Properties

Label 2.84.a.a.1.3
Level 2
Weight 84
Character 2.1
Self dual Yes
Analytic conductor 87.254
Analytic rank 0
Dimension 3
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 2 \)
Weight: \( k \) = \( 84 \)
Character orbit: \([\chi]\) = 2.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(87.2544256533\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{24}\cdot 3^{7}\cdot 5^{3}\cdot 7\cdot 11\cdot 17 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(5.97202e14\)
Character \(\chi\) = 2.1

$q$-expansion

\(f(q)\) \(=\) \(q-2.19902e12 q^{2} +2.32406e18 q^{3} +4.83570e24 q^{4} +1.63642e29 q^{5} -5.11067e30 q^{6} -8.77702e33 q^{7} -1.06338e37 q^{8} -3.98544e39 q^{9} +O(q^{10})\) \(q-2.19902e12 q^{2} +2.32406e18 q^{3} +4.83570e24 q^{4} +1.63642e29 q^{5} -5.11067e30 q^{6} -8.77702e33 q^{7} -1.06338e37 q^{8} -3.98544e39 q^{9} -3.59853e41 q^{10} -4.41257e42 q^{11} +1.12385e43 q^{12} -1.03328e45 q^{13} +1.93009e46 q^{14} +3.80315e47 q^{15} +2.33840e49 q^{16} +7.89598e50 q^{17} +8.76407e51 q^{18} +1.66335e53 q^{19} +7.91325e53 q^{20} -2.03984e52 q^{21} +9.70335e54 q^{22} -3.15448e56 q^{23} -2.47137e55 q^{24} +1.64390e58 q^{25} +2.27221e57 q^{26} -1.85374e58 q^{27} -4.24431e58 q^{28} -7.28891e60 q^{29} -8.36321e59 q^{30} +1.29840e62 q^{31} -5.14220e61 q^{32} -1.02551e61 q^{33} -1.73635e63 q^{34} -1.43629e63 q^{35} -1.92724e64 q^{36} +1.79886e65 q^{37} -3.65774e65 q^{38} -2.40141e63 q^{39} -1.74014e66 q^{40} +3.38501e66 q^{41} +4.48565e64 q^{42} -3.48336e67 q^{43} -2.13379e67 q^{44} -6.52186e68 q^{45} +6.93677e68 q^{46} -1.23539e69 q^{47} +5.43460e67 q^{48} -1.38269e70 q^{49} -3.61498e70 q^{50} +1.83508e69 q^{51} -4.99664e69 q^{52} +3.80797e71 q^{53} +4.07641e70 q^{54} -7.22083e71 q^{55} +9.33333e70 q^{56} +3.86573e71 q^{57} +1.60285e73 q^{58} +2.39580e73 q^{59} +1.83909e72 q^{60} -3.26424e73 q^{61} -2.85520e74 q^{62} +3.49803e73 q^{63} +1.13078e74 q^{64} -1.69088e74 q^{65} +2.25512e73 q^{66} -5.45591e75 q^{67} +3.81826e75 q^{68} -7.33121e74 q^{69} +3.15844e75 q^{70} +6.95274e76 q^{71} +4.23804e76 q^{72} +9.48153e76 q^{73} -3.95574e77 q^{74} +3.82053e76 q^{75} +8.04347e77 q^{76} +3.87292e76 q^{77} +5.28076e75 q^{78} -8.48354e78 q^{79} +3.82661e78 q^{80} +1.58622e79 q^{81} -7.44371e78 q^{82} +4.88119e79 q^{83} -9.86404e76 q^{84} +1.29212e80 q^{85} +7.66000e79 q^{86} -1.69399e79 q^{87} +4.69225e79 q^{88} +1.14577e81 q^{89} +1.43417e81 q^{90} +9.06912e78 q^{91} -1.52541e81 q^{92} +3.01755e80 q^{93} +2.71666e81 q^{94} +2.72194e82 q^{95} -1.19508e80 q^{96} +5.10935e82 q^{97} +3.04056e82 q^{98} +1.75860e82 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q - 6597069766656q^{2} - \)\(10\!\cdots\!76\)\(q^{3} + \)\(14\!\cdots\!12\)\(q^{4} - \)\(30\!\cdots\!50\)\(q^{5} + \)\(22\!\cdots\!52\)\(q^{6} - \)\(56\!\cdots\!88\)\(q^{7} - \)\(31\!\cdots\!24\)\(q^{8} - \)\(12\!\cdots\!89\)\(q^{9} + O(q^{10}) \) \( 3q - 6597069766656q^{2} - \)\(10\!\cdots\!76\)\(q^{3} + \)\(14\!\cdots\!12\)\(q^{4} - \)\(30\!\cdots\!50\)\(q^{5} + \)\(22\!\cdots\!52\)\(q^{6} - \)\(56\!\cdots\!88\)\(q^{7} - \)\(31\!\cdots\!24\)\(q^{8} - \)\(12\!\cdots\!89\)\(q^{9} + \)\(66\!\cdots\!00\)\(q^{10} - \)\(14\!\cdots\!64\)\(q^{11} - \)\(49\!\cdots\!04\)\(q^{12} - \)\(12\!\cdots\!26\)\(q^{13} + \)\(12\!\cdots\!76\)\(q^{14} + \)\(49\!\cdots\!00\)\(q^{15} + \)\(70\!\cdots\!48\)\(q^{16} + \)\(30\!\cdots\!02\)\(q^{17} + \)\(28\!\cdots\!28\)\(q^{18} - \)\(11\!\cdots\!00\)\(q^{19} - \)\(14\!\cdots\!00\)\(q^{20} + \)\(11\!\cdots\!96\)\(q^{21} + \)\(32\!\cdots\!28\)\(q^{22} + \)\(19\!\cdots\!04\)\(q^{23} + \)\(10\!\cdots\!08\)\(q^{24} + \)\(12\!\cdots\!25\)\(q^{25} + \)\(27\!\cdots\!52\)\(q^{26} - \)\(29\!\cdots\!60\)\(q^{27} - \)\(27\!\cdots\!52\)\(q^{28} - \)\(13\!\cdots\!70\)\(q^{29} - \)\(10\!\cdots\!00\)\(q^{30} - \)\(15\!\cdots\!44\)\(q^{31} - \)\(15\!\cdots\!96\)\(q^{32} - \)\(13\!\cdots\!12\)\(q^{33} - \)\(67\!\cdots\!04\)\(q^{34} - \)\(47\!\cdots\!00\)\(q^{35} - \)\(62\!\cdots\!56\)\(q^{36} - \)\(14\!\cdots\!98\)\(q^{37} + \)\(25\!\cdots\!00\)\(q^{38} + \)\(22\!\cdots\!92\)\(q^{39} + \)\(32\!\cdots\!00\)\(q^{40} - \)\(14\!\cdots\!14\)\(q^{41} - \)\(25\!\cdots\!92\)\(q^{42} - \)\(18\!\cdots\!96\)\(q^{43} - \)\(72\!\cdots\!56\)\(q^{44} - \)\(44\!\cdots\!50\)\(q^{45} - \)\(42\!\cdots\!08\)\(q^{46} - \)\(34\!\cdots\!88\)\(q^{47} - \)\(23\!\cdots\!16\)\(q^{48} - \)\(24\!\cdots\!81\)\(q^{49} - \)\(28\!\cdots\!00\)\(q^{50} - \)\(15\!\cdots\!84\)\(q^{51} - \)\(60\!\cdots\!04\)\(q^{52} - \)\(38\!\cdots\!66\)\(q^{53} + \)\(63\!\cdots\!20\)\(q^{54} + \)\(16\!\cdots\!00\)\(q^{55} + \)\(60\!\cdots\!04\)\(q^{56} + \)\(13\!\cdots\!00\)\(q^{57} + \)\(29\!\cdots\!40\)\(q^{58} + \)\(31\!\cdots\!60\)\(q^{59} + \)\(23\!\cdots\!00\)\(q^{60} - \)\(30\!\cdots\!94\)\(q^{61} + \)\(33\!\cdots\!88\)\(q^{62} - \)\(99\!\cdots\!56\)\(q^{63} + \)\(33\!\cdots\!92\)\(q^{64} - \)\(19\!\cdots\!00\)\(q^{65} + \)\(29\!\cdots\!24\)\(q^{66} - \)\(98\!\cdots\!28\)\(q^{67} + \)\(14\!\cdots\!08\)\(q^{68} - \)\(21\!\cdots\!68\)\(q^{69} + \)\(10\!\cdots\!00\)\(q^{70} + \)\(81\!\cdots\!96\)\(q^{71} + \)\(13\!\cdots\!12\)\(q^{72} + \)\(54\!\cdots\!14\)\(q^{73} + \)\(31\!\cdots\!96\)\(q^{74} + \)\(91\!\cdots\!00\)\(q^{75} - \)\(55\!\cdots\!00\)\(q^{76} - \)\(30\!\cdots\!56\)\(q^{77} - \)\(49\!\cdots\!84\)\(q^{78} - \)\(40\!\cdots\!80\)\(q^{79} - \)\(70\!\cdots\!00\)\(q^{80} + \)\(33\!\cdots\!23\)\(q^{81} + \)\(32\!\cdots\!28\)\(q^{82} + \)\(52\!\cdots\!84\)\(q^{83} + \)\(56\!\cdots\!84\)\(q^{84} + \)\(31\!\cdots\!00\)\(q^{85} + \)\(40\!\cdots\!92\)\(q^{86} + \)\(57\!\cdots\!40\)\(q^{87} + \)\(15\!\cdots\!12\)\(q^{88} + \)\(73\!\cdots\!30\)\(q^{89} + \)\(97\!\cdots\!00\)\(q^{90} + \)\(39\!\cdots\!96\)\(q^{91} + \)\(94\!\cdots\!16\)\(q^{92} + \)\(13\!\cdots\!48\)\(q^{93} + \)\(75\!\cdots\!76\)\(q^{94} + \)\(51\!\cdots\!00\)\(q^{95} + \)\(52\!\cdots\!32\)\(q^{96} + \)\(11\!\cdots\!82\)\(q^{97} + \)\(53\!\cdots\!12\)\(q^{98} + \)\(19\!\cdots\!32\)\(q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.19902e12 −0.707107
\(3\) 2.32406e18 0.0367888 0.0183944 0.999831i \(-0.494145\pi\)
0.0183944 + 0.999831i \(0.494145\pi\)
\(4\) 4.83570e24 0.500000
\(5\) 1.63642e29 1.60931 0.804656 0.593742i \(-0.202350\pi\)
0.804656 + 0.593742i \(0.202350\pi\)
\(6\) −5.11067e30 −0.0260136
\(7\) −8.77702e33 −0.0744352 −0.0372176 0.999307i \(-0.511849\pi\)
−0.0372176 + 0.999307i \(0.511849\pi\)
\(8\) −1.06338e37 −0.353553
\(9\) −3.98544e39 −0.998647
\(10\) −3.59853e41 −1.13796
\(11\) −4.41257e42 −0.267236 −0.133618 0.991033i \(-0.542660\pi\)
−0.133618 + 0.991033i \(0.542660\pi\)
\(12\) 1.12385e43 0.0183944
\(13\) −1.03328e45 −0.0610336 −0.0305168 0.999534i \(-0.509715\pi\)
−0.0305168 + 0.999534i \(0.509715\pi\)
\(14\) 1.93009e46 0.0526336
\(15\) 3.80315e47 0.0592047
\(16\) 2.33840e49 0.250000
\(17\) 7.89598e50 0.681987 0.340993 0.940066i \(-0.389237\pi\)
0.340993 + 0.940066i \(0.389237\pi\)
\(18\) 8.76407e51 0.706150
\(19\) 1.66335e53 1.42138 0.710688 0.703507i \(-0.248384\pi\)
0.710688 + 0.703507i \(0.248384\pi\)
\(20\) 7.91325e53 0.804656
\(21\) −2.03984e52 −0.00273838
\(22\) 9.70335e54 0.188965
\(23\) −3.15448e56 −0.971007 −0.485504 0.874235i \(-0.661364\pi\)
−0.485504 + 0.874235i \(0.661364\pi\)
\(24\) −2.47137e55 −0.0130068
\(25\) 1.64390e58 1.58988
\(26\) 2.27221e57 0.0431573
\(27\) −1.85374e58 −0.0735279
\(28\) −4.24431e58 −0.0372176
\(29\) −7.28891e60 −1.48986 −0.744930 0.667142i \(-0.767517\pi\)
−0.744930 + 0.667142i \(0.767517\pi\)
\(30\) −8.36321e59 −0.0418640
\(31\) 1.29840e62 1.66685 0.833425 0.552632i \(-0.186377\pi\)
0.833425 + 0.552632i \(0.186377\pi\)
\(32\) −5.14220e61 −0.176777
\(33\) −1.02551e61 −0.00983131
\(34\) −1.73635e63 −0.482238
\(35\) −1.43629e63 −0.119789
\(36\) −1.92724e64 −0.499323
\(37\) 1.79886e65 1.49495 0.747475 0.664290i \(-0.231266\pi\)
0.747475 + 0.664290i \(0.231266\pi\)
\(38\) −3.65774e65 −1.00506
\(39\) −2.40141e63 −0.00224536
\(40\) −1.74014e66 −0.568978
\(41\) 3.38501e66 0.397219 0.198609 0.980079i \(-0.436358\pi\)
0.198609 + 0.980079i \(0.436358\pi\)
\(42\) 4.48565e64 0.00193633
\(43\) −3.48336e67 −0.566315 −0.283157 0.959073i \(-0.591382\pi\)
−0.283157 + 0.959073i \(0.591382\pi\)
\(44\) −2.13379e67 −0.133618
\(45\) −6.52186e68 −1.60713
\(46\) 6.93677e68 0.686606
\(47\) −1.23539e69 −0.500892 −0.250446 0.968131i \(-0.580577\pi\)
−0.250446 + 0.968131i \(0.580577\pi\)
\(48\) 5.43460e67 0.00919721
\(49\) −1.38269e70 −0.994459
\(50\) −3.61498e70 −1.12422
\(51\) 1.83508e69 0.0250895
\(52\) −4.99664e69 −0.0305168
\(53\) 3.80797e71 1.05498 0.527491 0.849560i \(-0.323133\pi\)
0.527491 + 0.849560i \(0.323133\pi\)
\(54\) 4.07641e70 0.0519921
\(55\) −7.22083e71 −0.430067
\(56\) 9.33333e70 0.0263168
\(57\) 3.86573e71 0.0522908
\(58\) 1.60285e73 1.05349
\(59\) 2.39580e73 0.774627 0.387313 0.921948i \(-0.373403\pi\)
0.387313 + 0.921948i \(0.373403\pi\)
\(60\) 1.83909e72 0.0296023
\(61\) −3.26424e73 −0.264602 −0.132301 0.991210i \(-0.542237\pi\)
−0.132301 + 0.991210i \(0.542237\pi\)
\(62\) −2.85520e74 −1.17864
\(63\) 3.49803e73 0.0743345
\(64\) 1.13078e74 0.125000
\(65\) −1.69088e74 −0.0982221
\(66\) 2.25512e73 0.00695179
\(67\) −5.45591e75 −0.901079 −0.450539 0.892757i \(-0.648768\pi\)
−0.450539 + 0.892757i \(0.648768\pi\)
\(68\) 3.81826e75 0.340993
\(69\) −7.33121e74 −0.0357222
\(70\) 3.15844e75 0.0847039
\(71\) 6.95274e76 1.03499 0.517493 0.855688i \(-0.326865\pi\)
0.517493 + 0.855688i \(0.326865\pi\)
\(72\) 4.23804e76 0.353075
\(73\) 9.48153e76 0.445636 0.222818 0.974860i \(-0.428474\pi\)
0.222818 + 0.974860i \(0.428474\pi\)
\(74\) −3.95574e77 −1.05709
\(75\) 3.82053e76 0.0584900
\(76\) 8.04347e77 0.710688
\(77\) 3.87292e76 0.0198918
\(78\) 5.28076e75 0.00158771
\(79\) −8.48354e78 −1.50333 −0.751663 0.659548i \(-0.770748\pi\)
−0.751663 + 0.659548i \(0.770748\pi\)
\(80\) 3.82661e78 0.402328
\(81\) 1.58622e79 0.995942
\(82\) −7.44371e78 −0.280876
\(83\) 4.88119e79 1.11374 0.556871 0.830599i \(-0.312002\pi\)
0.556871 + 0.830599i \(0.312002\pi\)
\(84\) −9.86404e76 −0.00136919
\(85\) 1.29212e80 1.09753
\(86\) 7.66000e79 0.400445
\(87\) −1.69399e79 −0.0548102
\(88\) 4.69225e79 0.0944823
\(89\) 1.14577e81 1.44348 0.721742 0.692162i \(-0.243342\pi\)
0.721742 + 0.692162i \(0.243342\pi\)
\(90\) 1.43417e81 1.13642
\(91\) 9.06912e78 0.00454305
\(92\) −1.52541e81 −0.485504
\(93\) 3.01755e80 0.0613215
\(94\) 2.71666e81 0.354184
\(95\) 2.72194e82 2.28744
\(96\) −1.19508e80 −0.00650341
\(97\) 5.10935e82 1.80858 0.904292 0.426915i \(-0.140400\pi\)
0.904292 + 0.426915i \(0.140400\pi\)
\(98\) 3.04056e82 0.703189
\(99\) 1.75860e82 0.266875
\(100\) 7.94942e82 0.794942
\(101\) −5.73696e82 −0.379616 −0.189808 0.981821i \(-0.560787\pi\)
−0.189808 + 0.981821i \(0.560787\pi\)
\(102\) −4.03538e81 −0.0177410
\(103\) 5.15903e83 1.51294 0.756472 0.654026i \(-0.226921\pi\)
0.756472 + 0.654026i \(0.226921\pi\)
\(104\) 1.09877e82 0.0215786
\(105\) −3.33803e81 −0.00440691
\(106\) −8.37382e83 −0.745986
\(107\) −1.67750e84 −1.01213 −0.506065 0.862495i \(-0.668900\pi\)
−0.506065 + 0.862495i \(0.668900\pi\)
\(108\) −8.96412e82 −0.0367639
\(109\) −7.46931e83 −0.208969 −0.104484 0.994527i \(-0.533319\pi\)
−0.104484 + 0.994527i \(0.533319\pi\)
\(110\) 1.58788e84 0.304103
\(111\) 4.18068e83 0.0549975
\(112\) −2.05242e83 −0.0186088
\(113\) −1.45069e85 −0.909534 −0.454767 0.890610i \(-0.650278\pi\)
−0.454767 + 0.890610i \(0.650278\pi\)
\(114\) −8.50083e83 −0.0369752
\(115\) −5.16206e85 −1.56265
\(116\) −3.52470e85 −0.744930
\(117\) 4.11808e84 0.0609510
\(118\) −5.26842e85 −0.547744
\(119\) −6.93032e84 −0.0507638
\(120\) −4.04420e84 −0.0209320
\(121\) −2.53171e86 −0.928585
\(122\) 7.17814e85 0.187102
\(123\) 7.86697e84 0.0146132
\(124\) 6.27866e86 0.833425
\(125\) 9.98096e86 0.949307
\(126\) −7.69224e85 −0.0525624
\(127\) 3.50206e87 1.72373 0.861865 0.507137i \(-0.169296\pi\)
0.861865 + 0.507137i \(0.169296\pi\)
\(128\) −2.48662e86 −0.0883883
\(129\) −8.09556e85 −0.0208341
\(130\) 3.71829e86 0.0694535
\(131\) 5.31708e87 0.722628 0.361314 0.932444i \(-0.382328\pi\)
0.361314 + 0.932444i \(0.382328\pi\)
\(132\) −4.95906e85 −0.00491566
\(133\) −1.45993e87 −0.105800
\(134\) 1.19977e88 0.637159
\(135\) −3.03350e87 −0.118329
\(136\) −8.39645e87 −0.241119
\(137\) −2.48949e88 −0.527481 −0.263741 0.964594i \(-0.584956\pi\)
−0.263741 + 0.964594i \(0.584956\pi\)
\(138\) 1.61215e87 0.0252594
\(139\) 2.44056e88 0.283384 0.141692 0.989911i \(-0.454746\pi\)
0.141692 + 0.989911i \(0.454746\pi\)
\(140\) −6.94548e87 −0.0598947
\(141\) −2.87113e87 −0.0184272
\(142\) −1.52892e89 −0.731845
\(143\) 4.55943e87 0.0163104
\(144\) −9.31956e88 −0.249662
\(145\) −1.19277e90 −2.39765
\(146\) −2.08501e89 −0.315112
\(147\) −3.21346e88 −0.0365850
\(148\) 8.69877e89 0.747475
\(149\) −4.37137e89 −0.284045 −0.142023 0.989863i \(-0.545361\pi\)
−0.142023 + 0.989863i \(0.545361\pi\)
\(150\) −8.40144e88 −0.0413587
\(151\) 3.88960e90 1.45332 0.726660 0.686997i \(-0.241071\pi\)
0.726660 + 0.686997i \(0.241071\pi\)
\(152\) −1.76878e90 −0.502532
\(153\) −3.14689e90 −0.681064
\(154\) −8.51665e88 −0.0140656
\(155\) 2.12472e91 2.68248
\(156\) −1.16125e88 −0.00112268
\(157\) 6.56967e89 0.0487201 0.0243600 0.999703i \(-0.492245\pi\)
0.0243600 + 0.999703i \(0.492245\pi\)
\(158\) 1.86555e91 1.06301
\(159\) 8.84998e89 0.0388116
\(160\) −8.41481e90 −0.284489
\(161\) 2.76869e90 0.0722771
\(162\) −3.48812e91 −0.704237
\(163\) −4.43454e91 −0.693526 −0.346763 0.937953i \(-0.612719\pi\)
−0.346763 + 0.937953i \(0.612719\pi\)
\(164\) 1.63689e91 0.198609
\(165\) −1.67817e90 −0.0158216
\(166\) −1.07338e92 −0.787535
\(167\) 3.11587e92 1.78174 0.890872 0.454254i \(-0.150094\pi\)
0.890872 + 0.454254i \(0.150094\pi\)
\(168\) 2.16913e89 0.000968165 0
\(169\) −2.85547e92 −0.996275
\(170\) −2.84139e92 −0.776070
\(171\) −6.62918e92 −1.41945
\(172\) −1.68445e92 −0.283157
\(173\) 6.09613e92 0.805639 0.402820 0.915279i \(-0.368030\pi\)
0.402820 + 0.915279i \(0.368030\pi\)
\(174\) 3.72512e91 0.0387567
\(175\) −1.44286e92 −0.118343
\(176\) −1.03184e92 −0.0668091
\(177\) 5.56800e91 0.0284976
\(178\) −2.51957e93 −1.02070
\(179\) 3.20014e93 1.02747 0.513734 0.857950i \(-0.328262\pi\)
0.513734 + 0.857950i \(0.328262\pi\)
\(180\) −3.15378e93 −0.803567
\(181\) 9.04366e93 1.83098 0.915490 0.402341i \(-0.131803\pi\)
0.915490 + 0.402341i \(0.131803\pi\)
\(182\) −1.99432e91 −0.00321242
\(183\) −7.58630e91 −0.00973441
\(184\) 3.35442e93 0.343303
\(185\) 2.94370e94 2.40584
\(186\) −6.63567e92 −0.0433608
\(187\) −3.48416e93 −0.182252
\(188\) −5.97400e93 −0.250446
\(189\) 1.62703e92 0.00547306
\(190\) −5.98561e94 −1.61746
\(191\) 4.54640e92 0.00988060 0.00494030 0.999988i \(-0.498427\pi\)
0.00494030 + 0.999988i \(0.498427\pi\)
\(192\) 2.62801e92 0.00459860
\(193\) 5.51356e94 0.777685 0.388843 0.921304i \(-0.372875\pi\)
0.388843 + 0.921304i \(0.372875\pi\)
\(194\) −1.12356e95 −1.27886
\(195\) −3.92972e92 −0.00361348
\(196\) −6.68627e94 −0.497230
\(197\) −2.03036e95 −1.22243 −0.611216 0.791464i \(-0.709319\pi\)
−0.611216 + 0.791464i \(0.709319\pi\)
\(198\) −3.86721e94 −0.188709
\(199\) 3.23506e95 1.28079 0.640397 0.768044i \(-0.278770\pi\)
0.640397 + 0.768044i \(0.278770\pi\)
\(200\) −1.74810e95 −0.562109
\(201\) −1.26799e94 −0.0331496
\(202\) 1.26157e95 0.268429
\(203\) 6.39749e94 0.110898
\(204\) 8.87389e93 0.0125447
\(205\) 5.53930e95 0.639248
\(206\) −1.13448e96 −1.06981
\(207\) 1.25720e96 0.969693
\(208\) −2.41623e94 −0.0152584
\(209\) −7.33965e95 −0.379843
\(210\) 7.34041e93 0.00311616
\(211\) 4.35054e96 1.51643 0.758213 0.652007i \(-0.226073\pi\)
0.758213 + 0.652007i \(0.226073\pi\)
\(212\) 1.84142e96 0.527491
\(213\) 1.61586e95 0.0380759
\(214\) 3.68887e96 0.715684
\(215\) −5.70025e96 −0.911377
\(216\) 1.97123e95 0.0259960
\(217\) −1.13960e96 −0.124072
\(218\) 1.64252e96 0.147763
\(219\) 2.20357e95 0.0163944
\(220\) −3.49178e96 −0.215033
\(221\) −8.15877e95 −0.0416241
\(222\) −9.19340e95 −0.0388891
\(223\) −3.78127e97 −1.32735 −0.663675 0.748021i \(-0.731004\pi\)
−0.663675 + 0.748021i \(0.731004\pi\)
\(224\) 4.51332e95 0.0131584
\(225\) −6.55167e97 −1.58773
\(226\) 3.19010e97 0.643138
\(227\) −8.45647e97 −1.41944 −0.709719 0.704485i \(-0.751178\pi\)
−0.709719 + 0.704485i \(0.751178\pi\)
\(228\) 1.86935e96 0.0261454
\(229\) 2.17497e97 0.253677 0.126838 0.991923i \(-0.459517\pi\)
0.126838 + 0.991923i \(0.459517\pi\)
\(230\) 1.13515e98 1.10496
\(231\) 9.00092e94 0.000731796 0
\(232\) 7.75090e97 0.526745
\(233\) 2.88665e98 1.64106 0.820529 0.571605i \(-0.193679\pi\)
0.820529 + 0.571605i \(0.193679\pi\)
\(234\) −9.05574e96 −0.0430989
\(235\) −2.02163e98 −0.806092
\(236\) 1.15854e98 0.387313
\(237\) −1.97163e97 −0.0553056
\(238\) 1.52399e97 0.0358955
\(239\) 3.57970e98 0.708491 0.354245 0.935152i \(-0.384738\pi\)
0.354245 + 0.935152i \(0.384738\pi\)
\(240\) 8.89329e96 0.0148012
\(241\) 8.81088e97 0.123399 0.0616996 0.998095i \(-0.480348\pi\)
0.0616996 + 0.998095i \(0.480348\pi\)
\(242\) 5.56729e98 0.656609
\(243\) 1.10844e98 0.110167
\(244\) −1.57849e98 −0.132301
\(245\) −2.26266e99 −1.60040
\(246\) −1.72997e97 −0.0103331
\(247\) −1.71871e98 −0.0867518
\(248\) −1.38069e99 −0.589321
\(249\) 1.13442e98 0.0409733
\(250\) −2.19484e99 −0.671261
\(251\) 4.77542e99 1.23752 0.618760 0.785580i \(-0.287635\pi\)
0.618760 + 0.785580i \(0.287635\pi\)
\(252\) 1.69154e98 0.0371672
\(253\) 1.39194e99 0.259488
\(254\) −7.70112e99 −1.21886
\(255\) 3.00296e98 0.0403768
\(256\) 5.46813e98 0.0625000
\(257\) −1.32968e100 −1.29277 −0.646385 0.763011i \(-0.723720\pi\)
−0.646385 + 0.763011i \(0.723720\pi\)
\(258\) 1.78023e98 0.0147319
\(259\) −1.57887e99 −0.111277
\(260\) −8.17661e98 −0.0491111
\(261\) 2.90495e100 1.48784
\(262\) −1.16924e100 −0.510975
\(263\) 2.32586e100 0.867801 0.433900 0.900961i \(-0.357137\pi\)
0.433900 + 0.900961i \(0.357137\pi\)
\(264\) 1.09051e98 0.00347589
\(265\) 6.23145e100 1.69780
\(266\) 3.21041e99 0.0748122
\(267\) 2.66284e99 0.0531041
\(268\) −2.63831e100 −0.450539
\(269\) 2.33635e100 0.341836 0.170918 0.985285i \(-0.445327\pi\)
0.170918 + 0.985285i \(0.445327\pi\)
\(270\) 6.67073e99 0.0836714
\(271\) −3.28823e100 −0.353783 −0.176892 0.984230i \(-0.556604\pi\)
−0.176892 + 0.984230i \(0.556604\pi\)
\(272\) 1.84640e100 0.170497
\(273\) 2.10772e97 0.000167134 0
\(274\) 5.47445e100 0.372986
\(275\) −7.25384e100 −0.424875
\(276\) −3.54516e99 −0.0178611
\(277\) −3.52673e101 −1.52919 −0.764595 0.644511i \(-0.777061\pi\)
−0.764595 + 0.644511i \(0.777061\pi\)
\(278\) −5.36686e100 −0.200383
\(279\) −5.17467e101 −1.66459
\(280\) 1.52733e100 0.0423520
\(281\) 9.61452e100 0.229940 0.114970 0.993369i \(-0.463323\pi\)
0.114970 + 0.993369i \(0.463323\pi\)
\(282\) 6.31369e99 0.0130300
\(283\) 2.03952e101 0.363405 0.181703 0.983354i \(-0.441839\pi\)
0.181703 + 0.983354i \(0.441839\pi\)
\(284\) 3.36214e101 0.517493
\(285\) 6.32597e100 0.0841521
\(286\) −1.00263e100 −0.0115332
\(287\) −2.97103e100 −0.0295670
\(288\) 2.04939e101 0.176537
\(289\) −7.17015e101 −0.534894
\(290\) 2.62294e102 1.69539
\(291\) 1.18745e101 0.0665357
\(292\) 4.58499e101 0.222818
\(293\) −1.49253e102 −0.629384 −0.314692 0.949194i \(-0.601901\pi\)
−0.314692 + 0.949194i \(0.601901\pi\)
\(294\) 7.06647e100 0.0258695
\(295\) 3.92054e102 1.24662
\(296\) −1.91288e102 −0.528545
\(297\) 8.17975e100 0.0196493
\(298\) 9.61275e101 0.200850
\(299\) 3.25946e101 0.0592641
\(300\) 1.84750e101 0.0292450
\(301\) 3.05735e101 0.0421537
\(302\) −8.55332e102 −1.02765
\(303\) −1.33331e101 −0.0139656
\(304\) 3.88958e102 0.355344
\(305\) −5.34167e102 −0.425828
\(306\) 6.92009e102 0.481585
\(307\) 8.20573e102 0.498740 0.249370 0.968408i \(-0.419776\pi\)
0.249370 + 0.968408i \(0.419776\pi\)
\(308\) 1.87283e101 0.00994590
\(309\) 1.19899e102 0.0556595
\(310\) −4.67232e103 −1.89680
\(311\) −5.30457e103 −1.88406 −0.942028 0.335534i \(-0.891083\pi\)
−0.942028 + 0.335534i \(0.891083\pi\)
\(312\) 2.55362e100 0.000793853 0
\(313\) 3.55012e103 0.966393 0.483196 0.875512i \(-0.339476\pi\)
0.483196 + 0.875512i \(0.339476\pi\)
\(314\) −1.44469e102 −0.0344503
\(315\) 5.72425e102 0.119627
\(316\) −4.10239e103 −0.751663
\(317\) 1.00605e104 1.61681 0.808403 0.588629i \(-0.200332\pi\)
0.808403 + 0.588629i \(0.200332\pi\)
\(318\) −1.94613e102 −0.0274439
\(319\) 3.21628e103 0.398145
\(320\) 1.85044e103 0.201164
\(321\) −3.89862e102 −0.0372351
\(322\) −6.08842e102 −0.0511076
\(323\) 1.31338e104 0.969360
\(324\) 7.67047e103 0.497971
\(325\) −1.69861e103 −0.0970364
\(326\) 9.75165e103 0.490397
\(327\) −1.73592e102 −0.00768771
\(328\) −3.59956e103 −0.140438
\(329\) 1.08431e103 0.0372840
\(330\) 3.69033e102 0.0111876
\(331\) 2.95689e104 0.790629 0.395315 0.918546i \(-0.370636\pi\)
0.395315 + 0.918546i \(0.370636\pi\)
\(332\) 2.36040e104 0.556871
\(333\) −7.16926e104 −1.49293
\(334\) −6.85186e104 −1.25988
\(335\) −8.92817e104 −1.45012
\(336\) −4.76996e101 −0.000684596 0
\(337\) −7.28916e104 −0.924777 −0.462388 0.886678i \(-0.653007\pi\)
−0.462388 + 0.886678i \(0.653007\pi\)
\(338\) 6.27924e104 0.704473
\(339\) −3.37150e103 −0.0334607
\(340\) 6.24829e104 0.548765
\(341\) −5.72927e104 −0.445443
\(342\) 1.45777e105 1.00370
\(343\) 2.43394e104 0.148458
\(344\) 3.70415e104 0.200222
\(345\) −1.19970e104 −0.0574882
\(346\) −1.34055e105 −0.569673
\(347\) −1.85493e105 −0.699284 −0.349642 0.936883i \(-0.613697\pi\)
−0.349642 + 0.936883i \(0.613697\pi\)
\(348\) −8.19163e103 −0.0274051
\(349\) 4.41796e105 1.31210 0.656050 0.754718i \(-0.272226\pi\)
0.656050 + 0.754718i \(0.272226\pi\)
\(350\) 3.17287e104 0.0836814
\(351\) 1.91543e103 0.00448767
\(352\) 2.26903e104 0.0472412
\(353\) −6.26064e104 −0.115869 −0.0579347 0.998320i \(-0.518452\pi\)
−0.0579347 + 0.998320i \(0.518452\pi\)
\(354\) −1.22442e104 −0.0201509
\(355\) 1.13776e106 1.66561
\(356\) 5.54060e105 0.721742
\(357\) −1.61065e103 −0.00186754
\(358\) −7.03718e105 −0.726529
\(359\) −1.70060e106 −1.56380 −0.781901 0.623403i \(-0.785750\pi\)
−0.781901 + 0.623403i \(0.785750\pi\)
\(360\) 6.93523e105 0.568208
\(361\) 1.39727e106 1.02031
\(362\) −1.98872e106 −1.29470
\(363\) −5.88386e104 −0.0341615
\(364\) 4.38556e103 0.00227153
\(365\) 1.55158e106 0.717167
\(366\) 1.66825e104 0.00688327
\(367\) 8.71124e105 0.320951 0.160475 0.987040i \(-0.448697\pi\)
0.160475 + 0.987040i \(0.448697\pi\)
\(368\) −7.37644e105 −0.242752
\(369\) −1.34907e106 −0.396681
\(370\) −6.47327e106 −1.70119
\(371\) −3.34227e105 −0.0785279
\(372\) 1.45920e105 0.0306607
\(373\) −5.98355e106 −1.12471 −0.562357 0.826895i \(-0.690105\pi\)
−0.562357 + 0.826895i \(0.690105\pi\)
\(374\) 7.66175e105 0.128871
\(375\) 2.31964e105 0.0349239
\(376\) 1.31370e106 0.177092
\(377\) 7.53149e105 0.0909316
\(378\) −3.57787e104 −0.00387004
\(379\) 5.56014e106 0.538962 0.269481 0.963006i \(-0.413148\pi\)
0.269481 + 0.963006i \(0.413148\pi\)
\(380\) 1.31625e107 1.14372
\(381\) 8.13902e105 0.0634140
\(382\) −9.99764e104 −0.00698664
\(383\) 2.06271e107 1.29327 0.646633 0.762801i \(-0.276176\pi\)
0.646633 + 0.762801i \(0.276176\pi\)
\(384\) −5.77905e104 −0.00325170
\(385\) 6.33774e105 0.0320121
\(386\) −1.21244e107 −0.549907
\(387\) 1.38827e107 0.565548
\(388\) 2.47073e107 0.904292
\(389\) −1.05577e107 −0.347265 −0.173633 0.984811i \(-0.555550\pi\)
−0.173633 + 0.984811i \(0.555550\pi\)
\(390\) 8.64155e104 0.00255511
\(391\) −2.49077e107 −0.662214
\(392\) 1.47033e107 0.351594
\(393\) 1.23572e106 0.0265846
\(394\) 4.46481e107 0.864390
\(395\) −1.38827e108 −2.41932
\(396\) 8.50408e106 0.133437
\(397\) −3.14955e107 −0.445084 −0.222542 0.974923i \(-0.571436\pi\)
−0.222542 + 0.974923i \(0.571436\pi\)
\(398\) −7.11397e107 −0.905658
\(399\) −3.39296e105 −0.00389227
\(400\) 3.84410e107 0.397471
\(401\) −5.76795e107 −0.537688 −0.268844 0.963184i \(-0.586642\pi\)
−0.268844 + 0.963184i \(0.586642\pi\)
\(402\) 2.78833e106 0.0234403
\(403\) −1.34161e107 −0.101734
\(404\) −2.77422e107 −0.189808
\(405\) 2.59572e108 1.60278
\(406\) −1.40682e107 −0.0784168
\(407\) −7.93762e107 −0.399505
\(408\) −1.95139e106 −0.00887048
\(409\) −1.57211e107 −0.0645604 −0.0322802 0.999479i \(-0.510277\pi\)
−0.0322802 + 0.999479i \(0.510277\pi\)
\(410\) −1.21810e108 −0.452017
\(411\) −5.78574e106 −0.0194054
\(412\) 2.49475e108 0.756472
\(413\) −2.10280e107 −0.0576595
\(414\) −2.76461e108 −0.685676
\(415\) 7.98768e108 1.79236
\(416\) 5.31334e106 0.0107893
\(417\) 5.67203e106 0.0104254
\(418\) 1.61401e108 0.268590
\(419\) 3.50647e108 0.528431 0.264216 0.964464i \(-0.414887\pi\)
0.264216 + 0.964464i \(0.414887\pi\)
\(420\) −1.61417e106 −0.00220346
\(421\) −3.11175e108 −0.384855 −0.192428 0.981311i \(-0.561636\pi\)
−0.192428 + 0.981311i \(0.561636\pi\)
\(422\) −9.56694e108 −1.07228
\(423\) 4.92358e108 0.500214
\(424\) −4.04933e108 −0.372993
\(425\) 1.29802e109 1.08428
\(426\) −3.55331e107 −0.0269237
\(427\) 2.86503e107 0.0196957
\(428\) −8.11190e108 −0.506065
\(429\) 1.05964e106 0.000600041 0
\(430\) 1.25350e109 0.644441
\(431\) −1.53223e109 −0.715348 −0.357674 0.933847i \(-0.616430\pi\)
−0.357674 + 0.933847i \(0.616430\pi\)
\(432\) −4.33478e107 −0.0183820
\(433\) −3.51323e109 −1.35350 −0.676751 0.736212i \(-0.736612\pi\)
−0.676751 + 0.736212i \(0.736612\pi\)
\(434\) 2.50602e108 0.0877324
\(435\) −2.77208e108 −0.0882067
\(436\) −3.61194e108 −0.104484
\(437\) −5.24700e109 −1.38017
\(438\) −4.84570e107 −0.0115926
\(439\) −3.24144e109 −0.705440 −0.352720 0.935729i \(-0.614743\pi\)
−0.352720 + 0.935729i \(0.614743\pi\)
\(440\) 7.67851e108 0.152051
\(441\) 5.51062e109 0.993113
\(442\) 1.79413e108 0.0294327
\(443\) −6.20791e108 −0.0927238 −0.0463619 0.998925i \(-0.514763\pi\)
−0.0463619 + 0.998925i \(0.514763\pi\)
\(444\) 2.02165e108 0.0274987
\(445\) 1.87496e110 2.32302
\(446\) 8.31509e109 0.938578
\(447\) −1.01593e108 −0.0104497
\(448\) −9.92490e107 −0.00930440
\(449\) −1.81811e110 −1.55380 −0.776902 0.629621i \(-0.783210\pi\)
−0.776902 + 0.629621i \(0.783210\pi\)
\(450\) 1.44073e110 1.12270
\(451\) −1.49366e109 −0.106151
\(452\) −7.01511e109 −0.454767
\(453\) 9.03967e108 0.0534660
\(454\) 1.85960e110 1.00369
\(455\) 1.48409e108 0.00731118
\(456\) −4.11075e108 −0.0184876
\(457\) 2.29346e110 0.941823 0.470912 0.882180i \(-0.343925\pi\)
0.470912 + 0.882180i \(0.343925\pi\)
\(458\) −4.78280e109 −0.179376
\(459\) −1.46371e109 −0.0501450
\(460\) −2.49622e110 −0.781326
\(461\) −5.17823e110 −1.48113 −0.740564 0.671986i \(-0.765442\pi\)
−0.740564 + 0.671986i \(0.765442\pi\)
\(462\) −1.97932e107 −0.000517458 0
\(463\) −2.62604e110 −0.627611 −0.313806 0.949487i \(-0.601604\pi\)
−0.313806 + 0.949487i \(0.601604\pi\)
\(464\) −1.70444e110 −0.372465
\(465\) 4.93799e109 0.0986854
\(466\) −6.34782e110 −1.16040
\(467\) 2.46458e110 0.412186 0.206093 0.978532i \(-0.433925\pi\)
0.206093 + 0.978532i \(0.433925\pi\)
\(468\) 1.99138e109 0.0304755
\(469\) 4.78866e109 0.0670720
\(470\) 4.44560e110 0.569993
\(471\) 1.52683e108 0.00179235
\(472\) −2.54765e110 −0.273872
\(473\) 1.53706e110 0.151340
\(474\) 4.33566e109 0.0391069
\(475\) 2.73438e111 2.25982
\(476\) −3.35130e109 −0.0253819
\(477\) −1.51764e111 −1.05356
\(478\) −7.87185e110 −0.500979
\(479\) −3.32526e110 −0.194045 −0.0970224 0.995282i \(-0.530932\pi\)
−0.0970224 + 0.995282i \(0.530932\pi\)
\(480\) −1.95566e109 −0.0104660
\(481\) −1.85873e110 −0.0912423
\(482\) −1.93753e110 −0.0872564
\(483\) 6.43462e108 0.00265899
\(484\) −1.22426e111 −0.464292
\(485\) 8.36105e111 2.91057
\(486\) −2.43749e110 −0.0779001
\(487\) −1.69478e110 −0.0497349 −0.0248675 0.999691i \(-0.507916\pi\)
−0.0248675 + 0.999691i \(0.507916\pi\)
\(488\) 3.47113e110 0.0935511
\(489\) −1.03061e110 −0.0255140
\(490\) 4.97565e111 1.13165
\(491\) −7.99441e111 −1.67072 −0.835362 0.549701i \(-0.814742\pi\)
−0.835362 + 0.549701i \(0.814742\pi\)
\(492\) 3.80423e109 0.00730660
\(493\) −5.75531e111 −1.01607
\(494\) 3.77948e110 0.0613428
\(495\) 2.87782e111 0.429484
\(496\) 3.03617e111 0.416713
\(497\) −6.10243e110 −0.0770394
\(498\) −2.49461e110 −0.0289725
\(499\) −1.04099e112 −1.11243 −0.556215 0.831038i \(-0.687747\pi\)
−0.556215 + 0.831038i \(0.687747\pi\)
\(500\) 4.82649e111 0.474653
\(501\) 7.24147e110 0.0655483
\(502\) −1.05013e112 −0.875058
\(503\) −5.69049e111 −0.436595 −0.218297 0.975882i \(-0.570050\pi\)
−0.218297 + 0.975882i \(0.570050\pi\)
\(504\) −3.71974e110 −0.0262812
\(505\) −9.38808e111 −0.610921
\(506\) −3.06090e111 −0.183486
\(507\) −6.63629e110 −0.0366518
\(508\) 1.69349e112 0.861865
\(509\) −1.97206e112 −0.924980 −0.462490 0.886624i \(-0.653044\pi\)
−0.462490 + 0.886624i \(0.653044\pi\)
\(510\) −6.60358e110 −0.0285507
\(511\) −8.32196e110 −0.0331710
\(512\) −1.20245e111 −0.0441942
\(513\) −3.08341e111 −0.104511
\(514\) 2.92399e112 0.914127
\(515\) 8.44234e112 2.43480
\(516\) −3.91477e110 −0.0104170
\(517\) 5.45127e111 0.133857
\(518\) 3.47197e111 0.0786847
\(519\) 1.41678e111 0.0296385
\(520\) 1.79806e111 0.0347268
\(521\) 5.86704e112 1.04629 0.523147 0.852242i \(-0.324758\pi\)
0.523147 + 0.852242i \(0.324758\pi\)
\(522\) −6.38805e112 −1.05206
\(523\) −2.88574e112 −0.438973 −0.219486 0.975616i \(-0.570438\pi\)
−0.219486 + 0.975616i \(0.570438\pi\)
\(524\) 2.57118e112 0.361314
\(525\) −3.35329e110 −0.00435371
\(526\) −5.11462e112 −0.613628
\(527\) 1.02521e113 1.13677
\(528\) −2.39806e110 −0.00245783
\(529\) −6.03102e111 −0.0571453
\(530\) −1.37031e113 −1.20052
\(531\) −9.54832e112 −0.773578
\(532\) −7.05977e111 −0.0529002
\(533\) −3.49766e111 −0.0242437
\(534\) −5.85565e111 −0.0375503
\(535\) −2.74510e113 −1.62883
\(536\) 5.80172e112 0.318579
\(537\) 7.43733e111 0.0377993
\(538\) −5.13768e112 −0.241715
\(539\) 6.10122e112 0.265756
\(540\) −1.46691e112 −0.0591646
\(541\) 1.42376e113 0.531804 0.265902 0.964000i \(-0.414330\pi\)
0.265902 + 0.964000i \(0.414330\pi\)
\(542\) 7.23090e112 0.250162
\(543\) 2.10180e112 0.0673596
\(544\) −4.06027e112 −0.120559
\(545\) −1.22230e113 −0.336296
\(546\) −4.63493e109 −0.000118181 0
\(547\) 8.30547e113 1.96286 0.981432 0.191812i \(-0.0614364\pi\)
0.981432 + 0.191812i \(0.0614364\pi\)
\(548\) −1.20384e113 −0.263741
\(549\) 1.30094e113 0.264244
\(550\) 1.59514e113 0.300432
\(551\) −1.21240e114 −2.11765
\(552\) 7.79588e111 0.0126297
\(553\) 7.44602e112 0.111900
\(554\) 7.75536e113 1.08130
\(555\) 6.84135e112 0.0885081
\(556\) 1.18018e113 0.141692
\(557\) 5.55034e111 0.00618485 0.00309242 0.999995i \(-0.499016\pi\)
0.00309242 + 0.999995i \(0.499016\pi\)
\(558\) 1.13792e114 1.17705
\(559\) 3.59929e112 0.0345642
\(560\) −3.35863e112 −0.0299474
\(561\) −8.09741e111 −0.00670483
\(562\) −2.11425e113 −0.162592
\(563\) 8.02056e113 0.572937 0.286468 0.958090i \(-0.407519\pi\)
0.286468 + 0.958090i \(0.407519\pi\)
\(564\) −1.38840e112 −0.00921362
\(565\) −2.37394e114 −1.46372
\(566\) −4.48496e113 −0.256966
\(567\) −1.39222e113 −0.0741331
\(568\) −7.39342e113 −0.365923
\(569\) −1.05698e114 −0.486304 −0.243152 0.969988i \(-0.578181\pi\)
−0.243152 + 0.969988i \(0.578181\pi\)
\(570\) −1.39109e113 −0.0595046
\(571\) 2.88695e114 1.14826 0.574131 0.818763i \(-0.305340\pi\)
0.574131 + 0.818763i \(0.305340\pi\)
\(572\) 2.20480e112 0.00815520
\(573\) 1.05661e111 0.000363496 0
\(574\) 6.53336e112 0.0209071
\(575\) −5.18565e114 −1.54379
\(576\) −4.50666e113 −0.124831
\(577\) 1.02956e113 0.0265373 0.0132687 0.999912i \(-0.495776\pi\)
0.0132687 + 0.999912i \(0.495776\pi\)
\(578\) 1.57673e114 0.378227
\(579\) 1.28139e113 0.0286101
\(580\) −5.76790e114 −1.19882
\(581\) −4.28423e113 −0.0829016
\(582\) −2.61122e113 −0.0470478
\(583\) −1.68030e114 −0.281930
\(584\) −1.00825e114 −0.157556
\(585\) 6.73891e113 0.0980892
\(586\) 3.28210e114 0.445042
\(587\) 1.38009e115 1.74352 0.871760 0.489934i \(-0.162979\pi\)
0.871760 + 0.489934i \(0.162979\pi\)
\(588\) −1.55393e113 −0.0182925
\(589\) 2.15969e115 2.36922
\(590\) −8.62137e114 −0.881490
\(591\) −4.71869e113 −0.0449719
\(592\) 4.20647e114 0.373738
\(593\) 1.12438e115 0.931413 0.465706 0.884939i \(-0.345800\pi\)
0.465706 + 0.884939i \(0.345800\pi\)
\(594\) −1.79875e113 −0.0138942
\(595\) −1.13409e114 −0.0816948
\(596\) −2.11387e114 −0.142023
\(597\) 7.51848e113 0.0471189
\(598\) −7.16763e113 −0.0419060
\(599\) −2.67619e115 −1.45983 −0.729917 0.683536i \(-0.760441\pi\)
−0.729917 + 0.683536i \(0.760441\pi\)
\(600\) −4.06269e113 −0.0206793
\(601\) −2.25935e115 −1.07323 −0.536616 0.843827i \(-0.680297\pi\)
−0.536616 + 0.843827i \(0.680297\pi\)
\(602\) −6.72319e113 −0.0298072
\(603\) 2.17442e115 0.899859
\(604\) 1.88089e115 0.726660
\(605\) −4.14295e115 −1.49438
\(606\) 2.93197e113 0.00987519
\(607\) −4.44447e114 −0.139794 −0.0698971 0.997554i \(-0.522267\pi\)
−0.0698971 + 0.997554i \(0.522267\pi\)
\(608\) −8.55328e114 −0.251266
\(609\) 1.48682e113 0.00407981
\(610\) 1.17465e115 0.301106
\(611\) 1.27651e114 0.0305713
\(612\) −1.52174e115 −0.340532
\(613\) −6.05295e115 −1.26578 −0.632889 0.774243i \(-0.718131\pi\)
−0.632889 + 0.774243i \(0.718131\pi\)
\(614\) −1.80446e115 −0.352663
\(615\) 1.28737e114 0.0235172
\(616\) −4.11840e113 −0.00703281
\(617\) −1.09654e115 −0.175061 −0.0875307 0.996162i \(-0.527898\pi\)
−0.0875307 + 0.996162i \(0.527898\pi\)
\(618\) −2.63661e114 −0.0393572
\(619\) 5.85257e115 0.816930 0.408465 0.912774i \(-0.366064\pi\)
0.408465 + 0.912774i \(0.366064\pi\)
\(620\) 1.02745e116 1.34124
\(621\) 5.84757e114 0.0713961
\(622\) 1.16649e116 1.33223
\(623\) −1.00564e115 −0.107446
\(624\) −5.61546e112 −0.000561339 0
\(625\) −6.64486e114 −0.0621534
\(626\) −7.80681e115 −0.683343
\(627\) −1.70578e114 −0.0139740
\(628\) 3.17690e114 0.0243600
\(629\) 1.42038e116 1.01954
\(630\) −1.25878e115 −0.0845893
\(631\) −2.69928e116 −1.69836 −0.849178 0.528106i \(-0.822902\pi\)
−0.849178 + 0.528106i \(0.822902\pi\)
\(632\) 9.02125e115 0.531506
\(633\) 1.01109e115 0.0557876
\(634\) −2.21232e116 −1.14325
\(635\) 5.73085e116 2.77402
\(636\) 4.27959e114 0.0194058
\(637\) 1.42871e115 0.0606955
\(638\) −7.07268e115 −0.281531
\(639\) −2.77097e116 −1.03358
\(640\) −4.06915e115 −0.142244
\(641\) 9.11084e115 0.298504 0.149252 0.988799i \(-0.452313\pi\)
0.149252 + 0.988799i \(0.452313\pi\)
\(642\) 8.57316e114 0.0263292
\(643\) 2.19094e116 0.630775 0.315387 0.948963i \(-0.397866\pi\)
0.315387 + 0.948963i \(0.397866\pi\)
\(644\) 1.33886e115 0.0361386
\(645\) −1.32477e115 −0.0335285
\(646\) −2.88815e116 −0.685441
\(647\) −5.61397e116 −1.24952 −0.624759 0.780818i \(-0.714803\pi\)
−0.624759 + 0.780818i \(0.714803\pi\)
\(648\) −1.68675e116 −0.352119
\(649\) −1.05717e116 −0.207008
\(650\) 3.73529e115 0.0686151
\(651\) −2.64851e114 −0.00456448
\(652\) −2.14441e116 −0.346763
\(653\) −4.41466e116 −0.669885 −0.334943 0.942239i \(-0.608717\pi\)
−0.334943 + 0.942239i \(0.608717\pi\)
\(654\) 3.81732e114 0.00543603
\(655\) 8.70099e116 1.16293
\(656\) 7.91551e115 0.0993046
\(657\) −3.77881e116 −0.445032
\(658\) −2.38442e115 −0.0263638
\(659\) 4.14669e116 0.430484 0.215242 0.976561i \(-0.430946\pi\)
0.215242 + 0.976561i \(0.430946\pi\)
\(660\) −8.11512e114 −0.00791082
\(661\) 2.72258e116 0.249241 0.124621 0.992204i \(-0.460229\pi\)
0.124621 + 0.992204i \(0.460229\pi\)
\(662\) −6.50226e116 −0.559059
\(663\) −1.89615e114 −0.00153130
\(664\) −5.19057e116 −0.393767
\(665\) −2.38905e116 −0.170266
\(666\) 1.57654e117 1.05566
\(667\) 2.29927e117 1.44666
\(668\) 1.50674e117 0.890872
\(669\) −8.78790e115 −0.0488317
\(670\) 1.96332e117 1.02539
\(671\) 1.44037e116 0.0707114
\(672\) 1.04892e114 0.000484083 0
\(673\) −1.70946e117 −0.741708 −0.370854 0.928691i \(-0.620935\pi\)
−0.370854 + 0.928691i \(0.620935\pi\)
\(674\) 1.60290e117 0.653916
\(675\) −3.04736e116 −0.116901
\(676\) −1.38082e117 −0.498137
\(677\) −3.44694e117 −1.16951 −0.584755 0.811210i \(-0.698809\pi\)
−0.584755 + 0.811210i \(0.698809\pi\)
\(678\) 7.41400e115 0.0236603
\(679\) −4.48448e116 −0.134622
\(680\) −1.37401e117 −0.388035
\(681\) −1.96534e116 −0.0522194
\(682\) 1.25988e117 0.314976
\(683\) −2.63833e116 −0.0620684 −0.0310342 0.999518i \(-0.509880\pi\)
−0.0310342 + 0.999518i \(0.509880\pi\)
\(684\) −3.20567e117 −0.709726
\(685\) −4.07386e117 −0.848882
\(686\) −5.35229e116 −0.104976
\(687\) 5.05476e115 0.00933246
\(688\) −8.14550e116 −0.141579
\(689\) −3.93471e116 −0.0643894
\(690\) 2.63816e116 0.0406503
\(691\) −6.42856e117 −0.932771 −0.466385 0.884582i \(-0.654444\pi\)
−0.466385 + 0.884582i \(0.654444\pi\)
\(692\) 2.94791e117 0.402820
\(693\) −1.54353e116 −0.0198649
\(694\) 4.07903e117 0.494468
\(695\) 3.99379e117 0.456054
\(696\) 1.80136e116 0.0193783
\(697\) 2.67280e117 0.270898
\(698\) −9.71520e117 −0.927794
\(699\) 6.70877e116 0.0603726
\(700\) −6.97722e116 −0.0591717
\(701\) 1.33757e118 1.06910 0.534551 0.845136i \(-0.320481\pi\)
0.534551 + 0.845136i \(0.320481\pi\)
\(702\) −4.21208e115 −0.00317326
\(703\) 2.99214e118 2.12489
\(704\) −4.98966e116 −0.0334045
\(705\) −4.69839e116 −0.0296552
\(706\) 1.37673e117 0.0819320
\(707\) 5.03534e116 0.0282568
\(708\) 2.69252e116 0.0142488
\(709\) −8.81862e117 −0.440131 −0.220066 0.975485i \(-0.570627\pi\)
−0.220066 + 0.975485i \(0.570627\pi\)
\(710\) −2.50196e118 −1.17777
\(711\) 3.38106e118 1.50129
\(712\) −1.21839e118 −0.510349
\(713\) −4.09576e118 −1.61852
\(714\) 3.54186e115 0.00132055
\(715\) 7.46115e116 0.0262485
\(716\) 1.54749e118 0.513734
\(717\) 8.31946e116 0.0260646
\(718\) 3.73965e118 1.10577
\(719\) 3.27970e118 0.915346 0.457673 0.889121i \(-0.348683\pi\)
0.457673 + 0.889121i \(0.348683\pi\)
\(720\) −1.52507e118 −0.401783
\(721\) −4.52809e117 −0.112616
\(722\) −3.07264e118 −0.721469
\(723\) 2.04771e116 0.00453971
\(724\) 4.37325e118 0.915490
\(725\) −1.19822e119 −2.36870
\(726\) 1.29387e117 0.0241559
\(727\) 5.04131e118 0.888925 0.444462 0.895797i \(-0.353395\pi\)
0.444462 + 0.895797i \(0.353395\pi\)
\(728\) −9.64395e115 −0.00160621
\(729\) −6.30457e118 −0.991889
\(730\) −3.41196e118 −0.507113
\(731\) −2.75046e118 −0.386219
\(732\) −3.66851e116 −0.00486721
\(733\) −1.38378e118 −0.173481 −0.0867406 0.996231i \(-0.527645\pi\)
−0.0867406 + 0.996231i \(0.527645\pi\)
\(734\) −1.91562e118 −0.226946
\(735\) −5.25857e117 −0.0588767
\(736\) 1.62210e118 0.171651
\(737\) 2.40746e118 0.240801
\(738\) 2.96664e118 0.280496
\(739\) −2.74550e117 −0.0245401 −0.0122701 0.999925i \(-0.503906\pi\)
−0.0122701 + 0.999925i \(0.503906\pi\)
\(740\) 1.42349e119 1.20292
\(741\) −3.99438e116 −0.00319150
\(742\) 7.34972e117 0.0555276
\(743\) 6.63096e118 0.473741 0.236870 0.971541i \(-0.423878\pi\)
0.236870 + 0.971541i \(0.423878\pi\)
\(744\) −3.20881e117 −0.0216804
\(745\) −7.15341e118 −0.457117
\(746\) 1.31580e119 0.795293
\(747\) −1.94537e119 −1.11223
\(748\) −1.68484e118 −0.0911258
\(749\) 1.47235e118 0.0753381
\(750\) −5.10094e117 −0.0246949
\(751\) 3.75216e119 1.71879 0.859397 0.511309i \(-0.170839\pi\)
0.859397 + 0.511309i \(0.170839\pi\)
\(752\) −2.88885e118 −0.125223
\(753\) 1.10984e118 0.0455269
\(754\) −1.65619e118 −0.0642983
\(755\) 6.36502e119 2.33885
\(756\) 7.86783e116 0.00273653
\(757\) −1.85616e118 −0.0611135 −0.0305567 0.999533i \(-0.509728\pi\)
−0.0305567 + 0.999533i \(0.509728\pi\)
\(758\) −1.22269e119 −0.381104
\(759\) 3.23495e117 0.00954627
\(760\) −2.89447e119 −0.808731
\(761\) −6.09820e119 −1.61339 −0.806693 0.590971i \(-0.798745\pi\)
−0.806693 + 0.590971i \(0.798745\pi\)
\(762\) −1.78979e118 −0.0448405
\(763\) 6.55583e117 0.0155546
\(764\) 2.19851e117 0.00494030
\(765\) −5.14965e119 −1.09604
\(766\) −4.53594e119 −0.914477
\(767\) −2.47554e118 −0.0472783
\(768\) 1.27083e117 0.00229930
\(769\) −2.58891e119 −0.443787 −0.221893 0.975071i \(-0.571224\pi\)
−0.221893 + 0.975071i \(0.571224\pi\)
\(770\) −1.39368e118 −0.0226360
\(771\) −3.09025e118 −0.0475595
\(772\) 2.66619e119 0.388843
\(773\) −7.57770e119 −1.04734 −0.523671 0.851921i \(-0.675438\pi\)
−0.523671 + 0.851921i \(0.675438\pi\)
\(774\) −3.05284e119 −0.399903
\(775\) 2.13443e120 2.65010
\(776\) −5.43319e119 −0.639431
\(777\) −3.66939e117 −0.00409375
\(778\) 2.32166e119 0.245553
\(779\) 5.63045e119 0.564597
\(780\) −1.90030e117 −0.00180674
\(781\) −3.06795e119 −0.276586
\(782\) 5.47726e119 0.468256
\(783\) 1.35117e119 0.109546
\(784\) −3.23328e119 −0.248615
\(785\) 1.07508e119 0.0784058
\(786\) −2.71739e118 −0.0187982
\(787\) 9.41181e119 0.617620 0.308810 0.951124i \(-0.400069\pi\)
0.308810 + 0.951124i \(0.400069\pi\)
\(788\) −9.81822e119 −0.611216
\(789\) 5.40545e118 0.0319254
\(790\) 3.05283e120 1.71072
\(791\) 1.27327e119 0.0677014
\(792\) −1.87007e119 −0.0943544
\(793\) 3.37288e118 0.0161496
\(794\) 6.92593e119 0.314722
\(795\) 1.44823e119 0.0624599
\(796\) 1.56438e120 0.640397
\(797\) −2.87243e120 −1.11617 −0.558083 0.829785i \(-0.688463\pi\)
−0.558083 + 0.829785i \(0.688463\pi\)
\(798\) 7.46120e117 0.00275225
\(799\) −9.75465e119 −0.341602
\(800\) −8.45327e119 −0.281054
\(801\) −4.56639e120 −1.44153
\(802\) 1.26839e120 0.380203
\(803\) −4.18380e119 −0.119090
\(804\) −6.13161e118 −0.0165748
\(805\) 4.53075e119 0.116316
\(806\) 2.95022e119 0.0719368
\(807\) 5.42982e118 0.0125757
\(808\) 6.10058e119 0.134215
\(809\) 1.38339e119 0.0289122 0.0144561 0.999896i \(-0.495398\pi\)
0.0144561 + 0.999896i \(0.495398\pi\)
\(810\) −5.70804e120 −1.13334
\(811\) 6.68106e120 1.26032 0.630159 0.776466i \(-0.282990\pi\)
0.630159 + 0.776466i \(0.282990\pi\)
\(812\) 3.09364e119 0.0554490
\(813\) −7.64207e118 −0.0130153
\(814\) 1.74550e120 0.282493
\(815\) −7.25677e120 −1.11610
\(816\) 4.29115e118 0.00627237
\(817\) −5.79405e120 −0.804946
\(818\) 3.45711e119 0.0456511
\(819\) −3.61444e118 −0.00453690
\(820\) 2.67864e120 0.319624
\(821\) −7.61545e120 −0.863883 −0.431941 0.901902i \(-0.642171\pi\)
−0.431941 + 0.901902i \(0.642171\pi\)
\(822\) 1.27230e119 0.0137217
\(823\) 6.60553e120 0.677352 0.338676 0.940903i \(-0.390021\pi\)
0.338676 + 0.940903i \(0.390021\pi\)
\(824\) −5.48602e120 −0.534907
\(825\) −1.68584e119 −0.0156306
\(826\) 4.62411e119 0.0407714
\(827\) 1.93219e121 1.62021 0.810106 0.586283i \(-0.199409\pi\)
0.810106 + 0.586283i \(0.199409\pi\)
\(828\) 6.07943e120 0.484846
\(829\) 1.50158e121 1.13903 0.569514 0.821981i \(-0.307131\pi\)
0.569514 + 0.821981i \(0.307131\pi\)
\(830\) −1.75651e121 −1.26739
\(831\) −8.19634e119 −0.0562571
\(832\) −1.16842e119 −0.00762920
\(833\) −1.09177e121 −0.678208
\(834\) −1.24729e119 −0.00737186
\(835\) 5.09887e121 2.86738
\(836\) −3.54924e120 −0.189922
\(837\) −2.40688e120 −0.122560
\(838\) −7.71081e120 −0.373657
\(839\) −2.01927e121 −0.931265 −0.465632 0.884978i \(-0.654173\pi\)
−0.465632 + 0.884978i \(0.654173\pi\)
\(840\) 3.54960e118 0.00155808
\(841\) 2.91932e121 1.21968
\(842\) 6.84280e120 0.272134
\(843\) 2.23447e119 0.00845924
\(844\) 2.10379e121 0.758213
\(845\) −4.67275e121 −1.60332
\(846\) −1.08271e121 −0.353705
\(847\) 2.22209e120 0.0691194
\(848\) 8.90458e120 0.263746
\(849\) 4.73998e119 0.0133693
\(850\) −2.85438e121 −0.766702
\(851\) −5.67448e121 −1.45161
\(852\) 7.81382e119 0.0190380
\(853\) 3.30995e121 0.768134 0.384067 0.923305i \(-0.374523\pi\)
0.384067 + 0.923305i \(0.374523\pi\)
\(854\) −6.30027e119 −0.0139270
\(855\) −1.08481e122 −2.28434
\(856\) 1.78383e121 0.357842
\(857\) −1.50953e121 −0.288495 −0.144248 0.989542i \(-0.546076\pi\)
−0.144248 + 0.989542i \(0.546076\pi\)
\(858\) −2.33017e118 −0.000424293 0
\(859\) −1.83940e121 −0.319125 −0.159562 0.987188i \(-0.551008\pi\)
−0.159562 + 0.987188i \(0.551008\pi\)
\(860\) −2.75647e121 −0.455688
\(861\) −6.90486e118 −0.00108774
\(862\) 3.36941e121 0.505827
\(863\) 4.65398e121 0.665851 0.332925 0.942953i \(-0.391964\pi\)
0.332925 + 0.942953i \(0.391964\pi\)
\(864\) 9.53229e119 0.0129980
\(865\) 9.97583e121 1.29652
\(866\) 7.72567e121 0.957070
\(867\) −1.66639e120 −0.0196781
\(868\) −5.51079e120 −0.0620362
\(869\) 3.74343e121 0.401743
\(870\) 6.09587e120 0.0623716
\(871\) 5.63748e120 0.0549961
\(872\) 7.94274e120 0.0738816
\(873\) −2.03630e122 −1.80614
\(874\) 1.15383e122 0.975925
\(875\) −8.76030e120 −0.0706618
\(876\) 1.06558e120 0.00819721
\(877\) 1.51593e122 1.11223 0.556116 0.831105i \(-0.312291\pi\)
0.556116 + 0.831105i \(0.312291\pi\)
\(878\) 7.12800e121 0.498822
\(879\) −3.46873e120 −0.0231543
\(880\) −1.68852e121 −0.107517
\(881\) 1.43440e122 0.871302 0.435651 0.900116i \(-0.356518\pi\)
0.435651 + 0.900116i \(0.356518\pi\)
\(882\) −1.21180e122 −0.702237
\(883\) 4.67996e121 0.258746 0.129373 0.991596i \(-0.458704\pi\)
0.129373 + 0.991596i \(0.458704\pi\)
\(884\) −3.94534e120 −0.0208121
\(885\) 9.11159e120 0.0458615
\(886\) 1.36513e121 0.0655656
\(887\) −9.39454e121 −0.430572 −0.215286 0.976551i \(-0.569068\pi\)
−0.215286 + 0.976551i \(0.569068\pi\)
\(888\) −4.44566e120 −0.0194445
\(889\) −3.07377e121 −0.128306
\(890\) −4.12309e122 −1.64262
\(891\) −6.99929e121 −0.266152
\(892\) −1.82851e122 −0.663675
\(893\) −2.05489e122 −0.711956
\(894\) 2.23406e120 0.00738905
\(895\) 5.23678e122 1.65352
\(896\) 2.18251e120 0.00657921
\(897\) 7.57520e119 0.00218026
\(898\) 3.99806e122 1.09871
\(899\) −9.46389e122 −2.48337
\(900\) −3.16819e122 −0.793866
\(901\) 3.00677e122 0.719484
\(902\) 3.28459e121 0.0750603
\(903\) 7.10549e119 0.00155079
\(904\) 1.54264e122 0.321569
\(905\) 1.47992e123 2.94662
\(906\) −1.98785e121 −0.0378061
\(907\) −9.48577e122 −1.72334 −0.861668 0.507472i \(-0.830580\pi\)
−0.861668 + 0.507472i \(0.830580\pi\)
\(908\) −4.08930e122 −0.709719
\(909\) 2.28643e122 0.379102
\(910\) −3.26355e120 −0.00516979
\(911\) −2.38567e122 −0.361075 −0.180538 0.983568i \(-0.557784\pi\)
−0.180538 + 0.983568i \(0.557784\pi\)
\(912\) 9.03963e120 0.0130727
\(913\) −2.15386e122 −0.297632
\(914\) −5.04338e122 −0.665970
\(915\) −1.24144e121 −0.0156657
\(916\) 1.05175e122 0.126838
\(917\) −4.66682e121 −0.0537890
\(918\) 3.21873e121 0.0354579
\(919\) 1.14552e123 1.20617 0.603087 0.797675i \(-0.293937\pi\)
0.603087 + 0.797675i \(0.293937\pi\)
\(920\) 5.48924e122 0.552481
\(921\) 1.90706e121 0.0183481
\(922\) 1.13870e123 1.04732
\(923\) −7.18413e121 −0.0631689
\(924\) 4.35258e119 0.000365898 0
\(925\) 2.95716e123 2.37680
\(926\) 5.77473e122 0.443788
\(927\) −2.05610e123 −1.51090
\(928\) 3.74810e122 0.263373
\(929\) −1.53091e123 −1.02872 −0.514360 0.857575i \(-0.671970\pi\)
−0.514360 + 0.857575i \(0.671970\pi\)
\(930\) −1.08588e122 −0.0697811
\(931\) −2.29989e123 −1.41350
\(932\) 1.39590e123 0.820529
\(933\) −1.23282e122 −0.0693122
\(934\) −5.41968e122 −0.291459
\(935\) −5.70156e122 −0.293300
\(936\) −4.37909e121 −0.0215494
\(937\) 1.70966e123 0.804853 0.402427 0.915452i \(-0.368167\pi\)
0.402427 + 0.915452i \(0.368167\pi\)
\(938\) −1.05304e122 −0.0474270
\(939\) 8.25072e121 0.0355525
\(940\) −9.77598e122 −0.403046
\(941\) −3.30239e123 −1.30274 −0.651371 0.758759i \(-0.725806\pi\)
−0.651371 + 0.758759i \(0.725806\pi\)
\(942\) −3.35754e120 −0.00126739
\(943\) −1.06779e123 −0.385702
\(944\) 5.60235e122 0.193657
\(945\) 2.66251e121 0.00880786
\(946\) −3.38003e122 −0.107013
\(947\) −1.72331e122 −0.0522204 −0.0261102 0.999659i \(-0.508312\pi\)
−0.0261102 + 0.999659i \(0.508312\pi\)
\(948\) −9.53421e121 −0.0276528
\(949\) −9.79708e121 −0.0271988
\(950\) −6.01297e123 −1.59794
\(951\) 2.33811e122 0.0594804
\(952\) 7.36958e121 0.0179477
\(953\) −1.68275e123 −0.392341 −0.196171 0.980570i \(-0.562851\pi\)
−0.196171 + 0.980570i \(0.562851\pi\)
\(954\) 3.33733e123 0.744976
\(955\) 7.43983e121 0.0159010
\(956\) 1.73104e123 0.354245
\(957\) 7.47485e121 0.0146473
\(958\) 7.31233e122 0.137210
\(959\) 2.18503e122 0.0392632
\(960\) 4.30053e121 0.00740059
\(961\) 1.07907e124 1.77839
\(962\) 4.08739e122 0.0645180
\(963\) 6.68558e123 1.01076
\(964\) 4.26068e122 0.0616996
\(965\) 9.02251e123 1.25154
\(966\) −1.41499e121 −0.00188019
\(967\) 4.62260e123 0.588420 0.294210 0.955741i \(-0.404943\pi\)
0.294210 + 0.955741i \(0.404943\pi\)
\(968\) 2.69218e123 0.328304
\(969\) 3.05237e122 0.0356616
\(970\) −1.83861e124 −2.05809
\(971\) −6.67325e123 −0.715714 −0.357857 0.933776i \(-0.616492\pi\)
−0.357857 + 0.933776i \(0.616492\pi\)
\(972\) 5.36010e122 0.0550837
\(973\) −2.14209e122 −0.0210938
\(974\) 3.72686e122 0.0351679
\(975\) −3.94768e121 −0.00356985
\(976\) −7.63311e122 −0.0661506
\(977\) 4.91524e123 0.408244 0.204122 0.978945i \(-0.434566\pi\)
0.204122 + 0.978945i \(0.434566\pi\)
\(978\) 2.26635e122 0.0180411
\(979\) −5.05579e123 −0.385752
\(980\) −1.09416e124 −0.800198
\(981\) 2.97685e123 0.208686
\(982\) 1.75799e124 1.18138
\(983\) −1.36236e124 −0.877646 −0.438823 0.898573i \(-0.644605\pi\)
−0.438823 + 0.898573i \(0.644605\pi\)
\(984\) −8.36560e121 −0.00516655
\(985\) −3.32253e124 −1.96728
\(986\) 1.26561e124 0.718467
\(987\) 2.52000e121 0.00137164
\(988\) −8.31116e122 −0.0433759
\(989\) 1.09882e124 0.549895
\(990\) −6.32839e123 −0.303691
\(991\) −2.74505e124 −1.26326 −0.631632 0.775268i \(-0.717615\pi\)
−0.631632 + 0.775268i \(0.717615\pi\)
\(992\) −6.67661e123 −0.294660
\(993\) 6.87199e122 0.0290863
\(994\) 1.34194e123 0.0544751
\(995\) 5.29392e124 2.06120
\(996\) 5.48571e122 0.0204866
\(997\) −4.86577e124 −1.74302 −0.871511 0.490376i \(-0.836859\pi\)
−0.871511 + 0.490376i \(0.836859\pi\)
\(998\) 2.28915e124 0.786607
\(999\) −3.33462e123 −0.109921
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))