Properties

Label 2.84.a.a.1.1
Level 2
Weight 84
Character 2.1
Self dual Yes
Analytic conductor 87.254
Analytic rank 0
Dimension 3
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 2 \)
Weight: \( k \) = \( 84 \)
Character orbit: \([\chi]\) = 2.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(87.2544256533\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{24}\cdot 3^{7}\cdot 5^{3}\cdot 7\cdot 11\cdot 17 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-4.40454e14\)
Character \(\chi\) = 2.1

$q$-expansion

\(f(q)\) \(=\) \(q-2.19902e12 q^{2} -1.03294e20 q^{3} +4.83570e24 q^{4} -4.29409e28 q^{5} +2.27146e32 q^{6} -1.14250e35 q^{7} -1.06338e37 q^{8} +6.67886e39 q^{9} +O(q^{10})\) \(q-2.19902e12 q^{2} -1.03294e20 q^{3} +4.83570e24 q^{4} -4.29409e28 q^{5} +2.27146e32 q^{6} -1.14250e35 q^{7} -1.06338e37 q^{8} +6.67886e39 q^{9} +9.44280e40 q^{10} +1.30069e43 q^{11} -4.99500e44 q^{12} -2.19702e46 q^{13} +2.51238e47 q^{14} +4.43555e48 q^{15} +2.33840e49 q^{16} +1.57914e51 q^{17} -1.46870e52 q^{18} -1.27500e53 q^{19} -2.07649e53 q^{20} +1.18014e55 q^{21} -2.86025e55 q^{22} +2.00354e56 q^{23} +1.09841e57 q^{24} -8.49584e57 q^{25} +4.83130e58 q^{26} -2.77658e59 q^{27} -5.52479e59 q^{28} -5.73024e60 q^{29} -9.75387e60 q^{30} -1.28050e62 q^{31} -5.14220e61 q^{32} -1.34354e63 q^{33} -3.47256e63 q^{34} +4.90600e63 q^{35} +3.22970e64 q^{36} -1.04062e65 q^{37} +2.80376e65 q^{38} +2.26940e66 q^{39} +4.56626e65 q^{40} -9.99186e66 q^{41} -2.59515e67 q^{42} -9.84440e67 q^{43} +6.28976e67 q^{44} -2.86796e68 q^{45} -4.40583e68 q^{46} +1.51626e69 q^{47} -2.41544e69 q^{48} -8.50850e68 q^{49} +1.86825e70 q^{50} -1.63116e71 q^{51} -1.06241e71 q^{52} +6.81814e70 q^{53} +6.10576e71 q^{54} -5.58529e71 q^{55} +1.21491e72 q^{56} +1.31701e73 q^{57} +1.26009e73 q^{58} -1.83347e73 q^{59} +2.14490e73 q^{60} -2.38826e74 q^{61} +2.81584e74 q^{62} -7.63061e74 q^{63} +1.13078e74 q^{64} +9.43420e74 q^{65} +2.95448e75 q^{66} -5.35438e75 q^{67} +7.63625e75 q^{68} -2.06954e76 q^{69} -1.07884e76 q^{70} +3.92598e76 q^{71} -7.10219e76 q^{72} +2.57031e77 q^{73} +2.28835e77 q^{74} +8.77571e77 q^{75} -6.16554e77 q^{76} -1.48604e78 q^{77} -4.99045e78 q^{78} +1.96704e78 q^{79} -1.00413e78 q^{80} +2.02617e78 q^{81} +2.19723e79 q^{82} +4.85870e79 q^{83} +5.70679e79 q^{84} -6.78096e79 q^{85} +2.16481e80 q^{86} +5.91901e80 q^{87} -1.38313e80 q^{88} -1.41759e81 q^{89} +6.30672e80 q^{90} +2.51010e81 q^{91} +9.68853e80 q^{92} +1.32268e82 q^{93} -3.33428e81 q^{94} +5.47498e81 q^{95} +5.31160e81 q^{96} +4.22235e82 q^{97} +1.87104e81 q^{98} +8.68714e82 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q - 6597069766656q^{2} - \)\(10\!\cdots\!76\)\(q^{3} + \)\(14\!\cdots\!12\)\(q^{4} - \)\(30\!\cdots\!50\)\(q^{5} + \)\(22\!\cdots\!52\)\(q^{6} - \)\(56\!\cdots\!88\)\(q^{7} - \)\(31\!\cdots\!24\)\(q^{8} - \)\(12\!\cdots\!89\)\(q^{9} + O(q^{10}) \) \( 3q - 6597069766656q^{2} - \)\(10\!\cdots\!76\)\(q^{3} + \)\(14\!\cdots\!12\)\(q^{4} - \)\(30\!\cdots\!50\)\(q^{5} + \)\(22\!\cdots\!52\)\(q^{6} - \)\(56\!\cdots\!88\)\(q^{7} - \)\(31\!\cdots\!24\)\(q^{8} - \)\(12\!\cdots\!89\)\(q^{9} + \)\(66\!\cdots\!00\)\(q^{10} - \)\(14\!\cdots\!64\)\(q^{11} - \)\(49\!\cdots\!04\)\(q^{12} - \)\(12\!\cdots\!26\)\(q^{13} + \)\(12\!\cdots\!76\)\(q^{14} + \)\(49\!\cdots\!00\)\(q^{15} + \)\(70\!\cdots\!48\)\(q^{16} + \)\(30\!\cdots\!02\)\(q^{17} + \)\(28\!\cdots\!28\)\(q^{18} - \)\(11\!\cdots\!00\)\(q^{19} - \)\(14\!\cdots\!00\)\(q^{20} + \)\(11\!\cdots\!96\)\(q^{21} + \)\(32\!\cdots\!28\)\(q^{22} + \)\(19\!\cdots\!04\)\(q^{23} + \)\(10\!\cdots\!08\)\(q^{24} + \)\(12\!\cdots\!25\)\(q^{25} + \)\(27\!\cdots\!52\)\(q^{26} - \)\(29\!\cdots\!60\)\(q^{27} - \)\(27\!\cdots\!52\)\(q^{28} - \)\(13\!\cdots\!70\)\(q^{29} - \)\(10\!\cdots\!00\)\(q^{30} - \)\(15\!\cdots\!44\)\(q^{31} - \)\(15\!\cdots\!96\)\(q^{32} - \)\(13\!\cdots\!12\)\(q^{33} - \)\(67\!\cdots\!04\)\(q^{34} - \)\(47\!\cdots\!00\)\(q^{35} - \)\(62\!\cdots\!56\)\(q^{36} - \)\(14\!\cdots\!98\)\(q^{37} + \)\(25\!\cdots\!00\)\(q^{38} + \)\(22\!\cdots\!92\)\(q^{39} + \)\(32\!\cdots\!00\)\(q^{40} - \)\(14\!\cdots\!14\)\(q^{41} - \)\(25\!\cdots\!92\)\(q^{42} - \)\(18\!\cdots\!96\)\(q^{43} - \)\(72\!\cdots\!56\)\(q^{44} - \)\(44\!\cdots\!50\)\(q^{45} - \)\(42\!\cdots\!08\)\(q^{46} - \)\(34\!\cdots\!88\)\(q^{47} - \)\(23\!\cdots\!16\)\(q^{48} - \)\(24\!\cdots\!81\)\(q^{49} - \)\(28\!\cdots\!00\)\(q^{50} - \)\(15\!\cdots\!84\)\(q^{51} - \)\(60\!\cdots\!04\)\(q^{52} - \)\(38\!\cdots\!66\)\(q^{53} + \)\(63\!\cdots\!20\)\(q^{54} + \)\(16\!\cdots\!00\)\(q^{55} + \)\(60\!\cdots\!04\)\(q^{56} + \)\(13\!\cdots\!00\)\(q^{57} + \)\(29\!\cdots\!40\)\(q^{58} + \)\(31\!\cdots\!60\)\(q^{59} + \)\(23\!\cdots\!00\)\(q^{60} - \)\(30\!\cdots\!94\)\(q^{61} + \)\(33\!\cdots\!88\)\(q^{62} - \)\(99\!\cdots\!56\)\(q^{63} + \)\(33\!\cdots\!92\)\(q^{64} - \)\(19\!\cdots\!00\)\(q^{65} + \)\(29\!\cdots\!24\)\(q^{66} - \)\(98\!\cdots\!28\)\(q^{67} + \)\(14\!\cdots\!08\)\(q^{68} - \)\(21\!\cdots\!68\)\(q^{69} + \)\(10\!\cdots\!00\)\(q^{70} + \)\(81\!\cdots\!96\)\(q^{71} + \)\(13\!\cdots\!12\)\(q^{72} + \)\(54\!\cdots\!14\)\(q^{73} + \)\(31\!\cdots\!96\)\(q^{74} + \)\(91\!\cdots\!00\)\(q^{75} - \)\(55\!\cdots\!00\)\(q^{76} - \)\(30\!\cdots\!56\)\(q^{77} - \)\(49\!\cdots\!84\)\(q^{78} - \)\(40\!\cdots\!80\)\(q^{79} - \)\(70\!\cdots\!00\)\(q^{80} + \)\(33\!\cdots\!23\)\(q^{81} + \)\(32\!\cdots\!28\)\(q^{82} + \)\(52\!\cdots\!84\)\(q^{83} + \)\(56\!\cdots\!84\)\(q^{84} + \)\(31\!\cdots\!00\)\(q^{85} + \)\(40\!\cdots\!92\)\(q^{86} + \)\(57\!\cdots\!40\)\(q^{87} + \)\(15\!\cdots\!12\)\(q^{88} + \)\(73\!\cdots\!30\)\(q^{89} + \)\(97\!\cdots\!00\)\(q^{90} + \)\(39\!\cdots\!96\)\(q^{91} + \)\(94\!\cdots\!16\)\(q^{92} + \)\(13\!\cdots\!48\)\(q^{93} + \)\(75\!\cdots\!76\)\(q^{94} + \)\(51\!\cdots\!00\)\(q^{95} + \)\(52\!\cdots\!32\)\(q^{96} + \)\(11\!\cdots\!82\)\(q^{97} + \)\(53\!\cdots\!12\)\(q^{98} + \)\(19\!\cdots\!32\)\(q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.19902e12 −0.707107
\(3\) −1.03294e20 −1.63510 −0.817550 0.575858i \(-0.804668\pi\)
−0.817550 + 0.575858i \(0.804668\pi\)
\(4\) 4.83570e24 0.500000
\(5\) −4.29409e28 −0.422295 −0.211147 0.977454i \(-0.567720\pi\)
−0.211147 + 0.977454i \(0.567720\pi\)
\(6\) 2.27146e32 1.15619
\(7\) −1.14250e35 −0.968920 −0.484460 0.874814i \(-0.660984\pi\)
−0.484460 + 0.874814i \(0.660984\pi\)
\(8\) −1.06338e37 −0.353553
\(9\) 6.67886e39 1.67355
\(10\) 9.44280e40 0.298608
\(11\) 1.30069e43 0.787731 0.393866 0.919168i \(-0.371138\pi\)
0.393866 + 0.919168i \(0.371138\pi\)
\(12\) −4.99500e44 −0.817550
\(13\) −2.19702e46 −1.29773 −0.648866 0.760903i \(-0.724756\pi\)
−0.648866 + 0.760903i \(0.724756\pi\)
\(14\) 2.51238e47 0.685130
\(15\) 4.43555e48 0.690494
\(16\) 2.33840e49 0.250000
\(17\) 1.57914e51 1.36392 0.681962 0.731388i \(-0.261127\pi\)
0.681962 + 0.731388i \(0.261127\pi\)
\(18\) −1.46870e52 −1.18338
\(19\) −1.27500e53 −1.08953 −0.544763 0.838590i \(-0.683380\pi\)
−0.544763 + 0.838590i \(0.683380\pi\)
\(20\) −2.07649e53 −0.211147
\(21\) 1.18014e55 1.58428
\(22\) −2.86025e55 −0.557010
\(23\) 2.00354e56 0.616727 0.308364 0.951269i \(-0.400219\pi\)
0.308364 + 0.951269i \(0.400219\pi\)
\(24\) 1.09841e57 0.578095
\(25\) −8.49584e57 −0.821667
\(26\) 4.83130e58 0.917635
\(27\) −2.77658e59 −1.10132
\(28\) −5.52479e59 −0.484460
\(29\) −5.73024e60 −1.17127 −0.585634 0.810576i \(-0.699154\pi\)
−0.585634 + 0.810576i \(0.699154\pi\)
\(30\) −9.75387e60 −0.488253
\(31\) −1.28050e62 −1.64387 −0.821937 0.569579i \(-0.807106\pi\)
−0.821937 + 0.569579i \(0.807106\pi\)
\(32\) −5.14220e61 −0.176777
\(33\) −1.34354e63 −1.28802
\(34\) −3.47256e63 −0.964440
\(35\) 4.90600e63 0.409170
\(36\) 3.22970e64 0.836775
\(37\) −1.04062e65 −0.864811 −0.432405 0.901679i \(-0.642335\pi\)
−0.432405 + 0.901679i \(0.642335\pi\)
\(38\) 2.80376e65 0.770411
\(39\) 2.26940e66 2.12192
\(40\) 4.56626e65 0.149304
\(41\) −9.99186e66 −1.17251 −0.586254 0.810127i \(-0.699398\pi\)
−0.586254 + 0.810127i \(0.699398\pi\)
\(42\) −2.59515e67 −1.12025
\(43\) −9.84440e67 −1.60047 −0.800237 0.599685i \(-0.795293\pi\)
−0.800237 + 0.599685i \(0.795293\pi\)
\(44\) 6.28976e67 0.393866
\(45\) −2.86796e68 −0.706731
\(46\) −4.40583e68 −0.436092
\(47\) 1.51626e69 0.614768 0.307384 0.951586i \(-0.400546\pi\)
0.307384 + 0.951586i \(0.400546\pi\)
\(48\) −2.41544e69 −0.408775
\(49\) −8.50850e68 −0.0611950
\(50\) 1.86825e70 0.581006
\(51\) −1.63116e71 −2.23015
\(52\) −1.06241e71 −0.648866
\(53\) 6.81814e70 0.188894 0.0944468 0.995530i \(-0.469892\pi\)
0.0944468 + 0.995530i \(0.469892\pi\)
\(54\) 6.10576e71 0.778751
\(55\) −5.58529e71 −0.332655
\(56\) 1.21491e72 0.342565
\(57\) 1.31701e73 1.78148
\(58\) 1.26009e73 0.828212
\(59\) −1.83347e73 −0.592809 −0.296404 0.955063i \(-0.595788\pi\)
−0.296404 + 0.955063i \(0.595788\pi\)
\(60\) 2.14490e73 0.345247
\(61\) −2.38826e74 −1.93595 −0.967973 0.251053i \(-0.919223\pi\)
−0.967973 + 0.251053i \(0.919223\pi\)
\(62\) 2.81584e74 1.16239
\(63\) −7.63061e74 −1.62153
\(64\) 1.13078e74 0.125000
\(65\) 9.43420e74 0.548026
\(66\) 2.95448e75 0.910767
\(67\) −5.35438e75 −0.884310 −0.442155 0.896939i \(-0.645786\pi\)
−0.442155 + 0.896939i \(0.645786\pi\)
\(68\) 7.63625e75 0.681962
\(69\) −2.06954e76 −1.00841
\(70\) −1.07884e76 −0.289327
\(71\) 3.92598e76 0.584422 0.292211 0.956354i \(-0.405609\pi\)
0.292211 + 0.956354i \(0.405609\pi\)
\(72\) −7.10219e76 −0.591689
\(73\) 2.57031e77 1.20806 0.604028 0.796963i \(-0.293562\pi\)
0.604028 + 0.796963i \(0.293562\pi\)
\(74\) 2.28835e77 0.611514
\(75\) 8.77571e77 1.34351
\(76\) −6.16554e77 −0.544763
\(77\) −1.48604e78 −0.763248
\(78\) −4.99045e78 −1.50042
\(79\) 1.96704e78 0.348569 0.174284 0.984695i \(-0.444239\pi\)
0.174284 + 0.984695i \(0.444239\pi\)
\(80\) −1.00413e78 −0.105574
\(81\) 2.02617e78 0.127218
\(82\) 2.19723e79 0.829089
\(83\) 4.85870e79 1.10861 0.554305 0.832314i \(-0.312984\pi\)
0.554305 + 0.832314i \(0.312984\pi\)
\(84\) 5.70679e79 0.792140
\(85\) −6.78096e79 −0.575978
\(86\) 2.16481e80 1.13171
\(87\) 5.91901e80 1.91514
\(88\) −1.38313e80 −0.278505
\(89\) −1.41759e81 −1.78593 −0.892967 0.450122i \(-0.851381\pi\)
−0.892967 + 0.450122i \(0.851381\pi\)
\(90\) 6.30672e80 0.499734
\(91\) 2.51010e81 1.25740
\(92\) 9.68853e80 0.308364
\(93\) 1.32268e82 2.68790
\(94\) −3.33428e81 −0.434707
\(95\) 5.47498e81 0.460101
\(96\) 5.31160e81 0.289047
\(97\) 4.22235e82 1.49461 0.747303 0.664483i \(-0.231348\pi\)
0.747303 + 0.664483i \(0.231348\pi\)
\(98\) 1.87104e81 0.0432714
\(99\) 8.68714e82 1.31831
\(100\) −4.10834e82 −0.410834
\(101\) 5.65742e82 0.374353 0.187176 0.982326i \(-0.440066\pi\)
0.187176 + 0.982326i \(0.440066\pi\)
\(102\) 3.58696e83 1.57696
\(103\) 1.09213e83 0.320280 0.160140 0.987094i \(-0.448805\pi\)
0.160140 + 0.987094i \(0.448805\pi\)
\(104\) 2.33627e83 0.458818
\(105\) −5.06761e83 −0.669033
\(106\) −1.49933e83 −0.133568
\(107\) −1.45685e84 −0.878996 −0.439498 0.898244i \(-0.644844\pi\)
−0.439498 + 0.898244i \(0.644844\pi\)
\(108\) −1.34267e84 −0.550660
\(109\) −5.32975e84 −1.49110 −0.745551 0.666449i \(-0.767813\pi\)
−0.745551 + 0.666449i \(0.767813\pi\)
\(110\) 1.22822e84 0.235222
\(111\) 1.07490e85 1.41405
\(112\) −2.67163e84 −0.242230
\(113\) 5.29156e84 0.331763 0.165882 0.986146i \(-0.446953\pi\)
0.165882 + 0.986146i \(0.446953\pi\)
\(114\) −2.89613e85 −1.25970
\(115\) −8.60338e84 −0.260441
\(116\) −2.77098e85 −0.585634
\(117\) −1.46736e86 −2.17182
\(118\) 4.03184e85 0.419179
\(119\) −1.80417e86 −1.32153
\(120\) −4.71668e85 −0.244126
\(121\) −1.03462e86 −0.379480
\(122\) 5.25184e86 1.36892
\(123\) 1.03210e87 1.91717
\(124\) −6.19211e86 −0.821937
\(125\) 8.08817e86 0.769281
\(126\) 1.67799e87 1.14660
\(127\) −3.49676e87 −1.72112 −0.860561 0.509348i \(-0.829887\pi\)
−0.860561 + 0.509348i \(0.829887\pi\)
\(128\) −2.48662e86 −0.0883883
\(129\) 1.01687e88 2.61693
\(130\) −2.07460e87 −0.387513
\(131\) 1.58220e87 0.215032 0.107516 0.994203i \(-0.465710\pi\)
0.107516 + 0.994203i \(0.465710\pi\)
\(132\) −6.49696e87 −0.644009
\(133\) 1.45669e88 1.05566
\(134\) 1.17744e88 0.625302
\(135\) 1.19229e88 0.465082
\(136\) −1.67923e88 −0.482220
\(137\) −7.51570e88 −1.59245 −0.796225 0.605000i \(-0.793173\pi\)
−0.796225 + 0.605000i \(0.793173\pi\)
\(138\) 4.55097e88 0.713053
\(139\) −8.47750e87 −0.0984359 −0.0492180 0.998788i \(-0.515673\pi\)
−0.0492180 + 0.998788i \(0.515673\pi\)
\(140\) 2.37239e88 0.204585
\(141\) −1.56620e89 −1.00521
\(142\) −8.63332e88 −0.413249
\(143\) −2.85765e89 −1.02226
\(144\) 1.56179e89 0.418387
\(145\) 2.46062e89 0.494620
\(146\) −5.65217e89 −0.854224
\(147\) 8.78880e88 0.100060
\(148\) −5.03214e89 −0.432405
\(149\) −1.32841e90 −0.863179 −0.431590 0.902070i \(-0.642047\pi\)
−0.431590 + 0.902070i \(0.642047\pi\)
\(150\) −1.92980e90 −0.950003
\(151\) −4.33158e89 −0.161847 −0.0809233 0.996720i \(-0.525787\pi\)
−0.0809233 + 0.996720i \(0.525787\pi\)
\(152\) 1.35582e90 0.385205
\(153\) 1.05469e91 2.28259
\(154\) 3.26784e90 0.539698
\(155\) 5.49857e90 0.694199
\(156\) 1.09741e91 1.06096
\(157\) 5.67346e90 0.420738 0.210369 0.977622i \(-0.432533\pi\)
0.210369 + 0.977622i \(0.432533\pi\)
\(158\) −4.32557e90 −0.246475
\(159\) −7.04275e90 −0.308860
\(160\) 2.20811e90 0.0746519
\(161\) −2.28905e91 −0.597559
\(162\) −4.45560e90 −0.0899566
\(163\) −1.16681e91 −0.182480 −0.0912398 0.995829i \(-0.529083\pi\)
−0.0912398 + 0.995829i \(0.529083\pi\)
\(164\) −4.83177e91 −0.586254
\(165\) 5.76928e91 0.543924
\(166\) −1.06844e92 −0.783906
\(167\) 2.14296e92 1.22541 0.612704 0.790312i \(-0.290082\pi\)
0.612704 + 0.790312i \(0.290082\pi\)
\(168\) −1.25494e92 −0.560127
\(169\) 1.96075e92 0.684108
\(170\) 1.49115e92 0.407278
\(171\) −8.51558e92 −1.82337
\(172\) −4.76046e92 −0.800237
\(173\) −7.99580e92 −1.05669 −0.528346 0.849029i \(-0.677188\pi\)
−0.528346 + 0.849029i \(0.677188\pi\)
\(174\) −1.30160e93 −1.35421
\(175\) 9.70650e92 0.796129
\(176\) 3.04154e92 0.196933
\(177\) 1.89387e93 0.969301
\(178\) 3.11731e93 1.26285
\(179\) −5.47562e92 −0.175806 −0.0879028 0.996129i \(-0.528016\pi\)
−0.0879028 + 0.996129i \(0.528016\pi\)
\(180\) −1.38686e93 −0.353366
\(181\) 3.75520e92 0.0760278 0.0380139 0.999277i \(-0.487897\pi\)
0.0380139 + 0.999277i \(0.487897\pi\)
\(182\) −5.51976e93 −0.889115
\(183\) 2.46693e94 3.16546
\(184\) −2.13053e93 −0.218046
\(185\) 4.46852e93 0.365205
\(186\) −2.90860e94 −1.90063
\(187\) 2.05397e94 1.07441
\(188\) 7.33216e93 0.307384
\(189\) 3.17224e94 1.06709
\(190\) −1.20396e94 −0.325340
\(191\) −1.48462e94 −0.322648 −0.161324 0.986901i \(-0.551576\pi\)
−0.161324 + 0.986901i \(0.551576\pi\)
\(192\) −1.16803e94 −0.204387
\(193\) −2.82591e94 −0.398593 −0.199297 0.979939i \(-0.563866\pi\)
−0.199297 + 0.979939i \(0.563866\pi\)
\(194\) −9.28504e94 −1.05685
\(195\) −9.74499e94 −0.896076
\(196\) −4.11446e93 −0.0305975
\(197\) −8.87059e93 −0.0534077 −0.0267039 0.999643i \(-0.508501\pi\)
−0.0267039 + 0.999643i \(0.508501\pi\)
\(198\) −1.91032e95 −0.932184
\(199\) −1.43341e95 −0.567501 −0.283751 0.958898i \(-0.591579\pi\)
−0.283751 + 0.958898i \(0.591579\pi\)
\(200\) 9.03432e94 0.290503
\(201\) 5.53076e95 1.44593
\(202\) −1.24408e95 −0.264707
\(203\) 6.54681e95 1.13486
\(204\) −7.88781e95 −1.11508
\(205\) 4.29059e95 0.495145
\(206\) −2.40162e95 −0.226472
\(207\) 1.33814e96 1.03212
\(208\) −5.13752e95 −0.324433
\(209\) −1.65839e96 −0.858253
\(210\) 1.11438e96 0.473078
\(211\) 2.58509e96 0.901062 0.450531 0.892761i \(-0.351235\pi\)
0.450531 + 0.892761i \(0.351235\pi\)
\(212\) 3.29705e95 0.0944468
\(213\) −4.05531e96 −0.955588
\(214\) 3.20364e96 0.621544
\(215\) 4.22727e96 0.675872
\(216\) 2.95256e96 0.389375
\(217\) 1.46297e97 1.59278
\(218\) 1.17202e97 1.05437
\(219\) −2.65498e97 −1.97529
\(220\) −2.70088e96 −0.166327
\(221\) −3.46940e97 −1.77001
\(222\) −2.36373e97 −0.999885
\(223\) −1.00728e97 −0.353589 −0.176794 0.984248i \(-0.556573\pi\)
−0.176794 + 0.984248i \(0.556573\pi\)
\(224\) 5.87497e96 0.171282
\(225\) −5.67426e97 −1.37510
\(226\) −1.16363e97 −0.234592
\(227\) 1.41432e97 0.237396 0.118698 0.992930i \(-0.462128\pi\)
0.118698 + 0.992930i \(0.462128\pi\)
\(228\) 6.36865e97 0.890741
\(229\) 2.04340e97 0.238331 0.119165 0.992874i \(-0.461978\pi\)
0.119165 + 0.992874i \(0.461978\pi\)
\(230\) 1.89190e97 0.184159
\(231\) 1.53499e98 1.24799
\(232\) 6.09344e97 0.414106
\(233\) −3.00584e98 −1.70882 −0.854408 0.519602i \(-0.826080\pi\)
−0.854408 + 0.519602i \(0.826080\pi\)
\(234\) 3.22676e98 1.53571
\(235\) −6.51093e97 −0.259613
\(236\) −8.86610e97 −0.296404
\(237\) −2.03184e98 −0.569945
\(238\) 3.96741e98 0.934465
\(239\) 7.25519e98 1.43594 0.717970 0.696075i \(-0.245072\pi\)
0.717970 + 0.696075i \(0.245072\pi\)
\(240\) 1.03721e98 0.172623
\(241\) −5.92738e98 −0.830148 −0.415074 0.909788i \(-0.636244\pi\)
−0.415074 + 0.909788i \(0.636244\pi\)
\(242\) 2.27516e98 0.268333
\(243\) 8.98795e98 0.893306
\(244\) −1.15489e99 −0.967973
\(245\) 3.65363e97 0.0258423
\(246\) −2.26962e99 −1.35564
\(247\) 2.80121e99 1.41391
\(248\) 1.36166e99 0.581197
\(249\) −5.01875e99 −1.81269
\(250\) −1.77861e99 −0.543964
\(251\) −4.82400e99 −1.25011 −0.625055 0.780581i \(-0.714923\pi\)
−0.625055 + 0.780581i \(0.714923\pi\)
\(252\) −3.68993e99 −0.810767
\(253\) 2.60599e99 0.485815
\(254\) 7.68946e99 1.21702
\(255\) 7.00435e99 0.941781
\(256\) 5.46813e98 0.0625000
\(257\) 3.56965e99 0.347057 0.173528 0.984829i \(-0.444483\pi\)
0.173528 + 0.984829i \(0.444483\pi\)
\(258\) −2.23612e100 −1.85045
\(259\) 1.18891e100 0.837932
\(260\) 4.56210e99 0.274013
\(261\) −3.82715e100 −1.96017
\(262\) −3.47929e99 −0.152050
\(263\) 4.92723e100 1.83840 0.919198 0.393795i \(-0.128838\pi\)
0.919198 + 0.393795i \(0.128838\pi\)
\(264\) 1.42870e100 0.455383
\(265\) −2.92777e99 −0.0797688
\(266\) −3.20330e100 −0.746466
\(267\) 1.46429e101 2.92018
\(268\) −2.58922e100 −0.442155
\(269\) 7.28865e100 1.06642 0.533209 0.845984i \(-0.320986\pi\)
0.533209 + 0.845984i \(0.320986\pi\)
\(270\) −2.62187e100 −0.328862
\(271\) −6.10148e98 −0.00656462 −0.00328231 0.999995i \(-0.501045\pi\)
−0.00328231 + 0.999995i \(0.501045\pi\)
\(272\) 3.69266e100 0.340981
\(273\) −2.59279e101 −2.05597
\(274\) 1.65272e101 1.12603
\(275\) −1.10505e101 −0.647253
\(276\) −1.00077e101 −0.504205
\(277\) −9.74468e100 −0.422530 −0.211265 0.977429i \(-0.567758\pi\)
−0.211265 + 0.977429i \(0.567758\pi\)
\(278\) 1.86422e100 0.0696047
\(279\) −8.55227e101 −2.75110
\(280\) −5.21695e100 −0.144663
\(281\) −1.63743e101 −0.391608 −0.195804 0.980643i \(-0.562732\pi\)
−0.195804 + 0.980643i \(0.562732\pi\)
\(282\) 3.44412e101 0.710788
\(283\) 8.27407e101 1.47429 0.737144 0.675736i \(-0.236174\pi\)
0.737144 + 0.675736i \(0.236174\pi\)
\(284\) 1.89849e101 0.292211
\(285\) −5.65534e101 −0.752311
\(286\) 6.28403e101 0.722850
\(287\) 1.14157e102 1.13607
\(288\) −3.43441e101 −0.295845
\(289\) 1.15320e102 0.860289
\(290\) −5.41096e101 −0.349749
\(291\) −4.36144e102 −2.44383
\(292\) 1.24293e102 0.604028
\(293\) 4.00055e102 1.68699 0.843496 0.537136i \(-0.180494\pi\)
0.843496 + 0.537136i \(0.180494\pi\)
\(294\) −1.93268e101 −0.0707530
\(295\) 7.87307e101 0.250340
\(296\) 1.10658e102 0.305757
\(297\) −3.61147e102 −0.867544
\(298\) 2.92120e102 0.610360
\(299\) −4.40182e102 −0.800346
\(300\) 4.24367e102 0.671754
\(301\) 1.12472e103 1.55073
\(302\) 9.52525e101 0.114443
\(303\) −5.84379e102 −0.612104
\(304\) −2.98147e102 −0.272381
\(305\) 1.02554e103 0.817540
\(306\) −2.31928e103 −1.61404
\(307\) −2.83956e103 −1.72587 −0.862935 0.505315i \(-0.831376\pi\)
−0.862935 + 0.505315i \(0.831376\pi\)
\(308\) −7.18605e102 −0.381624
\(309\) −1.12811e103 −0.523689
\(310\) −1.20915e103 −0.490873
\(311\) 4.46634e103 1.58634 0.793168 0.609003i \(-0.208430\pi\)
0.793168 + 0.609003i \(0.208430\pi\)
\(312\) −2.41324e103 −0.750212
\(313\) 2.11903e103 0.576828 0.288414 0.957506i \(-0.406872\pi\)
0.288414 + 0.957506i \(0.406872\pi\)
\(314\) −1.24761e103 −0.297507
\(315\) 3.27665e103 0.684766
\(316\) 9.51202e102 0.174284
\(317\) 5.56458e102 0.0894280 0.0447140 0.999000i \(-0.485762\pi\)
0.0447140 + 0.999000i \(0.485762\pi\)
\(318\) 1.54872e103 0.218397
\(319\) −7.45328e103 −0.922644
\(320\) −4.85568e102 −0.0527869
\(321\) 1.50484e104 1.43724
\(322\) 5.03367e103 0.422538
\(323\) −2.01341e104 −1.48603
\(324\) 9.79797e102 0.0636089
\(325\) 1.86655e104 1.06630
\(326\) 2.56584e103 0.129033
\(327\) 5.50532e104 2.43810
\(328\) 1.06252e104 0.414545
\(329\) −1.73232e104 −0.595661
\(330\) −1.26868e104 −0.384612
\(331\) −3.54907e104 −0.948970 −0.474485 0.880264i \(-0.657366\pi\)
−0.474485 + 0.880264i \(0.657366\pi\)
\(332\) 2.34952e104 0.554305
\(333\) −6.95017e104 −1.44730
\(334\) −4.71242e104 −0.866494
\(335\) 2.29922e104 0.373440
\(336\) 2.75964e104 0.396070
\(337\) −1.01616e105 −1.28920 −0.644598 0.764521i \(-0.722975\pi\)
−0.644598 + 0.764521i \(0.722975\pi\)
\(338\) −4.31174e104 −0.483738
\(339\) −5.46587e104 −0.542466
\(340\) −3.27907e104 −0.287989
\(341\) −1.66553e105 −1.29493
\(342\) 1.87260e105 1.28932
\(343\) 1.68573e105 1.02821
\(344\) 1.04684e105 0.565853
\(345\) 8.88680e104 0.425846
\(346\) 1.75829e105 0.747194
\(347\) −6.72752e104 −0.253619 −0.126809 0.991927i \(-0.540474\pi\)
−0.126809 + 0.991927i \(0.540474\pi\)
\(348\) 2.86226e105 0.957570
\(349\) −4.68889e105 −1.39256 −0.696282 0.717769i \(-0.745163\pi\)
−0.696282 + 0.717769i \(0.745163\pi\)
\(350\) −2.13448e105 −0.562948
\(351\) 6.10020e105 1.42922
\(352\) −6.68842e104 −0.139253
\(353\) −1.13177e105 −0.209463 −0.104731 0.994501i \(-0.533398\pi\)
−0.104731 + 0.994501i \(0.533398\pi\)
\(354\) −4.16465e105 −0.685399
\(355\) −1.68585e105 −0.246798
\(356\) −6.85505e105 −0.892967
\(357\) 1.86360e106 2.16084
\(358\) 1.20410e105 0.124313
\(359\) 2.87765e105 0.264618 0.132309 0.991209i \(-0.457761\pi\)
0.132309 + 0.991209i \(0.457761\pi\)
\(360\) 3.04974e105 0.249867
\(361\) 2.56178e105 0.187065
\(362\) −8.25777e104 −0.0537597
\(363\) 1.06870e106 0.620487
\(364\) 1.21381e106 0.628699
\(365\) −1.10371e106 −0.510156
\(366\) −5.42485e106 −2.23832
\(367\) 1.27588e105 0.0470075 0.0235038 0.999724i \(-0.492518\pi\)
0.0235038 + 0.999724i \(0.492518\pi\)
\(368\) 4.68509e105 0.154182
\(369\) −6.67343e106 −1.96225
\(370\) −9.82638e105 −0.258239
\(371\) −7.78973e105 −0.183023
\(372\) 6.39609e106 1.34395
\(373\) 2.10282e106 0.395262 0.197631 0.980277i \(-0.436675\pi\)
0.197631 + 0.980277i \(0.436675\pi\)
\(374\) −4.51674e106 −0.759719
\(375\) −8.35462e106 −1.25785
\(376\) −1.61236e106 −0.217353
\(377\) 1.25895e107 1.51999
\(378\) −6.97583e106 −0.754547
\(379\) 7.47993e105 0.0725054 0.0362527 0.999343i \(-0.488458\pi\)
0.0362527 + 0.999343i \(0.488458\pi\)
\(380\) 2.64754e106 0.230050
\(381\) 3.61195e107 2.81420
\(382\) 3.26470e106 0.228147
\(383\) 3.35164e106 0.210140 0.105070 0.994465i \(-0.466493\pi\)
0.105070 + 0.994465i \(0.466493\pi\)
\(384\) 2.56853e106 0.144524
\(385\) 6.38119e106 0.322316
\(386\) 6.21424e106 0.281848
\(387\) −6.57494e107 −2.67847
\(388\) 2.04180e107 0.747303
\(389\) −1.56169e107 −0.513672 −0.256836 0.966455i \(-0.582680\pi\)
−0.256836 + 0.966455i \(0.582680\pi\)
\(390\) 2.14295e107 0.633621
\(391\) 3.16387e107 0.841169
\(392\) 9.04779e105 0.0216357
\(393\) −1.63432e107 −0.351598
\(394\) 1.95066e106 0.0377650
\(395\) −8.44664e106 −0.147199
\(396\) 4.20085e107 0.659153
\(397\) −5.50364e107 −0.777757 −0.388879 0.921289i \(-0.627137\pi\)
−0.388879 + 0.921289i \(0.627137\pi\)
\(398\) 3.15210e107 0.401284
\(399\) −1.50468e108 −1.72611
\(400\) −1.98667e107 −0.205417
\(401\) −1.60678e108 −1.49784 −0.748918 0.662663i \(-0.769426\pi\)
−0.748918 + 0.662663i \(0.769426\pi\)
\(402\) −1.21623e108 −1.02243
\(403\) 2.81328e108 2.13331
\(404\) 2.73576e107 0.187176
\(405\) −8.70056e106 −0.0537234
\(406\) −1.43966e108 −0.802470
\(407\) −1.35353e108 −0.681238
\(408\) 1.73455e108 0.788478
\(409\) 7.03093e107 0.288733 0.144366 0.989524i \(-0.453886\pi\)
0.144366 + 0.989524i \(0.453886\pi\)
\(410\) −9.43511e107 −0.350120
\(411\) 7.76329e108 2.60381
\(412\) 5.28122e107 0.160140
\(413\) 2.09474e108 0.574384
\(414\) −2.94260e108 −0.729821
\(415\) −2.08637e108 −0.468160
\(416\) 1.12975e108 0.229409
\(417\) 8.75677e107 0.160953
\(418\) 3.64683e108 0.606876
\(419\) −4.79455e108 −0.722546 −0.361273 0.932460i \(-0.617658\pi\)
−0.361273 + 0.932460i \(0.617658\pi\)
\(420\) −2.45055e108 −0.334517
\(421\) −2.55619e108 −0.316144 −0.158072 0.987428i \(-0.550528\pi\)
−0.158072 + 0.987428i \(0.550528\pi\)
\(422\) −5.68468e108 −0.637147
\(423\) 1.01269e109 1.02884
\(424\) −7.25029e107 −0.0667840
\(425\) −1.34161e109 −1.12069
\(426\) 8.91773e108 0.675703
\(427\) 2.72859e109 1.87578
\(428\) −7.04487e108 −0.439498
\(429\) 2.95179e109 1.67150
\(430\) −9.29587e108 −0.477913
\(431\) −1.60739e109 −0.750439 −0.375219 0.926936i \(-0.622433\pi\)
−0.375219 + 0.926936i \(0.622433\pi\)
\(432\) −6.49275e108 −0.275330
\(433\) −3.88996e109 −1.49864 −0.749320 0.662208i \(-0.769619\pi\)
−0.749320 + 0.662208i \(0.769619\pi\)
\(434\) −3.21710e109 −1.12627
\(435\) −2.54168e109 −0.808753
\(436\) −2.57731e109 −0.745551
\(437\) −2.55452e109 −0.671940
\(438\) 5.83837e109 1.39674
\(439\) −1.08744e109 −0.236662 −0.118331 0.992974i \(-0.537754\pi\)
−0.118331 + 0.992974i \(0.537754\pi\)
\(440\) 5.93929e108 0.117611
\(441\) −5.68272e108 −0.102413
\(442\) 7.62929e109 1.25158
\(443\) −9.18366e109 −1.37171 −0.685853 0.727740i \(-0.740571\pi\)
−0.685853 + 0.727740i \(0.740571\pi\)
\(444\) 5.19791e109 0.707026
\(445\) 6.08726e109 0.754191
\(446\) 2.21503e109 0.250025
\(447\) 1.37217e110 1.41138
\(448\) −1.29192e109 −0.121115
\(449\) 1.27943e110 1.09344 0.546719 0.837316i \(-0.315876\pi\)
0.546719 + 0.837316i \(0.315876\pi\)
\(450\) 1.24778e110 0.972343
\(451\) −1.29963e110 −0.923622
\(452\) 2.55884e109 0.165882
\(453\) 4.47428e109 0.264635
\(454\) −3.11012e109 −0.167865
\(455\) −1.07786e110 −0.530993
\(456\) −1.40048e110 −0.629849
\(457\) −4.23892e109 −0.174074 −0.0870368 0.996205i \(-0.527740\pi\)
−0.0870368 + 0.996205i \(0.527740\pi\)
\(458\) −4.49348e109 −0.168525
\(459\) −4.38460e110 −1.50212
\(460\) −4.16034e109 −0.130220
\(461\) 4.70364e110 1.34538 0.672691 0.739924i \(-0.265138\pi\)
0.672691 + 0.739924i \(0.265138\pi\)
\(462\) −3.37549e110 −0.882460
\(463\) 4.36920e110 1.04422 0.522108 0.852879i \(-0.325146\pi\)
0.522108 + 0.852879i \(0.325146\pi\)
\(464\) −1.33996e110 −0.292817
\(465\) −5.67971e110 −1.13508
\(466\) 6.60992e110 1.20832
\(467\) −3.41274e110 −0.570759 −0.285379 0.958415i \(-0.592120\pi\)
−0.285379 + 0.958415i \(0.592120\pi\)
\(468\) −7.09572e110 −1.08591
\(469\) 6.11738e110 0.856825
\(470\) 1.43177e110 0.183574
\(471\) −5.86036e110 −0.687949
\(472\) 1.94968e110 0.209589
\(473\) −1.28045e111 −1.26074
\(474\) 4.46806e110 0.403012
\(475\) 1.08322e111 0.895227
\(476\) −8.72442e110 −0.660766
\(477\) 4.55374e110 0.316123
\(478\) −1.59543e111 −1.01536
\(479\) 2.76718e111 1.61478 0.807390 0.590019i \(-0.200880\pi\)
0.807390 + 0.590019i \(0.200880\pi\)
\(480\) −2.28085e110 −0.122063
\(481\) 2.28627e111 1.12229
\(482\) 1.30344e111 0.587003
\(483\) 2.36445e111 0.977068
\(484\) −5.00312e110 −0.189740
\(485\) −1.81311e111 −0.631165
\(486\) −1.97647e111 −0.631663
\(487\) −2.44275e111 −0.716848 −0.358424 0.933559i \(-0.616686\pi\)
−0.358424 + 0.933559i \(0.616686\pi\)
\(488\) 2.53963e111 0.684460
\(489\) 1.20525e111 0.298372
\(490\) −8.03441e109 −0.0182733
\(491\) 5.89465e111 1.23190 0.615951 0.787784i \(-0.288772\pi\)
0.615951 + 0.787784i \(0.288772\pi\)
\(492\) 4.99094e111 0.958584
\(493\) −9.04886e111 −1.59752
\(494\) −6.15993e111 −0.999786
\(495\) −3.73034e111 −0.556714
\(496\) −2.99432e111 −0.410968
\(497\) −4.48543e111 −0.566258
\(498\) 1.10364e112 1.28176
\(499\) −2.73792e110 −0.0292582 −0.0146291 0.999893i \(-0.504657\pi\)
−0.0146291 + 0.999893i \(0.504657\pi\)
\(500\) 3.91120e111 0.384640
\(501\) −2.21356e112 −2.00366
\(502\) 1.06081e112 0.883961
\(503\) 1.90695e111 0.146308 0.0731541 0.997321i \(-0.476694\pi\)
0.0731541 + 0.997321i \(0.476694\pi\)
\(504\) 8.11425e111 0.573299
\(505\) −2.42934e111 −0.158087
\(506\) −5.73063e111 −0.343523
\(507\) −2.02535e112 −1.11858
\(508\) −1.69093e112 −0.860561
\(509\) 3.53459e112 1.65787 0.828937 0.559343i \(-0.188946\pi\)
0.828937 + 0.559343i \(0.188946\pi\)
\(510\) −1.54027e112 −0.665940
\(511\) −2.93658e112 −1.17051
\(512\) −1.20245e111 −0.0441942
\(513\) 3.54015e112 1.19992
\(514\) −7.84973e111 −0.245406
\(515\) −4.68970e111 −0.135253
\(516\) 4.91728e112 1.30847
\(517\) 1.97218e112 0.484272
\(518\) −2.61444e112 −0.592507
\(519\) 8.25920e112 1.72780
\(520\) −1.00322e112 −0.193756
\(521\) 7.36394e112 1.31324 0.656621 0.754221i \(-0.271985\pi\)
0.656621 + 0.754221i \(0.271985\pi\)
\(522\) 8.41600e112 1.38605
\(523\) 7.79465e112 1.18571 0.592853 0.805311i \(-0.298002\pi\)
0.592853 + 0.805311i \(0.298002\pi\)
\(524\) 7.65104e111 0.107516
\(525\) −1.00263e113 −1.30175
\(526\) −1.08351e113 −1.29994
\(527\) −2.02208e113 −2.24212
\(528\) −3.14174e112 −0.322005
\(529\) −6.53966e112 −0.619648
\(530\) 6.43824e111 0.0564051
\(531\) −1.22455e113 −0.992094
\(532\) 7.04414e112 0.527831
\(533\) 2.19523e113 1.52160
\(534\) −3.22001e113 −2.06488
\(535\) 6.25582e112 0.371195
\(536\) 5.69375e112 0.312651
\(537\) 5.65600e112 0.287460
\(538\) −1.60279e113 −0.754071
\(539\) −1.10669e112 −0.0482052
\(540\) 5.76554e112 0.232541
\(541\) 2.42827e113 0.907007 0.453504 0.891254i \(-0.350174\pi\)
0.453504 + 0.891254i \(0.350174\pi\)
\(542\) 1.34173e111 0.00464189
\(543\) −3.87891e112 −0.124313
\(544\) −8.12025e112 −0.241110
\(545\) 2.28864e113 0.629684
\(546\) 5.70160e113 1.45379
\(547\) 1.47490e113 0.348570 0.174285 0.984695i \(-0.444239\pi\)
0.174285 + 0.984695i \(0.444239\pi\)
\(548\) −3.63437e113 −0.796225
\(549\) −1.59509e114 −3.23990
\(550\) 2.43002e113 0.457677
\(551\) 7.30609e113 1.27613
\(552\) 2.20072e113 0.356527
\(553\) −2.24734e113 −0.337735
\(554\) 2.14288e113 0.298774
\(555\) −4.61572e113 −0.597147
\(556\) −4.09947e112 −0.0492180
\(557\) 5.37828e113 0.599312 0.299656 0.954047i \(-0.403128\pi\)
0.299656 + 0.954047i \(0.403128\pi\)
\(558\) 1.88066e114 1.94532
\(559\) 2.16284e114 2.07699
\(560\) 1.14722e113 0.102292
\(561\) −2.12164e114 −1.75676
\(562\) 3.60075e113 0.276908
\(563\) −6.68778e113 −0.477731 −0.238865 0.971053i \(-0.576775\pi\)
−0.238865 + 0.971053i \(0.576775\pi\)
\(564\) −7.57370e113 −0.502603
\(565\) −2.27224e113 −0.140102
\(566\) −1.81949e114 −1.04248
\(567\) −2.31490e113 −0.123264
\(568\) −4.17482e113 −0.206624
\(569\) 1.42170e114 0.654109 0.327055 0.945005i \(-0.393944\pi\)
0.327055 + 0.945005i \(0.393944\pi\)
\(570\) 1.24362e114 0.531964
\(571\) −3.32521e114 −1.32258 −0.661288 0.750132i \(-0.729990\pi\)
−0.661288 + 0.750132i \(0.729990\pi\)
\(572\) −1.38187e114 −0.511132
\(573\) 1.53352e114 0.527562
\(574\) −2.51034e114 −0.803321
\(575\) −1.70218e114 −0.506744
\(576\) 7.55234e113 0.209194
\(577\) −2.94311e113 −0.0758596 −0.0379298 0.999280i \(-0.512076\pi\)
−0.0379298 + 0.999280i \(0.512076\pi\)
\(578\) −2.53592e114 −0.608316
\(579\) 2.91900e114 0.651740
\(580\) 1.18988e114 0.247310
\(581\) −5.55106e114 −1.07415
\(582\) 9.59091e114 1.72805
\(583\) 8.86830e113 0.148797
\(584\) −2.73322e114 −0.427112
\(585\) 6.30097e114 0.917148
\(586\) −8.79729e114 −1.19288
\(587\) 4.24230e114 0.535945 0.267972 0.963427i \(-0.413646\pi\)
0.267972 + 0.963427i \(0.413646\pi\)
\(588\) 4.25000e113 0.0500299
\(589\) 1.63264e115 1.79104
\(590\) −1.73131e114 −0.177017
\(591\) 9.16281e113 0.0873269
\(592\) −2.43339e114 −0.216203
\(593\) −1.50009e115 −1.24265 −0.621325 0.783553i \(-0.713405\pi\)
−0.621325 + 0.783553i \(0.713405\pi\)
\(594\) 7.94171e114 0.613446
\(595\) 7.74725e114 0.558076
\(596\) −6.42378e114 −0.431590
\(597\) 1.48063e115 0.927921
\(598\) 9.67971e114 0.565930
\(599\) 1.81515e115 0.990148 0.495074 0.868851i \(-0.335141\pi\)
0.495074 + 0.868851i \(0.335141\pi\)
\(600\) −9.33194e114 −0.475001
\(601\) 1.94124e115 0.922124 0.461062 0.887368i \(-0.347469\pi\)
0.461062 + 0.887368i \(0.347469\pi\)
\(602\) −2.47329e115 −1.09653
\(603\) −3.57612e115 −1.47994
\(604\) −2.09463e114 −0.0809233
\(605\) 4.44276e114 0.160252
\(606\) 1.28506e115 0.432823
\(607\) −6.13296e115 −1.92903 −0.964515 0.264026i \(-0.914949\pi\)
−0.964515 + 0.264026i \(0.914949\pi\)
\(608\) 6.55633e114 0.192603
\(609\) −6.76248e115 −1.85562
\(610\) −2.25519e115 −0.578088
\(611\) −3.33124e115 −0.797804
\(612\) 5.10015e115 1.14130
\(613\) 1.77170e115 0.370494 0.185247 0.982692i \(-0.440691\pi\)
0.185247 + 0.982692i \(0.440691\pi\)
\(614\) 6.24425e115 1.22037
\(615\) −4.43193e115 −0.809610
\(616\) 1.58023e115 0.269849
\(617\) 8.94061e114 0.142736 0.0713679 0.997450i \(-0.477264\pi\)
0.0713679 + 0.997450i \(0.477264\pi\)
\(618\) 2.48073e115 0.370304
\(619\) 6.13479e115 0.856324 0.428162 0.903702i \(-0.359161\pi\)
0.428162 + 0.903702i \(0.359161\pi\)
\(620\) 2.65894e115 0.347100
\(621\) −5.56298e115 −0.679214
\(622\) −9.82158e115 −1.12171
\(623\) 1.61960e116 1.73043
\(624\) 5.30676e115 0.530480
\(625\) 5.31136e115 0.496804
\(626\) −4.65979e115 −0.407879
\(627\) 1.71302e116 1.40333
\(628\) 2.74352e115 0.210369
\(629\) −1.64329e116 −1.17954
\(630\) −7.20543e115 −0.484202
\(631\) −9.48977e114 −0.0597087 −0.0298543 0.999554i \(-0.509504\pi\)
−0.0298543 + 0.999554i \(0.509504\pi\)
\(632\) −2.09171e115 −0.123238
\(633\) −2.67025e116 −1.47333
\(634\) −1.22367e115 −0.0632351
\(635\) 1.50154e116 0.726821
\(636\) −3.40566e115 −0.154430
\(637\) 1.86934e115 0.0794147
\(638\) 1.63899e116 0.652408
\(639\) 2.62211e116 0.978059
\(640\) 1.06777e115 0.0373259
\(641\) 3.38116e116 1.10779 0.553895 0.832587i \(-0.313141\pi\)
0.553895 + 0.832587i \(0.313141\pi\)
\(642\) −3.30917e116 −1.01629
\(643\) −1.04336e116 −0.300386 −0.150193 0.988657i \(-0.547989\pi\)
−0.150193 + 0.988657i \(0.547989\pi\)
\(644\) −1.10691e116 −0.298779
\(645\) −4.36653e116 −1.10512
\(646\) 4.42753e116 1.05078
\(647\) 5.39355e116 1.20046 0.600229 0.799828i \(-0.295076\pi\)
0.600229 + 0.799828i \(0.295076\pi\)
\(648\) −2.15460e115 −0.0449783
\(649\) −2.38477e116 −0.466974
\(650\) −4.10459e116 −0.753991
\(651\) −1.51116e117 −2.60436
\(652\) −5.64234e115 −0.0912398
\(653\) −1.35184e116 −0.205129 −0.102565 0.994726i \(-0.532705\pi\)
−0.102565 + 0.994726i \(0.532705\pi\)
\(654\) −1.21063e117 −1.72400
\(655\) −6.79410e115 −0.0908067
\(656\) −2.33650e116 −0.293127
\(657\) 1.71668e117 2.02174
\(658\) 3.80942e116 0.421196
\(659\) −1.65504e115 −0.0171816 −0.00859078 0.999963i \(-0.502735\pi\)
−0.00859078 + 0.999963i \(0.502735\pi\)
\(660\) 2.78985e116 0.271962
\(661\) −1.24490e116 −0.113966 −0.0569828 0.998375i \(-0.518148\pi\)
−0.0569828 + 0.998375i \(0.518148\pi\)
\(662\) 7.80448e116 0.671023
\(663\) 3.58369e117 2.89414
\(664\) −5.16665e116 −0.391953
\(665\) −6.25517e116 −0.445801
\(666\) 1.52836e117 1.02340
\(667\) −1.14808e117 −0.722353
\(668\) 1.03627e117 0.612704
\(669\) 1.04046e117 0.578153
\(670\) −5.05603e116 −0.264062
\(671\) −3.10639e117 −1.52501
\(672\) −6.06850e116 −0.280064
\(673\) −9.57675e116 −0.415521 −0.207760 0.978180i \(-0.566617\pi\)
−0.207760 + 0.978180i \(0.566617\pi\)
\(674\) 2.23455e117 0.911600
\(675\) 2.35893e117 0.904918
\(676\) 9.48162e116 0.342054
\(677\) −3.00293e117 −1.01886 −0.509430 0.860512i \(-0.670144\pi\)
−0.509430 + 0.860512i \(0.670144\pi\)
\(678\) 1.20196e117 0.383581
\(679\) −4.82403e117 −1.44815
\(680\) 7.21076e116 0.203639
\(681\) −1.46091e117 −0.388167
\(682\) 3.66255e117 0.915654
\(683\) −1.21635e117 −0.286154 −0.143077 0.989712i \(-0.545700\pi\)
−0.143077 + 0.989712i \(0.545700\pi\)
\(684\) −4.11788e117 −0.911687
\(685\) 3.22731e117 0.672484
\(686\) −3.70697e117 −0.727056
\(687\) −2.11071e117 −0.389695
\(688\) −2.30202e117 −0.400118
\(689\) −1.49796e117 −0.245133
\(690\) −1.95423e117 −0.301119
\(691\) 1.25037e118 1.81427 0.907133 0.420844i \(-0.138266\pi\)
0.907133 + 0.420844i \(0.138266\pi\)
\(692\) −3.86653e117 −0.528346
\(693\) −9.92507e117 −1.27733
\(694\) 1.47940e117 0.179336
\(695\) 3.64031e116 0.0415690
\(696\) −6.29417e117 −0.677104
\(697\) −1.57785e118 −1.59921
\(698\) 1.03110e118 0.984691
\(699\) 3.10486e118 2.79408
\(700\) 4.69377e117 0.398065
\(701\) −5.96129e116 −0.0476478 −0.0238239 0.999716i \(-0.507584\pi\)
−0.0238239 + 0.999716i \(0.507584\pi\)
\(702\) −1.34145e118 −1.01061
\(703\) 1.32680e118 0.942233
\(704\) 1.47080e117 0.0984664
\(705\) 6.72542e117 0.424494
\(706\) 2.48878e117 0.148113
\(707\) −6.46360e117 −0.362718
\(708\) 9.15817e117 0.484650
\(709\) 1.74484e118 0.870835 0.435418 0.900229i \(-0.356601\pi\)
0.435418 + 0.900229i \(0.356601\pi\)
\(710\) 3.70722e117 0.174513
\(711\) 1.31376e118 0.583347
\(712\) 1.50744e118 0.631423
\(713\) −2.56553e118 −1.01382
\(714\) −4.09810e118 −1.52794
\(715\) 1.22710e118 0.431697
\(716\) −2.64785e117 −0.0879028
\(717\) −7.49420e118 −2.34790
\(718\) −6.32802e117 −0.187113
\(719\) 4.18565e118 1.16819 0.584096 0.811685i \(-0.301449\pi\)
0.584096 + 0.811685i \(0.301449\pi\)
\(720\) −6.70645e117 −0.176683
\(721\) −1.24776e118 −0.310325
\(722\) −5.63341e117 −0.132275
\(723\) 6.12264e118 1.35737
\(724\) 1.81590e117 0.0380139
\(725\) 4.86832e118 0.962392
\(726\) −2.35011e118 −0.438751
\(727\) −6.43388e117 −0.113448 −0.0567238 0.998390i \(-0.518065\pi\)
−0.0567238 + 0.998390i \(0.518065\pi\)
\(728\) −2.66919e118 −0.444557
\(729\) −1.00926e119 −1.58786
\(730\) 2.42709e118 0.360735
\(731\) −1.55457e119 −2.18292
\(732\) 1.19294e119 1.58273
\(733\) 7.11810e118 0.892379 0.446190 0.894938i \(-0.352781\pi\)
0.446190 + 0.894938i \(0.352781\pi\)
\(734\) −2.80569e117 −0.0332394
\(735\) −3.77399e117 −0.0422548
\(736\) −1.03026e118 −0.109023
\(737\) −6.96439e118 −0.696599
\(738\) 1.46750e119 1.38752
\(739\) −1.72404e118 −0.154100 −0.0770501 0.997027i \(-0.524550\pi\)
−0.0770501 + 0.997027i \(0.524550\pi\)
\(740\) 2.16084e118 0.182603
\(741\) −2.89349e119 −2.31189
\(742\) 1.71298e118 0.129417
\(743\) 5.38470e118 0.384703 0.192352 0.981326i \(-0.438389\pi\)
0.192352 + 0.981326i \(0.438389\pi\)
\(744\) −1.40651e119 −0.950315
\(745\) 5.70430e118 0.364516
\(746\) −4.62414e118 −0.279492
\(747\) 3.24506e119 1.85531
\(748\) 9.93241e118 0.537203
\(749\) 1.66445e119 0.851676
\(750\) 1.83720e119 0.889434
\(751\) 1.80640e119 0.827477 0.413738 0.910396i \(-0.364223\pi\)
0.413738 + 0.910396i \(0.364223\pi\)
\(752\) 3.54562e118 0.153692
\(753\) 4.98292e119 2.04405
\(754\) −2.76845e119 −1.07480
\(755\) 1.86002e118 0.0683470
\(756\) 1.53400e119 0.533545
\(757\) −4.76923e119 −1.57025 −0.785126 0.619336i \(-0.787402\pi\)
−0.785126 + 0.619336i \(0.787402\pi\)
\(758\) −1.64485e118 −0.0512691
\(759\) −2.69184e119 −0.794356
\(760\) −5.82200e118 −0.162670
\(761\) −3.92999e119 −1.03975 −0.519874 0.854243i \(-0.674021\pi\)
−0.519874 + 0.854243i \(0.674021\pi\)
\(762\) −7.94277e119 −1.98994
\(763\) 6.08924e119 1.44476
\(764\) −7.17916e118 −0.161324
\(765\) −4.52891e119 −0.963928
\(766\) −7.37033e118 −0.148591
\(767\) 4.02816e119 0.769307
\(768\) −5.64826e118 −0.102194
\(769\) −8.76719e119 −1.50286 −0.751428 0.659816i \(-0.770634\pi\)
−0.751428 + 0.659816i \(0.770634\pi\)
\(770\) −1.40324e119 −0.227912
\(771\) −3.68724e119 −0.567472
\(772\) −1.36653e119 −0.199297
\(773\) 1.45033e119 0.200455 0.100228 0.994965i \(-0.468043\pi\)
0.100228 + 0.994965i \(0.468043\pi\)
\(774\) 1.44584e120 1.89396
\(775\) 1.08789e120 1.35072
\(776\) −4.48997e119 −0.528423
\(777\) −1.22808e120 −1.37010
\(778\) 3.43419e119 0.363221
\(779\) 1.27397e120 1.27748
\(780\) −4.71239e119 −0.448038
\(781\) 5.10649e119 0.460367
\(782\) −6.95742e119 −0.594796
\(783\) 1.59105e120 1.28994
\(784\) −1.98963e118 −0.0152987
\(785\) −2.43623e119 −0.177676
\(786\) 3.59391e119 0.248617
\(787\) 1.84189e120 1.20868 0.604342 0.796725i \(-0.293436\pi\)
0.604342 + 0.796725i \(0.293436\pi\)
\(788\) −4.28955e118 −0.0267039
\(789\) −5.08955e120 −3.00596
\(790\) 1.85744e119 0.104085
\(791\) −6.04561e119 −0.321452
\(792\) −9.23776e119 −0.466092
\(793\) 5.24706e120 2.51234
\(794\) 1.21026e120 0.549957
\(795\) 3.02422e119 0.130430
\(796\) −6.93153e119 −0.283751
\(797\) −1.39642e120 −0.542619 −0.271309 0.962492i \(-0.587457\pi\)
−0.271309 + 0.962492i \(0.587457\pi\)
\(798\) 3.30883e120 1.22055
\(799\) 2.39438e120 0.838497
\(800\) 4.36873e119 0.145252
\(801\) −9.46789e120 −2.98885
\(802\) 3.53334e120 1.05913
\(803\) 3.34318e120 0.951623
\(804\) 2.67451e120 0.722967
\(805\) 9.82937e119 0.252346
\(806\) −6.18647e120 −1.50848
\(807\) −7.52876e120 −1.74370
\(808\) −6.01600e119 −0.132354
\(809\) −5.03160e120 −1.05158 −0.525790 0.850614i \(-0.676230\pi\)
−0.525790 + 0.850614i \(0.676230\pi\)
\(810\) 1.91327e119 0.0379882
\(811\) −8.02832e120 −1.51446 −0.757232 0.653146i \(-0.773449\pi\)
−0.757232 + 0.653146i \(0.773449\pi\)
\(812\) 3.16584e120 0.567432
\(813\) 6.30248e118 0.0107338
\(814\) 2.97644e120 0.481708
\(815\) 5.01038e119 0.0770602
\(816\) −3.81431e120 −0.557538
\(817\) 1.25517e121 1.74376
\(818\) −1.54612e120 −0.204165
\(819\) 1.67646e121 2.10432
\(820\) 2.07480e120 0.247572
\(821\) −1.39011e121 −1.57692 −0.788458 0.615088i \(-0.789120\pi\)
−0.788458 + 0.615088i \(0.789120\pi\)
\(822\) −1.70716e121 −1.84117
\(823\) 1.60136e121 1.64209 0.821045 0.570863i \(-0.193391\pi\)
0.821045 + 0.570863i \(0.193391\pi\)
\(824\) −1.16135e120 −0.113236
\(825\) 1.14145e121 1.05832
\(826\) −4.60637e120 −0.406151
\(827\) −2.18012e121 −1.82810 −0.914052 0.405597i \(-0.867064\pi\)
−0.914052 + 0.405597i \(0.867064\pi\)
\(828\) 6.47084e120 0.516062
\(829\) 9.78667e120 0.742373 0.371186 0.928558i \(-0.378951\pi\)
0.371186 + 0.928558i \(0.378951\pi\)
\(830\) 4.58797e120 0.331039
\(831\) 1.00657e121 0.690878
\(832\) −2.48435e120 −0.162216
\(833\) −1.34361e120 −0.0834653
\(834\) −1.92563e120 −0.113811
\(835\) −9.20207e120 −0.517484
\(836\) −8.01947e120 −0.429126
\(837\) 3.55540e121 1.81043
\(838\) 1.05433e121 0.510917
\(839\) −1.48371e121 −0.684272 −0.342136 0.939650i \(-0.611150\pi\)
−0.342136 + 0.939650i \(0.611150\pi\)
\(840\) 5.38881e120 0.236539
\(841\) 8.90068e120 0.371869
\(842\) 5.62111e120 0.223548
\(843\) 1.69137e121 0.640317
\(844\) 1.25007e121 0.450531
\(845\) −8.41965e120 −0.288895
\(846\) −2.22692e121 −0.727503
\(847\) 1.18206e121 0.367685
\(848\) 1.59436e120 0.0472234
\(849\) −8.54664e121 −2.41061
\(850\) 2.95023e121 0.792449
\(851\) −2.08493e121 −0.533352
\(852\) −1.96103e121 −0.477794
\(853\) −1.85049e120 −0.0429440 −0.0214720 0.999769i \(-0.506835\pi\)
−0.0214720 + 0.999769i \(0.506835\pi\)
\(854\) −6.00023e121 −1.32637
\(855\) 3.65667e121 0.770001
\(856\) 1.54918e121 0.310772
\(857\) −7.15910e121 −1.36822 −0.684108 0.729381i \(-0.739808\pi\)
−0.684108 + 0.729381i \(0.739808\pi\)
\(858\) −6.49104e121 −1.18193
\(859\) 5.29467e121 0.918592 0.459296 0.888283i \(-0.348102\pi\)
0.459296 + 0.888283i \(0.348102\pi\)
\(860\) 2.04418e121 0.337936
\(861\) −1.17918e122 −1.85758
\(862\) 3.53469e121 0.530640
\(863\) 5.72396e121 0.818933 0.409467 0.912325i \(-0.365715\pi\)
0.409467 + 0.912325i \(0.365715\pi\)
\(864\) 1.42777e121 0.194688
\(865\) 3.43347e121 0.446236
\(866\) 8.55411e121 1.05970
\(867\) −1.19119e122 −1.40666
\(868\) 7.07448e121 0.796391
\(869\) 2.55851e121 0.274579
\(870\) 5.58921e121 0.571875
\(871\) 1.17637e122 1.14760
\(872\) 5.66756e121 0.527184
\(873\) 2.82005e122 2.50130
\(874\) 5.61746e121 0.475133
\(875\) −9.24074e121 −0.745371
\(876\) −1.28387e122 −0.987645
\(877\) 3.36192e121 0.246663 0.123332 0.992366i \(-0.460642\pi\)
0.123332 + 0.992366i \(0.460642\pi\)
\(878\) 2.39131e121 0.167345
\(879\) −4.13233e122 −2.75840
\(880\) −1.30606e121 −0.0831637
\(881\) 1.10886e122 0.673558 0.336779 0.941584i \(-0.390662\pi\)
0.336779 + 0.941584i \(0.390662\pi\)
\(882\) 1.24964e121 0.0724168
\(883\) 7.23485e121 0.400000 0.200000 0.979796i \(-0.435906\pi\)
0.200000 + 0.979796i \(0.435906\pi\)
\(884\) −1.67770e122 −0.885004
\(885\) −8.13243e121 −0.409331
\(886\) 2.01951e122 0.969943
\(887\) −2.13789e122 −0.979842 −0.489921 0.871767i \(-0.662974\pi\)
−0.489921 + 0.871767i \(0.662974\pi\)
\(888\) −1.14303e122 −0.499943
\(889\) 3.99505e122 1.66763
\(890\) −1.33860e122 −0.533294
\(891\) 2.63543e121 0.100213
\(892\) −4.87091e121 −0.176794
\(893\) −1.93323e122 −0.669805
\(894\) −3.01743e122 −0.997999
\(895\) 2.35128e121 0.0742418
\(896\) 2.84096e121 0.0856412
\(897\) 4.54683e122 1.30865
\(898\) −2.81350e122 −0.773178
\(899\) 7.33756e122 1.92542
\(900\) −2.74390e122 −0.687550
\(901\) 1.07668e122 0.257637
\(902\) 2.85792e122 0.653099
\(903\) −1.16177e123 −2.53560
\(904\) −5.62695e121 −0.117296
\(905\) −1.61252e121 −0.0321061
\(906\) −9.83904e121 −0.187125
\(907\) −4.89353e122 −0.889037 −0.444518 0.895770i \(-0.646625\pi\)
−0.444518 + 0.895770i \(0.646625\pi\)
\(908\) 6.83923e121 0.118698
\(909\) 3.77851e122 0.626498
\(910\) 2.37023e122 0.375468
\(911\) −6.97388e122 −1.05551 −0.527754 0.849397i \(-0.676966\pi\)
−0.527754 + 0.849397i \(0.676966\pi\)
\(912\) 3.07969e122 0.445370
\(913\) 6.31967e122 0.873287
\(914\) 9.32148e121 0.123089
\(915\) −1.05932e123 −1.33676
\(916\) 9.88126e121 0.119165
\(917\) −1.80766e122 −0.208348
\(918\) 9.64184e122 1.06216
\(919\) 1.31449e123 1.38408 0.692042 0.721858i \(-0.256711\pi\)
0.692042 + 0.721858i \(0.256711\pi\)
\(920\) 9.14868e121 0.0920797
\(921\) 2.93310e123 2.82197
\(922\) −1.03434e123 −0.951328
\(923\) −8.62546e122 −0.758423
\(924\) 7.42278e122 0.623993
\(925\) 8.84095e122 0.710587
\(926\) −9.60796e122 −0.738372
\(927\) 7.29419e122 0.536004
\(928\) 2.94661e122 0.207053
\(929\) −2.01957e123 −1.35708 −0.678542 0.734561i \(-0.737388\pi\)
−0.678542 + 0.734561i \(0.737388\pi\)
\(930\) 1.24898e123 0.802626
\(931\) 1.08484e122 0.0666735
\(932\) −1.45354e123 −0.854408
\(933\) −4.61347e123 −2.59382
\(934\) 7.50469e122 0.403587
\(935\) −8.81994e122 −0.453716
\(936\) 1.56037e123 0.767854
\(937\) 2.92262e123 1.37588 0.687939 0.725768i \(-0.258516\pi\)
0.687939 + 0.725768i \(0.258516\pi\)
\(938\) −1.34523e123 −0.605867
\(939\) −2.18883e123 −0.943171
\(940\) −3.14849e122 −0.129807
\(941\) 1.19629e123 0.471919 0.235960 0.971763i \(-0.424177\pi\)
0.235960 + 0.971763i \(0.424177\pi\)
\(942\) 1.28871e123 0.486454
\(943\) −2.00191e123 −0.723118
\(944\) −4.28738e122 −0.148202
\(945\) −1.36219e123 −0.450627
\(946\) 2.81575e123 0.891480
\(947\) 1.81217e123 0.549131 0.274565 0.961568i \(-0.411466\pi\)
0.274565 + 0.961568i \(0.411466\pi\)
\(948\) −9.82537e122 −0.284972
\(949\) −5.64703e123 −1.56773
\(950\) −2.38203e123 −0.633021
\(951\) −5.74790e122 −0.146224
\(952\) 1.91852e123 0.467232
\(953\) −3.82422e123 −0.891636 −0.445818 0.895124i \(-0.647087\pi\)
−0.445818 + 0.895124i \(0.647087\pi\)
\(954\) −1.00138e123 −0.223533
\(955\) 6.37507e122 0.136253
\(956\) 3.50840e123 0.717970
\(957\) 7.69881e123 1.50861
\(958\) −6.08509e123 −1.14182
\(959\) 8.58669e123 1.54296
\(960\) 5.01564e122 0.0863117
\(961\) 1.03291e124 1.70232
\(962\) −5.02755e123 −0.793581
\(963\) −9.73007e123 −1.47104
\(964\) −2.86630e123 −0.415074
\(965\) 1.21347e123 0.168324
\(966\) −5.19949e123 −0.690891
\(967\) 6.70761e123 0.853826 0.426913 0.904293i \(-0.359601\pi\)
0.426913 + 0.904293i \(0.359601\pi\)
\(968\) 1.10020e123 0.134166
\(969\) 2.07974e124 2.42981
\(970\) 3.98708e123 0.446301
\(971\) 1.45055e124 1.55573 0.777867 0.628429i \(-0.216302\pi\)
0.777867 + 0.628429i \(0.216302\pi\)
\(972\) 4.34631e123 0.446653
\(973\) 9.68555e122 0.0953765
\(974\) 5.37167e123 0.506888
\(975\) −1.92804e124 −1.74351
\(976\) −5.58471e123 −0.483987
\(977\) 3.08503e123 0.256233 0.128117 0.991759i \(-0.459107\pi\)
0.128117 + 0.991759i \(0.459107\pi\)
\(978\) −2.65037e123 −0.210981
\(979\) −1.84385e124 −1.40684
\(980\) 1.76679e122 0.0129212
\(981\) −3.55967e124 −2.49543
\(982\) −1.29625e124 −0.871086
\(983\) −1.23536e124 −0.795836 −0.397918 0.917421i \(-0.630267\pi\)
−0.397918 + 0.917421i \(0.630267\pi\)
\(984\) −1.09752e124 −0.677821
\(985\) 3.80911e122 0.0225538
\(986\) 1.98986e124 1.12962
\(987\) 1.78939e124 0.973964
\(988\) 1.35458e124 0.706956
\(989\) −1.97237e124 −0.987055
\(990\) 8.20310e123 0.393656
\(991\) −1.22699e124 −0.564658 −0.282329 0.959318i \(-0.591107\pi\)
−0.282329 + 0.959318i \(0.591107\pi\)
\(992\) 6.58458e123 0.290599
\(993\) 3.66598e124 1.55166
\(994\) 9.86357e123 0.400405
\(995\) 6.15518e123 0.239653
\(996\) −2.42692e124 −0.906344
\(997\) −3.62789e124 −1.29959 −0.649794 0.760111i \(-0.725145\pi\)
−0.649794 + 0.760111i \(0.725145\pi\)
\(998\) 6.02074e122 0.0206887
\(999\) 2.88936e124 0.952433
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))