\) 0 0
\(643\) 14.0000 0.552106 0.276053 0.961142i \(-0.410973\pi\)
0.276053 + 0.961142i \(0.410973\pi\)
\(644\) 0 0
\(645\) −20.0000 −0.787499
\(646\) 0 0
\(647\) 42.0000 1.65119 0.825595 0.564263i \(-0.190840\pi\)
0.825595 + 0.564263i \(0.190840\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 16.0000 0.627089
\(652\) 0 0
\(653\) 42.0000 1.64359 0.821794 0.569785i \(-0.192974\pi\)
0.821794 + 0.569785i \(0.192974\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 2.00000 0.0780274
\(658\) 0 0
\(659\) 36.0000 1.40236 0.701180 0.712984i \(-0.252657\pi\)
0.701180 + 0.712984i \(0.252657\pi\)
\(660\) 0 0
\(661\) −22.0000 −0.855701 −0.427850 0.903850i \(-0.640729\pi\)
−0.427850 + 0.903850i \(0.640729\pi\)
\(662\) 0 0
\(663\) 24.0000 0.932083
\(664\) 0 0
\(665\) 8.00000 0.310227
\(666\) 0 0
\(667\) 36.0000 1.39393
\(668\) 0 0
\(669\) 20.0000 0.773245
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −46.0000 −1.77317 −0.886585 0.462566i \(-0.846929\pi\)
−0.886585 + 0.462566i \(0.846929\pi\)
\(674\) 0 0
\(675\) 4.00000 0.153960
\(676\) 0 0
\(677\) 18.0000 0.691796 0.345898 0.938272i \(-0.387574\pi\)
0.345898 + 0.938272i \(0.387574\pi\)
\(678\) 0 0
\(679\) 4.00000 0.153506
\(680\) 0 0
\(681\) 12.0000 0.459841
\(682\) 0 0
\(683\) −42.0000 −1.60709 −0.803543 0.595247i \(-0.797054\pi\)
−0.803543 + 0.595247i \(0.797054\pi\)
\(684\) 0 0
\(685\) −18.0000 −0.687745
\(686\) 0 0
\(687\) −28.0000 −1.06827
\(688\) 0 0
\(689\) −12.0000 −0.457164
\(690\) 0 0
\(691\) 8.00000 0.304334 0.152167 0.988355i \(-0.451375\pi\)
0.152167 + 0.988355i \(0.451375\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4.00000 0.151729
\(696\) 0 0
\(697\) −36.0000 −1.36360
\(698\) 0 0
\(699\) 12.0000 0.453882
\(700\) 0 0
\(701\) −30.0000 −1.13308 −0.566542 0.824033i \(-0.691719\pi\)
−0.566542 + 0.824033i \(0.691719\pi\)
\(702\) 0 0
\(703\) −8.00000 −0.301726
\(704\) 0 0
\(705\) −12.0000 −0.451946
\(706\) 0 0
\(707\) 12.0000 0.451306
\(708\) 0 0
\(709\) −34.0000 −1.27690 −0.638448 0.769665i \(-0.720423\pi\)
−0.638448 + 0.769665i \(0.720423\pi\)
\(710\) 0 0
\(711\) 8.00000 0.300023
\(712\) 0 0
\(713\) −24.0000 −0.898807
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 48.0000 1.79259
\(718\) 0 0
\(719\) −24.0000 −0.895049 −0.447524 0.894272i \(-0.647694\pi\)
−0.447524 + 0.894272i \(0.647694\pi\)
\(720\) 0 0
\(721\) 28.0000 1.04277
\(722\) 0 0
\(723\) −28.0000 −1.04133
\(724\) 0 0
\(725\) 6.00000 0.222834
\(726\) 0 0
\(727\) −46.0000 −1.70605 −0.853023 0.521874i \(-0.825233\pi\)
−0.853023 + 0.521874i \(0.825233\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 60.0000 2.21918
\(732\) 0 0
\(733\) −22.0000 −0.812589 −0.406294 0.913742i \(-0.633179\pi\)
−0.406294 + 0.913742i \(0.633179\pi\)
\(734\) 0 0
\(735\) −6.00000 −0.221313
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 20.0000 0.735712 0.367856 0.929883i \(-0.380092\pi\)
0.367856 + 0.929883i \(0.380092\pi\)
\(740\) 0 0
\(741\) 16.0000 0.587775
\(742\) 0 0
\(743\) 6.00000 0.220119 0.110059 0.993925i \(-0.464896\pi\)
0.110059 + 0.993925i \(0.464896\pi\)
\(744\) 0 0
\(745\) 6.00000 0.219823
\(746\) 0 0
\(747\) 6.00000 0.219529
\(748\) 0 0
\(749\) −12.0000 −0.438470
\(750\) 0 0
\(751\) −4.00000 −0.145962 −0.0729810 0.997333i \(-0.523251\pi\)
−0.0729810 + 0.997333i \(0.523251\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −20.0000 −0.727875
\(756\) 0 0
\(757\) −22.0000 −0.799604 −0.399802 0.916602i \(-0.630921\pi\)
−0.399802 + 0.916602i \(0.630921\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 42.0000 1.52250 0.761249 0.648459i \(-0.224586\pi\)
0.761249 + 0.648459i \(0.224586\pi\)
\(762\) 0 0
\(763\) 4.00000 0.144810
\(764\) 0 0
\(765\) 6.00000 0.216930
\(766\) 0 0
\(767\) 24.0000 0.866590
\(768\) 0 0
\(769\) 2.00000 0.0721218 0.0360609 0.999350i \(-0.488519\pi\)
0.0360609 + 0.999350i \(0.488519\pi\)
\(770\) 0 0
\(771\) 12.0000 0.432169
\(772\) 0 0
\(773\) −30.0000 −1.07903 −0.539513 0.841978i \(-0.681391\pi\)
−0.539513 + 0.841978i \(0.681391\pi\)
\(774\) 0 0
\(775\) −4.00000 −0.143684
\(776\) 0 0
\(777\) −8.00000 −0.286998
\(778\) 0 0
\(779\) −24.0000 −0.859889
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 24.0000 0.857690
\(784\) 0 0
\(785\) 22.0000 0.785214
\(786\) 0 0
\(787\) 26.0000 0.926800 0.463400 0.886149i \(-0.346629\pi\)
0.463400 + 0.886149i \(0.346629\pi\)
\(788\) 0 0
\(789\) 36.0000 1.28163
\(790\) 0 0
\(791\) −12.0000 −0.426671
\(792\) 0 0
\(793\) 4.00000 0.142044
\(794\) 0 0
\(795\) −12.0000 −0.425596
\(796\) 0 0
\(797\) 42.0000 1.48772 0.743858 0.668338i \(-0.232994\pi\)
0.743858 + 0.668338i \(0.232994\pi\)
\(798\) 0 0
\(799\) 36.0000 1.27359
\(800\) 0 0
\(801\) −6.00000 −0.212000
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −12.0000 −0.422944
\(806\) 0 0
\(807\) −36.0000 −1.26726
\(808\) 0 0
\(809\) −6.00000 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 0 0
\(811\) −16.0000 −0.561836 −0.280918 0.959732i \(-0.590639\pi\)
−0.280918 + 0.959732i \(0.590639\pi\)
\(812\) 0 0
\(813\) −40.0000 −1.40286
\(814\) 0 0
\(815\) 10.0000 0.350285
\(816\) 0 0
\(817\) 40.0000 1.39942
\(818\) 0 0
\(819\) 4.00000 0.139771
\(820\) 0 0
\(821\) −54.0000 −1.88461 −0.942306 0.334751i \(-0.891348\pi\)
−0.942306 + 0.334751i \(0.891348\pi\)
\(822\) 0 0
\(823\) 38.0000 1.32460 0.662298 0.749240i \(-0.269581\pi\)
0.662298 + 0.749240i \(0.269581\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −30.0000 −1.04320 −0.521601 0.853189i \(-0.674665\pi\)
−0.521601 + 0.853189i \(0.674665\pi\)
\(828\) 0 0
\(829\) 2.00000 0.0694629 0.0347314 0.999397i \(-0.488942\pi\)
0.0347314 + 0.999397i \(0.488942\pi\)
\(830\) 0 0
\(831\) −52.0000 −1.80386
\(832\) 0 0
\(833\) 18.0000 0.623663
\(834\) 0 0
\(835\) −18.0000 −0.622916
\(836\) 0 0
\(837\) −16.0000 −0.553041
\(838\) 0 0
\(839\) −48.0000 −1.65714 −0.828572 0.559883i \(-0.810846\pi\)
−0.828572 + 0.559883i \(0.810846\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) −12.0000 −0.413302
\(844\) 0 0
\(845\) 9.00000 0.309609
\(846\) 0 0
\(847\) −22.0000 −0.755929
\(848\) 0 0
\(849\) −28.0000 −0.960958
\(850\) 0 0
\(851\) 12.0000 0.411355
\(852\) 0 0
\(853\) 50.0000 1.71197 0.855984 0.517003i \(-0.172952\pi\)
0.855984 + 0.517003i \(0.172952\pi\)
\(854\) 0 0
\(855\) 4.00000 0.136797
\(856\) 0 0
\(857\) 18.0000 0.614868 0.307434 0.951569i \(-0.400530\pi\)
0.307434 + 0.951569i \(0.400530\pi\)
\(858\) 0 0
\(859\) −4.00000 −0.136478 −0.0682391 0.997669i \(-0.521738\pi\)
−0.0682391 + 0.997669i \(0.521738\pi\)
\(860\) 0 0
\(861\) −24.0000 −0.817918
\(862\) 0 0
\(863\) 6.00000 0.204242 0.102121 0.994772i \(-0.467437\pi\)
0.102121 + 0.994772i \(0.467437\pi\)
\(864\) 0 0
\(865\) 6.00000 0.204006
\(866\) 0 0
\(867\) −38.0000 −1.29055
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 4.00000 0.135535
\(872\) 0 0
\(873\) 2.00000 0.0676897
\(874\) 0 0
\(875\) −2.00000 −0.0676123
\(876\) 0 0
\(877\) 26.0000 0.877958 0.438979 0.898497i \(-0.355340\pi\)
0.438979 + 0.898497i \(0.355340\pi\)
\(878\) 0 0
\(879\) 60.0000 2.02375
\(880\) 0 0
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) 0 0
\(883\) 14.0000 0.471138 0.235569 0.971858i \(-0.424305\pi\)
0.235569 + 0.971858i \(0.424305\pi\)
\(884\) 0 0
\(885\) 24.0000 0.806751
\(886\) 0 0
\(887\) 18.0000 0.604381 0.302190 0.953248i \(-0.402282\pi\)
0.302190 + 0.953248i \(0.402282\pi\)
\(888\) 0 0
\(889\) 4.00000 0.134156
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 24.0000 0.803129
\(894\) 0 0
\(895\) 12.0000 0.401116
\(896\) 0 0
\(897\) −24.0000 −0.801337
\(898\) 0 0
\(899\) −24.0000 −0.800445
\(900\) 0 0
\(901\) 36.0000 1.19933
\(902\) 0 0
\(903\) 40.0000 1.33112
\(904\) 0 0
\(905\) 10.0000 0.332411
\(906\) 0 0
\(907\) −46.0000 −1.52740 −0.763702 0.645568i \(-0.776621\pi\)
−0.763702 + 0.645568i \(0.776621\pi\)
\(908\) 0 0
\(909\) 6.00000 0.199007
\(910\) 0 0
\(911\) 12.0000 0.397578 0.198789 0.980042i \(-0.436299\pi\)
0.198789 + 0.980042i \(0.436299\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 4.00000 0.132236
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −16.0000 −0.527791 −0.263896 0.964551i \(-0.585007\pi\)
−0.263896 + 0.964551i \(0.585007\pi\)
\(920\) 0 0
\(921\) −4.00000 −0.131804
\(922\) 0 0
\(923\) −24.0000 −0.789970
\(924\) 0 0
\(925\) 2.00000 0.0657596
\(926\) 0 0
\(927\) 14.0000 0.459820
\(928\) 0 0
\(929\) −42.0000 −1.37798 −0.688988 0.724773i \(-0.741945\pi\)
−0.688988 + 0.724773i \(0.741945\pi\)
\(930\) 0 0
\(931\) 12.0000 0.393284
\(932\) 0 0
\(933\) −24.0000 −0.785725
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −22.0000 −0.718709 −0.359354 0.933201i \(-0.617003\pi\)
−0.359354 + 0.933201i \(0.617003\pi\)
\(938\) 0 0
\(939\) 44.0000 1.43589
\(940\) 0 0
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) 0 0
\(943\) 36.0000 1.17232
\(944\) 0 0
\(945\) −8.00000 −0.260240
\(946\) 0 0
\(947\) 18.0000 0.584921 0.292461 0.956278i \(-0.405526\pi\)
0.292461 + 0.956278i \(0.405526\pi\)
\(948\) 0 0
\(949\) 4.00000 0.129845
\(950\) 0 0
\(951\) 12.0000 0.389127
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) 0 0
\(955\) 12.0000 0.388311
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 36.0000 1.16250
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) −6.00000 −0.193347
\(964\) 0 0
\(965\) −26.0000 −0.836970
\(966\) 0 0
\(967\) −22.0000 −0.707472 −0.353736 0.935345i \(-0.615089\pi\)
−0.353736 + 0.935345i \(0.615089\pi\)
\(968\) 0 0
\(969\) −48.0000 −1.54198
\(970\) 0 0
\(971\) −24.0000 −0.770197 −0.385098 0.922876i \(-0.625832\pi\)
−0.385098 + 0.922876i \(0.625832\pi\)
\(972\) 0 0
\(973\) −8.00000 −0.256468
\(974\) 0 0
\(975\) −4.00000 −0.128103
\(976\) 0 0
\(977\) 18.0000 0.575871 0.287936 0.957650i \(-0.407031\pi\)
0.287936 + 0.957650i \(0.407031\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 2.00000 0.0638551
\(982\) 0 0
\(983\) −18.0000 −0.574111 −0.287055 0.957914i \(-0.592676\pi\)
−0.287055 + 0.957914i \(0.592676\pi\)
\(984\) 0 0
\(985\) −18.0000 −0.573528
\(986\) 0 0
\(987\) 24.0000 0.763928
\(988\) 0 0
\(989\) −60.0000 −1.90789
\(990\) 0 0
\(991\) −4.00000 −0.127064 −0.0635321 0.997980i \(-0.520237\pi\)
−0.0635321 + 0.997980i \(0.520237\pi\)
\(992\) 0 0
\(993\) −16.0000 −0.507745
\(994\) 0 0
\(995\) −8.00000 −0.253617
\(996\) 0 0
\(997\) 26.0000 0.823428 0.411714 0.911313i \(-0.364930\pi\)
0.411714 + 0.911313i \(0.364930\pi\)
\(998\) 0 0
\(999\) 8.00000 0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 20.2.a.a.1.1 1
3.2 odd 2 180.2.a.a.1.1 1
4.3 odd 2 80.2.a.b.1.1 1
5.2 odd 4 100.2.c.a.49.2 2
5.3 odd 4 100.2.c.a.49.1 2
5.4 even 2 100.2.a.a.1.1 1
7.2 even 3 980.2.i.i.361.1 2
7.3 odd 6 980.2.i.c.961.1 2
7.4 even 3 980.2.i.i.961.1 2
7.5 odd 6 980.2.i.c.361.1 2
7.6 odd 2 980.2.a.h.1.1 1
8.3 odd 2 320.2.a.a.1.1 1
8.5 even 2 320.2.a.f.1.1 1
9.2 odd 6 1620.2.i.b.1081.1 2
9.4 even 3 1620.2.i.h.541.1 2
9.5 odd 6 1620.2.i.b.541.1 2
9.7 even 3 1620.2.i.h.1081.1 2
11.10 odd 2 2420.2.a.a.1.1 1
12.11 even 2 720.2.a.h.1.1 1
13.5 odd 4 3380.2.f.b.3041.2 2
13.8 odd 4 3380.2.f.b.3041.1 2
13.12 even 2 3380.2.a.c.1.1 1
15.2 even 4 900.2.d.c.649.2 2
15.8 even 4 900.2.d.c.649.1 2
15.14 odd 2 900.2.a.b.1.1 1
16.3 odd 4 1280.2.d.g.641.2 2
16.5 even 4 1280.2.d.c.641.2 2
16.11 odd 4 1280.2.d.g.641.1 2
16.13 even 4 1280.2.d.c.641.1 2
17.4 even 4 5780.2.c.a.5201.2 2
17.13 even 4 5780.2.c.a.5201.1 2
17.16 even 2 5780.2.a.f.1.1 1
19.18 odd 2 7220.2.a.f.1.1 1
20.3 even 4 400.2.c.b.49.2 2
20.7 even 4 400.2.c.b.49.1 2
20.19 odd 2 400.2.a.c.1.1 1
21.20 even 2 8820.2.a.g.1.1 1
24.5 odd 2 2880.2.a.m.1.1 1
24.11 even 2 2880.2.a.f.1.1 1
28.27 even 2 3920.2.a.h.1.1 1
35.13 even 4 4900.2.e.f.2549.2 2
35.27 even 4 4900.2.e.f.2549.1 2
35.34 odd 2 4900.2.a.e.1.1 1
40.3 even 4 1600.2.c.e.449.1 2
40.13 odd 4 1600.2.c.d.449.2 2
40.19 odd 2 1600.2.a.w.1.1 1
40.27 even 4 1600.2.c.e.449.2 2
40.29 even 2 1600.2.a.c.1.1 1
40.37 odd 4 1600.2.c.d.449.1 2
44.43 even 2 9680.2.a.ba.1.1 1
60.23 odd 4 3600.2.f.j.2449.2 2
60.47 odd 4 3600.2.f.j.2449.1 2
60.59 even 2 3600.2.a.be.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.2.a.a.1.1 1 1.1 even 1 trivial
80.2.a.b.1.1 1 4.3 odd 2
100.2.a.a.1.1 1 5.4 even 2
100.2.c.a.49.1 2 5.3 odd 4
100.2.c.a.49.2 2 5.2 odd 4
180.2.a.a.1.1 1 3.2 odd 2
320.2.a.a.1.1 1 8.3 odd 2
320.2.a.f.1.1 1 8.5 even 2
400.2.a.c.1.1 1 20.19 odd 2
400.2.c.b.49.1 2 20.7 even 4
400.2.c.b.49.2 2 20.3 even 4
720.2.a.h.1.1 1 12.11 even 2
900.2.a.b.1.1 1 15.14 odd 2
900.2.d.c.649.1 2 15.8 even 4
900.2.d.c.649.2 2 15.2 even 4
980.2.a.h.1.1 1 7.6 odd 2
980.2.i.c.361.1 2 7.5 odd 6
980.2.i.c.961.1 2 7.3 odd 6
980.2.i.i.361.1 2 7.2 even 3
980.2.i.i.961.1 2 7.4 even 3
1280.2.d.c.641.1 2 16.13 even 4
1280.2.d.c.641.2 2 16.5 even 4
1280.2.d.g.641.1 2 16.11 odd 4
1280.2.d.g.641.2 2 16.3 odd 4
1600.2.a.c.1.1 1 40.29 even 2
1600.2.a.w.1.1 1 40.19 odd 2
1600.2.c.d.449.1 2 40.37 odd 4
1600.2.c.d.449.2 2 40.13 odd 4
1600.2.c.e.449.1 2 40.3 even 4
1600.2.c.e.449.2 2 40.27 even 4
1620.2.i.b.541.1 2 9.5 odd 6
1620.2.i.b.1081.1 2 9.2 odd 6
1620.2.i.h.541.1 2 9.4 even 3
1620.2.i.h.1081.1 2 9.7 even 3
2420.2.a.a.1.1 1 11.10 odd 2
2880.2.a.f.1.1 1 24.11 even 2
2880.2.a.m.1.1 1 24.5 odd 2
3380.2.a.c.1.1 1 13.12 even 2
3380.2.f.b.3041.1 2 13.8 odd 4
3380.2.f.b.3041.2 2 13.5 odd 4
3600.2.a.be.1.1 1 60.59 even 2
3600.2.f.j.2449.1 2 60.47 odd 4
3600.2.f.j.2449.2 2 60.23 odd 4
3920.2.a.h.1.1 1 28.27 even 2
4900.2.a.e.1.1 1 35.34 odd 2
4900.2.e.f.2549.1 2 35.27 even 4
4900.2.e.f.2549.2 2 35.13 even 4
5780.2.a.f.1.1 1 17.16 even 2
5780.2.c.a.5201.1 2 17.13 even 4
5780.2.c.a.5201.2 2 17.4 even 4
7220.2.a.f.1.1 1 19.18 odd 2
8820.2.a.g.1.1 1 21.20 even 2
9680.2.a.ba.1.1 1 44.43 even 2