Properties

Label 2.82.a.a.1.2
Level 2
Weight 82
Character 2.1
Self dual Yes
Analytic conductor 83.100
Analytic rank 1
Dimension 3
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 2 \)
Weight: \( k \) = \( 82 \)
Character orbit: \([\chi]\) = 2.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(83.1002571076\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{23}\cdot 3^{10}\cdot 5^{3}\cdot 7 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(4.80400e13\)
Character \(\chi\) = 2.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.09951e12 q^{2} +6.69185e18 q^{3} +1.20893e24 q^{4} -3.52449e28 q^{5} -7.35776e30 q^{6} -2.28912e34 q^{7} -1.32923e36 q^{8} -3.98646e38 q^{9} +O(q^{10})\) \(q-1.09951e12 q^{2} +6.69185e18 q^{3} +1.20893e24 q^{4} -3.52449e28 q^{5} -7.35776e30 q^{6} -2.28912e34 q^{7} -1.32923e36 q^{8} -3.98646e38 q^{9} +3.87522e40 q^{10} +1.33284e42 q^{11} +8.08995e42 q^{12} +1.30576e45 q^{13} +2.51692e46 q^{14} -2.35854e47 q^{15} +1.46150e48 q^{16} +1.15426e50 q^{17} +4.38316e50 q^{18} +8.59247e51 q^{19} -4.26085e52 q^{20} -1.53185e53 q^{21} -1.46547e54 q^{22} -1.84116e55 q^{23} -8.89499e54 q^{24} +8.28616e56 q^{25} -1.43569e57 q^{26} -5.63502e57 q^{27} -2.76738e58 q^{28} +1.25939e59 q^{29} +2.59324e59 q^{30} -3.18159e60 q^{31} -1.60694e60 q^{32} +8.91915e60 q^{33} -1.26912e62 q^{34} +8.06800e62 q^{35} -4.81933e62 q^{36} +8.97118e62 q^{37} -9.44752e63 q^{38} +8.73792e63 q^{39} +4.68486e64 q^{40} +2.04973e65 q^{41} +1.68428e65 q^{42} -1.63064e66 q^{43} +1.61130e66 q^{44} +1.40502e67 q^{45} +2.02438e67 q^{46} +2.78813e66 q^{47} +9.78014e66 q^{48} +2.40255e68 q^{49} -9.11073e68 q^{50} +7.72413e68 q^{51} +1.57856e69 q^{52} -7.25924e69 q^{53} +6.19577e69 q^{54} -4.69758e70 q^{55} +3.04277e70 q^{56} +5.74995e70 q^{57} -1.38472e71 q^{58} -7.45211e70 q^{59} -2.85130e71 q^{60} +7.37657e71 q^{61} +3.49820e72 q^{62} +9.12549e72 q^{63} +1.76685e72 q^{64} -4.60213e73 q^{65} -9.80671e72 q^{66} +1.64024e73 q^{67} +1.39542e74 q^{68} -1.23208e74 q^{69} -8.87086e74 q^{70} +1.42676e74 q^{71} +5.29891e74 q^{72} +7.91008e74 q^{73} -9.86392e74 q^{74} +5.54497e75 q^{75} +1.03877e76 q^{76} -3.05103e76 q^{77} -9.60744e75 q^{78} -6.52838e76 q^{79} -5.15105e76 q^{80} +1.39061e77 q^{81} -2.25370e77 q^{82} -4.61208e77 q^{83} -1.85189e77 q^{84} -4.06818e78 q^{85} +1.79291e78 q^{86} +8.42767e77 q^{87} -1.77165e78 q^{88} +2.48319e77 q^{89} -1.54484e79 q^{90} -2.98904e79 q^{91} -2.22583e79 q^{92} -2.12907e79 q^{93} -3.06558e78 q^{94} -3.02841e80 q^{95} -1.07534e79 q^{96} -1.43989e79 q^{97} -2.64163e80 q^{98} -5.31330e80 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q - 3298534883328q^{2} + 12604360672390214988q^{3} + \)\(36\!\cdots\!28\)\(q^{4} - \)\(20\!\cdots\!50\)\(q^{5} - \)\(13\!\cdots\!88\)\(q^{6} - \)\(55\!\cdots\!24\)\(q^{7} - \)\(39\!\cdots\!28\)\(q^{8} - \)\(11\!\cdots\!61\)\(q^{9} + O(q^{10}) \) \( 3q - 3298534883328q^{2} + 12604360672390214988q^{3} + \)\(36\!\cdots\!28\)\(q^{4} - \)\(20\!\cdots\!50\)\(q^{5} - \)\(13\!\cdots\!88\)\(q^{6} - \)\(55\!\cdots\!24\)\(q^{7} - \)\(39\!\cdots\!28\)\(q^{8} - \)\(11\!\cdots\!61\)\(q^{9} + \)\(23\!\cdots\!00\)\(q^{10} + \)\(12\!\cdots\!36\)\(q^{11} + \)\(15\!\cdots\!88\)\(q^{12} - \)\(20\!\cdots\!42\)\(q^{13} + \)\(60\!\cdots\!24\)\(q^{14} + \)\(25\!\cdots\!00\)\(q^{15} + \)\(43\!\cdots\!28\)\(q^{16} + \)\(13\!\cdots\!46\)\(q^{17} + \)\(12\!\cdots\!36\)\(q^{18} + \)\(47\!\cdots\!60\)\(q^{19} - \)\(25\!\cdots\!00\)\(q^{20} - \)\(51\!\cdots\!04\)\(q^{21} - \)\(14\!\cdots\!36\)\(q^{22} - \)\(30\!\cdots\!72\)\(q^{23} - \)\(16\!\cdots\!88\)\(q^{24} + \)\(28\!\cdots\!25\)\(q^{25} + \)\(22\!\cdots\!92\)\(q^{26} - \)\(62\!\cdots\!20\)\(q^{27} - \)\(66\!\cdots\!24\)\(q^{28} + \)\(21\!\cdots\!90\)\(q^{29} - \)\(28\!\cdots\!00\)\(q^{30} - \)\(38\!\cdots\!04\)\(q^{31} - \)\(48\!\cdots\!28\)\(q^{32} + \)\(81\!\cdots\!56\)\(q^{33} - \)\(15\!\cdots\!96\)\(q^{34} + \)\(79\!\cdots\!00\)\(q^{35} - \)\(14\!\cdots\!36\)\(q^{36} - \)\(96\!\cdots\!14\)\(q^{37} - \)\(52\!\cdots\!60\)\(q^{38} + \)\(36\!\cdots\!68\)\(q^{39} + \)\(27\!\cdots\!00\)\(q^{40} + \)\(31\!\cdots\!26\)\(q^{41} + \)\(57\!\cdots\!04\)\(q^{42} + \)\(90\!\cdots\!68\)\(q^{43} + \)\(15\!\cdots\!36\)\(q^{44} + \)\(18\!\cdots\!50\)\(q^{45} + \)\(33\!\cdots\!72\)\(q^{46} + \)\(16\!\cdots\!56\)\(q^{47} + \)\(18\!\cdots\!88\)\(q^{48} + \)\(84\!\cdots\!71\)\(q^{49} - \)\(30\!\cdots\!00\)\(q^{50} - \)\(77\!\cdots\!84\)\(q^{51} - \)\(24\!\cdots\!92\)\(q^{52} - \)\(90\!\cdots\!62\)\(q^{53} + \)\(68\!\cdots\!20\)\(q^{54} - \)\(47\!\cdots\!00\)\(q^{55} + \)\(73\!\cdots\!24\)\(q^{56} - \)\(21\!\cdots\!40\)\(q^{57} - \)\(23\!\cdots\!40\)\(q^{58} + \)\(17\!\cdots\!80\)\(q^{59} + \)\(31\!\cdots\!00\)\(q^{60} + \)\(36\!\cdots\!86\)\(q^{61} + \)\(42\!\cdots\!04\)\(q^{62} + \)\(97\!\cdots\!88\)\(q^{63} + \)\(53\!\cdots\!28\)\(q^{64} - \)\(44\!\cdots\!00\)\(q^{65} - \)\(89\!\cdots\!56\)\(q^{66} - \)\(45\!\cdots\!04\)\(q^{67} + \)\(16\!\cdots\!96\)\(q^{68} - \)\(38\!\cdots\!12\)\(q^{69} - \)\(87\!\cdots\!00\)\(q^{70} - \)\(66\!\cdots\!84\)\(q^{71} + \)\(15\!\cdots\!36\)\(q^{72} + \)\(28\!\cdots\!78\)\(q^{73} + \)\(10\!\cdots\!64\)\(q^{74} + \)\(10\!\cdots\!00\)\(q^{75} + \)\(57\!\cdots\!60\)\(q^{76} - \)\(30\!\cdots\!88\)\(q^{77} - \)\(40\!\cdots\!68\)\(q^{78} - \)\(16\!\cdots\!60\)\(q^{79} - \)\(30\!\cdots\!00\)\(q^{80} - \)\(29\!\cdots\!37\)\(q^{81} - \)\(34\!\cdots\!76\)\(q^{82} - \)\(15\!\cdots\!52\)\(q^{83} - \)\(62\!\cdots\!04\)\(q^{84} - \)\(52\!\cdots\!00\)\(q^{85} - \)\(10\!\cdots\!68\)\(q^{86} - \)\(55\!\cdots\!60\)\(q^{87} - \)\(17\!\cdots\!36\)\(q^{88} - \)\(86\!\cdots\!30\)\(q^{89} - \)\(20\!\cdots\!00\)\(q^{90} - \)\(58\!\cdots\!64\)\(q^{91} - \)\(36\!\cdots\!72\)\(q^{92} - \)\(24\!\cdots\!84\)\(q^{93} - \)\(17\!\cdots\!56\)\(q^{94} - \)\(43\!\cdots\!00\)\(q^{95} - \)\(20\!\cdots\!88\)\(q^{96} - \)\(53\!\cdots\!94\)\(q^{97} - \)\(93\!\cdots\!96\)\(q^{98} - \)\(54\!\cdots\!32\)\(q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.09951e12 −0.707107
\(3\) 6.69185e18 0.317786 0.158893 0.987296i \(-0.449207\pi\)
0.158893 + 0.987296i \(0.449207\pi\)
\(4\) 1.20893e24 0.500000
\(5\) −3.52449e28 −1.73305 −0.866526 0.499132i \(-0.833652\pi\)
−0.866526 + 0.499132i \(0.833652\pi\)
\(6\) −7.35776e30 −0.224709
\(7\) −2.28912e34 −1.35893 −0.679467 0.733706i \(-0.737789\pi\)
−0.679467 + 0.733706i \(0.737789\pi\)
\(8\) −1.32923e36 −0.353553
\(9\) −3.98646e38 −0.899012
\(10\) 3.87522e40 1.22545
\(11\) 1.33284e42 0.887920 0.443960 0.896047i \(-0.353573\pi\)
0.443960 + 0.896047i \(0.353573\pi\)
\(12\) 8.08995e42 0.158893
\(13\) 1.30576e45 1.00267 0.501333 0.865254i \(-0.332843\pi\)
0.501333 + 0.865254i \(0.332843\pi\)
\(14\) 2.51692e46 0.960912
\(15\) −2.35854e47 −0.550740
\(16\) 1.46150e48 0.250000
\(17\) 1.15426e50 1.69482 0.847408 0.530942i \(-0.178162\pi\)
0.847408 + 0.530942i \(0.178162\pi\)
\(18\) 4.38316e50 0.635697
\(19\) 8.59247e51 1.39507 0.697537 0.716549i \(-0.254279\pi\)
0.697537 + 0.716549i \(0.254279\pi\)
\(20\) −4.26085e52 −0.866526
\(21\) −1.53185e53 −0.431851
\(22\) −1.46547e54 −0.627854
\(23\) −1.84116e55 −1.30351 −0.651756 0.758429i \(-0.725967\pi\)
−0.651756 + 0.758429i \(0.725967\pi\)
\(24\) −8.89499e54 −0.112354
\(25\) 8.28616e56 2.00347
\(26\) −1.43569e57 −0.708992
\(27\) −5.63502e57 −0.603480
\(28\) −2.76738e58 −0.679467
\(29\) 1.25939e59 0.746522 0.373261 0.927726i \(-0.378240\pi\)
0.373261 + 0.927726i \(0.378240\pi\)
\(30\) 2.59324e59 0.389432
\(31\) −3.18159e60 −1.26618 −0.633091 0.774077i \(-0.718214\pi\)
−0.633091 + 0.774077i \(0.718214\pi\)
\(32\) −1.60694e60 −0.176777
\(33\) 8.91915e60 0.282169
\(34\) −1.26912e62 −1.19842
\(35\) 8.06800e62 2.35511
\(36\) −4.81933e62 −0.449506
\(37\) 8.97118e62 0.275854 0.137927 0.990442i \(-0.455956\pi\)
0.137927 + 0.990442i \(0.455956\pi\)
\(38\) −9.44752e63 −0.986466
\(39\) 8.73792e63 0.318633
\(40\) 4.68486e64 0.612727
\(41\) 2.04973e65 0.986166 0.493083 0.869982i \(-0.335870\pi\)
0.493083 + 0.869982i \(0.335870\pi\)
\(42\) 1.68428e65 0.305365
\(43\) −1.63064e66 −1.13995 −0.569974 0.821662i \(-0.693047\pi\)
−0.569974 + 0.821662i \(0.693047\pi\)
\(44\) 1.61130e66 0.443960
\(45\) 1.40502e67 1.55803
\(46\) 2.02438e67 0.921722
\(47\) 2.78813e66 0.0531312 0.0265656 0.999647i \(-0.491543\pi\)
0.0265656 + 0.999647i \(0.491543\pi\)
\(48\) 9.78014e66 0.0794466
\(49\) 2.40255e68 0.846704
\(50\) −9.11073e68 −1.41667
\(51\) 7.72413e68 0.538589
\(52\) 1.57856e69 0.501333
\(53\) −7.25924e69 −1.06590 −0.532952 0.846145i \(-0.678917\pi\)
−0.532952 + 0.846145i \(0.678917\pi\)
\(54\) 6.19577e69 0.426725
\(55\) −4.69758e70 −1.53881
\(56\) 3.04277e70 0.480456
\(57\) 5.74995e70 0.443335
\(58\) −1.38472e71 −0.527871
\(59\) −7.45211e70 −0.142158 −0.0710792 0.997471i \(-0.522644\pi\)
−0.0710792 + 0.997471i \(0.522644\pi\)
\(60\) −2.85130e71 −0.275370
\(61\) 7.37657e71 0.364751 0.182375 0.983229i \(-0.441621\pi\)
0.182375 + 0.983229i \(0.441621\pi\)
\(62\) 3.49820e72 0.895326
\(63\) 9.12549e72 1.22170
\(64\) 1.76685e72 0.125000
\(65\) −4.60213e73 −1.73767
\(66\) −9.80671e72 −0.199523
\(67\) 1.64024e73 0.181500 0.0907500 0.995874i \(-0.471074\pi\)
0.0907500 + 0.995874i \(0.471074\pi\)
\(68\) 1.39542e74 0.847408
\(69\) −1.23208e74 −0.414238
\(70\) −8.87086e74 −1.66531
\(71\) 1.42676e74 0.150796 0.0753978 0.997154i \(-0.475977\pi\)
0.0753978 + 0.997154i \(0.475977\pi\)
\(72\) 5.29891e74 0.317849
\(73\) 7.91008e74 0.271397 0.135699 0.990750i \(-0.456672\pi\)
0.135699 + 0.990750i \(0.456672\pi\)
\(74\) −9.86392e74 −0.195058
\(75\) 5.54497e75 0.636675
\(76\) 1.03877e76 0.697537
\(77\) −3.05103e76 −1.20663
\(78\) −9.60744e75 −0.225308
\(79\) −6.52838e76 −0.913920 −0.456960 0.889487i \(-0.651062\pi\)
−0.456960 + 0.889487i \(0.651062\pi\)
\(80\) −5.15105e76 −0.433263
\(81\) 1.39061e77 0.707234
\(82\) −2.25370e77 −0.697325
\(83\) −4.61208e77 −0.873443 −0.436721 0.899597i \(-0.643860\pi\)
−0.436721 + 0.899597i \(0.643860\pi\)
\(84\) −1.85189e77 −0.215925
\(85\) −4.06818e78 −2.93720
\(86\) 1.79291e78 0.806066
\(87\) 8.42767e77 0.237234
\(88\) −1.77165e78 −0.313927
\(89\) 2.48319e77 0.0278430 0.0139215 0.999903i \(-0.495569\pi\)
0.0139215 + 0.999903i \(0.495569\pi\)
\(90\) −1.54484e79 −1.10170
\(91\) −2.98904e79 −1.36256
\(92\) −2.22583e79 −0.651756
\(93\) −2.12907e79 −0.402375
\(94\) −3.06558e78 −0.0375694
\(95\) −3.02841e80 −2.41774
\(96\) −1.07534e79 −0.0561772
\(97\) −1.43989e79 −0.0494394 −0.0247197 0.999694i \(-0.507869\pi\)
−0.0247197 + 0.999694i \(0.507869\pi\)
\(98\) −2.64163e80 −0.598710
\(99\) −5.31330e80 −0.798251
\(100\) 1.00174e81 1.00174
\(101\) 1.88845e81 1.26209 0.631043 0.775748i \(-0.282627\pi\)
0.631043 + 0.775748i \(0.282627\pi\)
\(102\) −8.49277e80 −0.380840
\(103\) −2.16240e80 −0.0653174 −0.0326587 0.999467i \(-0.510397\pi\)
−0.0326587 + 0.999467i \(0.510397\pi\)
\(104\) −1.73565e81 −0.354496
\(105\) 5.39898e81 0.748420
\(106\) 7.98162e81 0.753708
\(107\) 1.21748e81 0.0785991 0.0392995 0.999227i \(-0.487487\pi\)
0.0392995 + 0.999227i \(0.487487\pi\)
\(108\) −6.81232e81 −0.301740
\(109\) 3.40108e82 1.03716 0.518578 0.855030i \(-0.326462\pi\)
0.518578 + 0.855030i \(0.326462\pi\)
\(110\) 5.16505e82 1.08810
\(111\) 6.00338e81 0.0876627
\(112\) −3.34556e82 −0.339734
\(113\) 9.02785e82 0.639599 0.319799 0.947485i \(-0.396384\pi\)
0.319799 + 0.947485i \(0.396384\pi\)
\(114\) −6.32214e82 −0.313485
\(115\) 6.48917e83 2.25905
\(116\) 1.52251e83 0.373261
\(117\) −5.20534e83 −0.901409
\(118\) 8.19368e82 0.100521
\(119\) −2.64224e84 −2.30314
\(120\) 3.13503e83 0.194716
\(121\) −4.76781e83 −0.211598
\(122\) −8.11063e83 −0.257918
\(123\) 1.37165e84 0.313390
\(124\) −3.84631e84 −0.633091
\(125\) −1.46276e85 −1.73907
\(126\) −1.00336e85 −0.863871
\(127\) 1.26073e85 0.788084 0.394042 0.919092i \(-0.371076\pi\)
0.394042 + 0.919092i \(0.371076\pi\)
\(128\) −1.94267e84 −0.0883883
\(129\) −1.09120e85 −0.362260
\(130\) 5.06010e85 1.22872
\(131\) 6.26877e85 1.11608 0.558040 0.829814i \(-0.311554\pi\)
0.558040 + 0.829814i \(0.311554\pi\)
\(132\) 1.07826e85 0.141084
\(133\) −1.96692e86 −1.89581
\(134\) −1.80346e85 −0.128340
\(135\) 1.98606e86 1.04586
\(136\) −1.53428e86 −0.599208
\(137\) 5.38736e86 1.56384 0.781921 0.623377i \(-0.214240\pi\)
0.781921 + 0.623377i \(0.214240\pi\)
\(138\) 1.35468e86 0.292911
\(139\) 1.12002e86 0.180769 0.0903847 0.995907i \(-0.471190\pi\)
0.0903847 + 0.995907i \(0.471190\pi\)
\(140\) 9.75362e86 1.17755
\(141\) 1.86577e85 0.0168844
\(142\) −1.56874e86 −0.106629
\(143\) 1.74036e87 0.890287
\(144\) −5.82621e86 −0.224753
\(145\) −4.43872e87 −1.29376
\(146\) −8.69723e86 −0.191907
\(147\) 1.60775e87 0.269071
\(148\) 1.08455e87 0.137927
\(149\) −1.24870e88 −1.20897 −0.604485 0.796617i \(-0.706621\pi\)
−0.604485 + 0.796617i \(0.706621\pi\)
\(150\) −6.09676e87 −0.450197
\(151\) −1.51483e88 −0.854669 −0.427335 0.904093i \(-0.640547\pi\)
−0.427335 + 0.904093i \(0.640547\pi\)
\(152\) −1.14214e88 −0.493233
\(153\) −4.60141e88 −1.52366
\(154\) 3.35465e88 0.853213
\(155\) 1.12135e89 2.19436
\(156\) 1.05635e88 0.159317
\(157\) −1.57799e89 −1.83725 −0.918624 0.395133i \(-0.870699\pi\)
−0.918624 + 0.395133i \(0.870699\pi\)
\(158\) 7.17803e88 0.646239
\(159\) −4.85777e88 −0.338730
\(160\) 5.66364e88 0.306363
\(161\) 4.21465e89 1.77139
\(162\) −1.52900e89 −0.500090
\(163\) 2.41838e89 0.616490 0.308245 0.951307i \(-0.400258\pi\)
0.308245 + 0.951307i \(0.400258\pi\)
\(164\) 2.47797e89 0.493083
\(165\) −3.14355e89 −0.489013
\(166\) 5.07104e89 0.617617
\(167\) −9.19960e89 −0.878520 −0.439260 0.898360i \(-0.644759\pi\)
−0.439260 + 0.898360i \(0.644759\pi\)
\(168\) 2.03617e89 0.152682
\(169\) 9.05458e87 0.00533896
\(170\) 4.47302e90 2.07692
\(171\) −3.42535e90 −1.25419
\(172\) −1.97132e90 −0.569974
\(173\) 5.64460e90 1.29052 0.645262 0.763961i \(-0.276748\pi\)
0.645262 + 0.763961i \(0.276748\pi\)
\(174\) −9.26632e89 −0.167750
\(175\) −1.89680e91 −2.72259
\(176\) 1.94795e90 0.221980
\(177\) −4.98684e89 −0.0451760
\(178\) −2.73030e89 −0.0196879
\(179\) −1.99667e91 −1.14752 −0.573758 0.819025i \(-0.694515\pi\)
−0.573758 + 0.819025i \(0.694515\pi\)
\(180\) 1.69857e91 0.779017
\(181\) −4.75585e91 −1.74279 −0.871396 0.490581i \(-0.836785\pi\)
−0.871396 + 0.490581i \(0.836785\pi\)
\(182\) 3.28648e91 0.963474
\(183\) 4.93629e90 0.115913
\(184\) 2.44733e91 0.460861
\(185\) −3.16189e91 −0.478070
\(186\) 2.34094e91 0.284522
\(187\) 1.53844e92 1.50486
\(188\) 3.37064e90 0.0265656
\(189\) 1.28993e92 0.820090
\(190\) 3.32977e92 1.70960
\(191\) −1.62573e92 −0.674833 −0.337416 0.941356i \(-0.609553\pi\)
−0.337416 + 0.941356i \(0.609553\pi\)
\(192\) 1.18235e91 0.0397233
\(193\) −4.60282e92 −1.25301 −0.626503 0.779419i \(-0.715514\pi\)
−0.626503 + 0.779419i \(0.715514\pi\)
\(194\) 1.58317e91 0.0349589
\(195\) −3.07967e92 −0.552208
\(196\) 2.90451e92 0.423352
\(197\) −6.75604e92 −0.801328 −0.400664 0.916225i \(-0.631220\pi\)
−0.400664 + 0.916225i \(0.631220\pi\)
\(198\) 5.84204e92 0.564448
\(199\) 1.53059e93 1.20590 0.602948 0.797781i \(-0.293993\pi\)
0.602948 + 0.797781i \(0.293993\pi\)
\(200\) −1.10142e93 −0.708334
\(201\) 1.09762e92 0.0576782
\(202\) −2.07637e93 −0.892429
\(203\) −2.88291e93 −1.01447
\(204\) 9.33790e92 0.269295
\(205\) −7.22426e93 −1.70908
\(206\) 2.37759e92 0.0461864
\(207\) 7.33972e93 1.17187
\(208\) 1.90836e93 0.250666
\(209\) 1.14524e94 1.23871
\(210\) −5.93625e93 −0.529213
\(211\) −1.42084e94 −1.04498 −0.522489 0.852646i \(-0.674996\pi\)
−0.522489 + 0.852646i \(0.674996\pi\)
\(212\) −8.77588e93 −0.532952
\(213\) 9.54768e92 0.0479208
\(214\) −1.33863e93 −0.0555779
\(215\) 5.74718e94 1.97559
\(216\) 7.49022e93 0.213362
\(217\) 7.28306e94 1.72066
\(218\) −3.73953e94 −0.733380
\(219\) 5.29331e93 0.0862463
\(220\) −5.67903e94 −0.769406
\(221\) 1.50718e95 1.69933
\(222\) −6.60078e93 −0.0619869
\(223\) −9.77584e94 −0.765257 −0.382628 0.923902i \(-0.624981\pi\)
−0.382628 + 0.923902i \(0.624981\pi\)
\(224\) 3.67848e94 0.240228
\(225\) −3.30324e95 −1.80114
\(226\) −9.92623e94 −0.452265
\(227\) 9.12328e94 0.347619 0.173810 0.984779i \(-0.444392\pi\)
0.173810 + 0.984779i \(0.444392\pi\)
\(228\) 6.95126e94 0.221668
\(229\) −3.30482e94 −0.0882694 −0.0441347 0.999026i \(-0.514053\pi\)
−0.0441347 + 0.999026i \(0.514053\pi\)
\(230\) −7.13492e95 −1.59739
\(231\) −2.04170e95 −0.383449
\(232\) −1.67402e95 −0.263935
\(233\) 3.07868e95 0.407803 0.203901 0.978991i \(-0.434638\pi\)
0.203901 + 0.978991i \(0.434638\pi\)
\(234\) 5.72333e95 0.637392
\(235\) −9.82675e94 −0.0920792
\(236\) −9.00904e94 −0.0710792
\(237\) −4.36869e95 −0.290431
\(238\) 2.90518e96 1.62857
\(239\) 1.61224e96 0.762631 0.381316 0.924445i \(-0.375471\pi\)
0.381316 + 0.924445i \(0.375471\pi\)
\(240\) −3.44701e95 −0.137685
\(241\) −1.91287e96 −0.645648 −0.322824 0.946459i \(-0.604632\pi\)
−0.322824 + 0.946459i \(0.604632\pi\)
\(242\) 5.24227e95 0.149622
\(243\) 3.42929e96 0.828229
\(244\) 8.91773e95 0.182375
\(245\) −8.46778e96 −1.46738
\(246\) −1.50814e96 −0.221600
\(247\) 1.12197e97 1.39879
\(248\) 4.22906e96 0.447663
\(249\) −3.08634e96 −0.277568
\(250\) 1.60832e97 1.22971
\(251\) −1.79879e97 −1.17003 −0.585013 0.811024i \(-0.698910\pi\)
−0.585013 + 0.811024i \(0.698910\pi\)
\(252\) 1.10320e97 0.610849
\(253\) −2.45397e97 −1.15741
\(254\) −1.38619e97 −0.557259
\(255\) −2.72237e97 −0.933403
\(256\) 2.13599e96 0.0625000
\(257\) 3.84364e97 0.960397 0.480199 0.877160i \(-0.340565\pi\)
0.480199 + 0.877160i \(0.340565\pi\)
\(258\) 1.19979e97 0.256157
\(259\) −2.05361e97 −0.374868
\(260\) −5.56363e97 −0.868836
\(261\) −5.02052e97 −0.671132
\(262\) −6.89259e97 −0.789187
\(263\) −8.99619e97 −0.882776 −0.441388 0.897316i \(-0.645514\pi\)
−0.441388 + 0.897316i \(0.645514\pi\)
\(264\) −1.18556e97 −0.0997617
\(265\) 2.55851e98 1.84727
\(266\) 2.16265e98 1.34054
\(267\) 1.66171e96 0.00884811
\(268\) 1.98292e97 0.0907500
\(269\) 3.79999e98 1.49560 0.747800 0.663925i \(-0.231110\pi\)
0.747800 + 0.663925i \(0.231110\pi\)
\(270\) −2.18369e98 −0.739536
\(271\) 1.89332e98 0.552035 0.276018 0.961153i \(-0.410985\pi\)
0.276018 + 0.961153i \(0.410985\pi\)
\(272\) 1.68695e98 0.423704
\(273\) −2.00022e98 −0.433002
\(274\) −5.92347e98 −1.10580
\(275\) 1.10441e99 1.77892
\(276\) −1.48949e98 −0.207119
\(277\) −7.52464e98 −0.903765 −0.451882 0.892078i \(-0.649247\pi\)
−0.451882 + 0.892078i \(0.649247\pi\)
\(278\) −1.23147e98 −0.127823
\(279\) 1.26833e99 1.13831
\(280\) −1.07242e99 −0.832655
\(281\) −1.35539e99 −0.910874 −0.455437 0.890268i \(-0.650517\pi\)
−0.455437 + 0.890268i \(0.650517\pi\)
\(282\) −2.05144e97 −0.0119391
\(283\) −8.28158e98 −0.417602 −0.208801 0.977958i \(-0.566956\pi\)
−0.208801 + 0.977958i \(0.566956\pi\)
\(284\) 1.72485e98 0.0753978
\(285\) −2.02657e99 −0.768323
\(286\) −1.91355e99 −0.629528
\(287\) −4.69208e99 −1.34014
\(288\) 6.40599e98 0.158924
\(289\) 8.68483e99 1.87240
\(290\) 4.88043e99 0.914827
\(291\) −9.63550e97 −0.0157112
\(292\) 9.56270e98 0.135699
\(293\) −1.39049e99 −0.171802 −0.0859010 0.996304i \(-0.527377\pi\)
−0.0859010 + 0.996304i \(0.527377\pi\)
\(294\) −1.76774e99 −0.190262
\(295\) 2.62649e99 0.246368
\(296\) −1.19247e99 −0.0975292
\(297\) −7.51057e99 −0.535842
\(298\) 1.37296e100 0.854870
\(299\) −2.40411e100 −1.30699
\(300\) 6.70346e99 0.318338
\(301\) 3.73273e100 1.54912
\(302\) 1.66558e100 0.604343
\(303\) 1.26372e100 0.401073
\(304\) 1.25579e100 0.348769
\(305\) −2.59987e100 −0.632132
\(306\) 5.05930e100 1.07739
\(307\) −7.30968e100 −1.36394 −0.681968 0.731382i \(-0.738876\pi\)
−0.681968 + 0.731382i \(0.738876\pi\)
\(308\) −3.68847e100 −0.603313
\(309\) −1.44705e99 −0.0207570
\(310\) −1.23294e101 −1.55165
\(311\) 1.34217e101 1.48256 0.741280 0.671196i \(-0.234219\pi\)
0.741280 + 0.671196i \(0.234219\pi\)
\(312\) −1.16147e100 −0.112654
\(313\) −2.66447e100 −0.227020 −0.113510 0.993537i \(-0.536209\pi\)
−0.113510 + 0.993537i \(0.536209\pi\)
\(314\) 1.73502e101 1.29913
\(315\) −3.21627e101 −2.11727
\(316\) −7.89233e100 −0.456960
\(317\) −3.05123e101 −1.55444 −0.777221 0.629228i \(-0.783371\pi\)
−0.777221 + 0.629228i \(0.783371\pi\)
\(318\) 5.34117e100 0.239518
\(319\) 1.67857e101 0.662851
\(320\) −6.22724e100 −0.216632
\(321\) 8.14716e99 0.0249777
\(322\) −4.63406e101 −1.25256
\(323\) 9.91795e101 2.36439
\(324\) 1.68115e101 0.353617
\(325\) 1.08197e102 2.00881
\(326\) −2.65903e101 −0.435924
\(327\) 2.27595e101 0.329594
\(328\) −2.72456e101 −0.348662
\(329\) −6.38237e100 −0.0722019
\(330\) 3.45637e101 0.345785
\(331\) 2.91942e101 0.258383 0.129191 0.991620i \(-0.458762\pi\)
0.129191 + 0.991620i \(0.458762\pi\)
\(332\) −5.57567e101 −0.436721
\(333\) −3.57632e101 −0.247996
\(334\) 1.01151e102 0.621208
\(335\) −5.78100e101 −0.314549
\(336\) −2.23880e101 −0.107963
\(337\) −9.78237e101 −0.418247 −0.209124 0.977889i \(-0.567061\pi\)
−0.209124 + 0.977889i \(0.567061\pi\)
\(338\) −9.95562e99 −0.00377522
\(339\) 6.04130e101 0.203256
\(340\) −4.91813e102 −1.46860
\(341\) −4.24055e102 −1.12427
\(342\) 3.76621e102 0.886845
\(343\) 9.95731e101 0.208320
\(344\) 2.16749e102 0.403033
\(345\) 4.34245e102 0.717896
\(346\) −6.20631e102 −0.912539
\(347\) −1.44201e103 −1.88636 −0.943182 0.332277i \(-0.892183\pi\)
−0.943182 + 0.332277i \(0.892183\pi\)
\(348\) 1.01884e102 0.118617
\(349\) 4.08835e102 0.423758 0.211879 0.977296i \(-0.432042\pi\)
0.211879 + 0.977296i \(0.432042\pi\)
\(350\) 2.08556e103 1.92516
\(351\) −7.35796e102 −0.605089
\(352\) −2.14179e102 −0.156964
\(353\) 5.50633e102 0.359738 0.179869 0.983691i \(-0.442433\pi\)
0.179869 + 0.983691i \(0.442433\pi\)
\(354\) 5.48308e101 0.0319443
\(355\) −5.02862e102 −0.261337
\(356\) 3.00200e101 0.0139215
\(357\) −1.76815e103 −0.731908
\(358\) 2.19536e103 0.811417
\(359\) 3.33880e103 1.10221 0.551106 0.834435i \(-0.314206\pi\)
0.551106 + 0.834435i \(0.314206\pi\)
\(360\) −1.86760e103 −0.550848
\(361\) 3.58954e103 0.946232
\(362\) 5.22911e103 1.23234
\(363\) −3.19055e102 −0.0672430
\(364\) −3.61352e103 −0.681279
\(365\) −2.78790e103 −0.470345
\(366\) −5.42751e102 −0.0819627
\(367\) −9.25372e102 −0.125124 −0.0625620 0.998041i \(-0.519927\pi\)
−0.0625620 + 0.998041i \(0.519927\pi\)
\(368\) −2.69086e103 −0.325878
\(369\) −8.17115e103 −0.886575
\(370\) 3.47653e103 0.338047
\(371\) 1.66173e104 1.44849
\(372\) −2.57389e103 −0.201188
\(373\) −1.19024e104 −0.834504 −0.417252 0.908791i \(-0.637007\pi\)
−0.417252 + 0.908791i \(0.637007\pi\)
\(374\) −1.69154e104 −1.06410
\(375\) −9.78853e103 −0.552651
\(376\) −3.70606e102 −0.0187847
\(377\) 1.64446e104 0.748512
\(378\) −1.41829e104 −0.579891
\(379\) −3.67578e104 −1.35040 −0.675199 0.737636i \(-0.735942\pi\)
−0.675199 + 0.737636i \(0.735942\pi\)
\(380\) −3.66113e104 −1.20887
\(381\) 8.43663e103 0.250442
\(382\) 1.78751e104 0.477179
\(383\) 4.72773e104 1.13528 0.567639 0.823278i \(-0.307857\pi\)
0.567639 + 0.823278i \(0.307857\pi\)
\(384\) −1.30000e103 −0.0280886
\(385\) 1.07533e105 2.09114
\(386\) 5.06086e104 0.886009
\(387\) 6.50047e104 1.02483
\(388\) −1.74072e103 −0.0247197
\(389\) −2.84099e104 −0.363505 −0.181752 0.983344i \(-0.558177\pi\)
−0.181752 + 0.983344i \(0.558177\pi\)
\(390\) 3.38614e104 0.390470
\(391\) −2.12518e105 −2.20921
\(392\) −3.19354e104 −0.299355
\(393\) 4.19497e104 0.354675
\(394\) 7.42835e104 0.566624
\(395\) 2.30092e105 1.58387
\(396\) −6.42339e104 −0.399125
\(397\) −7.99273e104 −0.448414 −0.224207 0.974542i \(-0.571979\pi\)
−0.224207 + 0.974542i \(0.571979\pi\)
\(398\) −1.68290e105 −0.852697
\(399\) −1.31623e105 −0.602464
\(400\) 1.21102e105 0.500868
\(401\) −7.77590e103 −0.0290672 −0.0145336 0.999894i \(-0.504626\pi\)
−0.0145336 + 0.999894i \(0.504626\pi\)
\(402\) −1.20685e104 −0.0407847
\(403\) −4.15439e105 −1.26956
\(404\) 2.28299e105 0.631043
\(405\) −4.90121e105 −1.22567
\(406\) 3.16979e105 0.717342
\(407\) 1.19571e105 0.244937
\(408\) −1.02671e105 −0.190420
\(409\) −9.82783e105 −1.65068 −0.825341 0.564634i \(-0.809017\pi\)
−0.825341 + 0.564634i \(0.809017\pi\)
\(410\) 7.94315e105 1.20850
\(411\) 3.60514e105 0.496968
\(412\) −2.61419e104 −0.0326587
\(413\) 1.70588e105 0.193184
\(414\) −8.07011e105 −0.828639
\(415\) 1.62553e106 1.51372
\(416\) −2.09827e105 −0.177248
\(417\) 7.49498e104 0.0574460
\(418\) −1.25920e106 −0.875903
\(419\) 4.05394e105 0.255982 0.127991 0.991775i \(-0.459147\pi\)
0.127991 + 0.991775i \(0.459147\pi\)
\(420\) 6.52697e105 0.374210
\(421\) −2.45225e106 −1.27685 −0.638424 0.769685i \(-0.720413\pi\)
−0.638424 + 0.769685i \(0.720413\pi\)
\(422\) 1.56224e106 0.738911
\(423\) −1.11148e105 −0.0477656
\(424\) 9.64918e105 0.376854
\(425\) 9.56439e106 3.39551
\(426\) −1.04978e105 −0.0338851
\(427\) −1.68859e106 −0.495673
\(428\) 1.47184e105 0.0392995
\(429\) 1.16462e106 0.282921
\(430\) −6.31909e106 −1.39695
\(431\) −8.29102e106 −1.66832 −0.834159 0.551525i \(-0.814046\pi\)
−0.834159 + 0.551525i \(0.814046\pi\)
\(432\) −8.23559e105 −0.150870
\(433\) 1.10470e107 1.84282 0.921411 0.388590i \(-0.127038\pi\)
0.921411 + 0.388590i \(0.127038\pi\)
\(434\) −8.00781e106 −1.21669
\(435\) −2.97033e106 −0.411140
\(436\) 4.11166e106 0.518578
\(437\) −1.58201e107 −1.81850
\(438\) −5.82005e105 −0.0609853
\(439\) 1.36197e107 1.30123 0.650615 0.759408i \(-0.274511\pi\)
0.650615 + 0.759408i \(0.274511\pi\)
\(440\) 6.24416e106 0.544052
\(441\) −9.57767e106 −0.761197
\(442\) −1.65716e107 −1.20161
\(443\) −7.69852e106 −0.509397 −0.254699 0.967020i \(-0.581976\pi\)
−0.254699 + 0.967020i \(0.581976\pi\)
\(444\) 7.25764e105 0.0438314
\(445\) −8.75200e105 −0.0482533
\(446\) 1.07487e107 0.541118
\(447\) −8.35613e106 −0.384194
\(448\) −4.04453e106 −0.169867
\(449\) 2.08692e107 0.800808 0.400404 0.916339i \(-0.368870\pi\)
0.400404 + 0.916339i \(0.368870\pi\)
\(450\) 3.63195e107 1.27360
\(451\) 2.73196e107 0.875637
\(452\) 1.09140e107 0.319799
\(453\) −1.01370e107 −0.271602
\(454\) −1.00312e107 −0.245804
\(455\) 1.05348e108 2.36138
\(456\) −7.64299e106 −0.156743
\(457\) −9.15343e107 −1.71782 −0.858911 0.512126i \(-0.828858\pi\)
−0.858911 + 0.512126i \(0.828858\pi\)
\(458\) 3.63368e106 0.0624159
\(459\) −6.50428e107 −1.02279
\(460\) 7.84493e107 1.12953
\(461\) 3.07894e107 0.405988 0.202994 0.979180i \(-0.434933\pi\)
0.202994 + 0.979180i \(0.434933\pi\)
\(462\) 2.24488e107 0.271139
\(463\) −1.48840e108 −1.64699 −0.823493 0.567326i \(-0.807978\pi\)
−0.823493 + 0.567326i \(0.807978\pi\)
\(464\) 1.84061e107 0.186630
\(465\) 7.50391e107 0.697337
\(466\) −3.38505e107 −0.288360
\(467\) −1.25436e108 −0.979690 −0.489845 0.871810i \(-0.662947\pi\)
−0.489845 + 0.871810i \(0.662947\pi\)
\(468\) −6.29287e107 −0.450704
\(469\) −3.75470e107 −0.246647
\(470\) 1.08046e107 0.0651098
\(471\) −1.05597e108 −0.583852
\(472\) 9.90555e106 0.0502606
\(473\) −2.17338e108 −1.01218
\(474\) 4.80343e107 0.205366
\(475\) 7.11986e108 2.79499
\(476\) −3.19428e108 −1.15157
\(477\) 2.89386e108 0.958261
\(478\) −1.77268e108 −0.539262
\(479\) −4.77866e108 −1.33573 −0.667864 0.744283i \(-0.732791\pi\)
−0.667864 + 0.744283i \(0.732791\pi\)
\(480\) 3.79002e107 0.0973580
\(481\) 1.17142e108 0.276590
\(482\) 2.10323e108 0.456542
\(483\) 2.82038e108 0.562923
\(484\) −5.76393e107 −0.105799
\(485\) 5.07487e107 0.0856810
\(486\) −3.77055e108 −0.585647
\(487\) −1.10166e108 −0.157443 −0.0787214 0.996897i \(-0.525084\pi\)
−0.0787214 + 0.996897i \(0.525084\pi\)
\(488\) −9.80515e107 −0.128959
\(489\) 1.61834e108 0.195912
\(490\) 9.31042e108 1.03760
\(491\) 3.80871e108 0.390821 0.195410 0.980722i \(-0.437396\pi\)
0.195410 + 0.980722i \(0.437396\pi\)
\(492\) 1.65822e108 0.156695
\(493\) 1.45367e109 1.26522
\(494\) −1.23362e109 −0.989096
\(495\) 1.87267e109 1.38341
\(496\) −4.64991e108 −0.316546
\(497\) −3.26604e108 −0.204921
\(498\) 3.39346e108 0.196270
\(499\) −1.33352e109 −0.711093 −0.355547 0.934659i \(-0.615705\pi\)
−0.355547 + 0.934659i \(0.615705\pi\)
\(500\) −1.76836e109 −0.869533
\(501\) −6.15623e108 −0.279182
\(502\) 1.97779e109 0.827333
\(503\) −3.37845e109 −1.30381 −0.651905 0.758300i \(-0.726030\pi\)
−0.651905 + 0.758300i \(0.726030\pi\)
\(504\) −1.21299e109 −0.431936
\(505\) −6.65582e109 −2.18726
\(506\) 2.69817e109 0.818415
\(507\) 6.05919e106 0.00169665
\(508\) 1.52413e109 0.394042
\(509\) 3.08916e109 0.737513 0.368756 0.929526i \(-0.379784\pi\)
0.368756 + 0.929526i \(0.379784\pi\)
\(510\) 2.99327e109 0.660016
\(511\) −1.81072e109 −0.368811
\(512\) −2.34854e108 −0.0441942
\(513\) −4.84187e109 −0.841899
\(514\) −4.22612e109 −0.679103
\(515\) 7.62138e108 0.113199
\(516\) −1.31918e109 −0.181130
\(517\) 3.71613e108 0.0471763
\(518\) 2.25797e109 0.265072
\(519\) 3.77728e109 0.410111
\(520\) 6.11728e109 0.614360
\(521\) 2.00020e110 1.85842 0.929211 0.369548i \(-0.120488\pi\)
0.929211 + 0.369548i \(0.120488\pi\)
\(522\) 5.52012e109 0.474562
\(523\) 1.47530e110 1.17371 0.586856 0.809692i \(-0.300366\pi\)
0.586856 + 0.809692i \(0.300366\pi\)
\(524\) 7.57848e109 0.558040
\(525\) −1.26931e110 −0.865200
\(526\) 9.89141e109 0.624217
\(527\) −3.67239e110 −2.14595
\(528\) 1.30354e109 0.0705422
\(529\) 1.39483e110 0.699143
\(530\) −2.81312e110 −1.30622
\(531\) 2.97075e109 0.127802
\(532\) −2.37786e110 −0.947907
\(533\) 2.67644e110 0.988795
\(534\) −1.82707e108 −0.00625656
\(535\) −4.29099e109 −0.136216
\(536\) −2.18025e109 −0.0641700
\(537\) −1.33614e110 −0.364665
\(538\) −4.17813e110 −1.05755
\(539\) 3.20221e110 0.751805
\(540\) 2.40100e110 0.522931
\(541\) −2.90670e108 −0.00587368 −0.00293684 0.999996i \(-0.500935\pi\)
−0.00293684 + 0.999996i \(0.500935\pi\)
\(542\) −2.08172e110 −0.390348
\(543\) −3.18254e110 −0.553835
\(544\) −1.85483e110 −0.299604
\(545\) −1.19871e111 −1.79745
\(546\) 2.19926e110 0.306179
\(547\) 1.02127e111 1.32024 0.660120 0.751160i \(-0.270505\pi\)
0.660120 + 0.751160i \(0.270505\pi\)
\(548\) 6.51292e110 0.781921
\(549\) −2.94064e110 −0.327915
\(550\) −1.21431e111 −1.25789
\(551\) 1.08213e111 1.04145
\(552\) 1.63771e110 0.146455
\(553\) 1.49443e111 1.24196
\(554\) 8.27343e110 0.639058
\(555\) −2.11589e110 −0.151924
\(556\) 1.35402e110 0.0903847
\(557\) −3.29663e110 −0.204614 −0.102307 0.994753i \(-0.532622\pi\)
−0.102307 + 0.994753i \(0.532622\pi\)
\(558\) −1.39454e111 −0.804909
\(559\) −2.12922e111 −1.14299
\(560\) 1.17914e111 0.588776
\(561\) 1.02950e111 0.478224
\(562\) 1.49027e111 0.644085
\(563\) 3.40403e111 1.36900 0.684500 0.729013i \(-0.260021\pi\)
0.684500 + 0.729013i \(0.260021\pi\)
\(564\) 2.25558e109 0.00844219
\(565\) −3.18186e111 −1.10846
\(566\) 9.10570e110 0.295289
\(567\) −3.18329e111 −0.961085
\(568\) −1.89649e110 −0.0533143
\(569\) 4.49580e111 1.17696 0.588478 0.808513i \(-0.299727\pi\)
0.588478 + 0.808513i \(0.299727\pi\)
\(570\) 2.22823e111 0.543287
\(571\) −8.36961e110 −0.190083 −0.0950414 0.995473i \(-0.530298\pi\)
−0.0950414 + 0.995473i \(0.530298\pi\)
\(572\) 2.10397e111 0.445144
\(573\) −1.08791e111 −0.214453
\(574\) 5.15900e111 0.947619
\(575\) −1.52562e112 −2.61155
\(576\) −7.04346e110 −0.112376
\(577\) −4.61322e111 −0.686094 −0.343047 0.939318i \(-0.611459\pi\)
−0.343047 + 0.939318i \(0.611459\pi\)
\(578\) −9.54907e111 −1.32399
\(579\) −3.08014e111 −0.398188
\(580\) −5.36609e111 −0.646881
\(581\) 1.05576e112 1.18695
\(582\) 1.05943e110 0.0111095
\(583\) −9.67539e111 −0.946438
\(584\) −1.05143e111 −0.0959534
\(585\) 1.83462e112 1.56219
\(586\) 1.52886e111 0.121482
\(587\) 2.28088e112 1.69145 0.845725 0.533620i \(-0.179169\pi\)
0.845725 + 0.533620i \(0.179169\pi\)
\(588\) 1.94365e111 0.134535
\(589\) −2.73378e112 −1.76642
\(590\) −2.88786e111 −0.174208
\(591\) −4.52104e111 −0.254651
\(592\) 1.31114e111 0.0689636
\(593\) −2.97988e111 −0.146381 −0.0731903 0.997318i \(-0.523318\pi\)
−0.0731903 + 0.997318i \(0.523318\pi\)
\(594\) 8.25796e111 0.378897
\(595\) 9.31258e112 3.99147
\(596\) −1.50959e112 −0.604485
\(597\) 1.02425e112 0.383217
\(598\) 2.64335e112 0.924179
\(599\) −3.08519e112 −1.00808 −0.504041 0.863680i \(-0.668154\pi\)
−0.504041 + 0.863680i \(0.668154\pi\)
\(600\) −7.37053e111 −0.225099
\(601\) 2.91012e111 0.0830797 0.0415399 0.999137i \(-0.486774\pi\)
0.0415399 + 0.999137i \(0.486774\pi\)
\(602\) −4.10418e112 −1.09539
\(603\) −6.53873e111 −0.163171
\(604\) −1.83132e112 −0.427335
\(605\) 1.68041e112 0.366711
\(606\) −1.38947e112 −0.283602
\(607\) −5.34206e112 −1.01992 −0.509961 0.860198i \(-0.670340\pi\)
−0.509961 + 0.860198i \(0.670340\pi\)
\(608\) −1.38076e112 −0.246617
\(609\) −1.92920e112 −0.322386
\(610\) 2.85859e112 0.446985
\(611\) 3.64062e111 0.0532729
\(612\) −5.56276e112 −0.761830
\(613\) 4.46258e112 0.572054 0.286027 0.958222i \(-0.407665\pi\)
0.286027 + 0.958222i \(0.407665\pi\)
\(614\) 8.03708e112 0.964449
\(615\) −4.83436e112 −0.543121
\(616\) 4.05552e112 0.426606
\(617\) −1.28006e113 −1.26090 −0.630450 0.776230i \(-0.717130\pi\)
−0.630450 + 0.776230i \(0.717130\pi\)
\(618\) 1.59105e111 0.0146774
\(619\) −1.80545e113 −1.55997 −0.779983 0.625801i \(-0.784772\pi\)
−0.779983 + 0.625801i \(0.784772\pi\)
\(620\) 1.35563e113 1.09718
\(621\) 1.03750e113 0.786643
\(622\) −1.47573e113 −1.04833
\(623\) −5.68434e111 −0.0378368
\(624\) 1.27705e112 0.0796584
\(625\) 1.72840e113 1.01042
\(626\) 2.92961e112 0.160528
\(627\) 7.66376e112 0.393646
\(628\) −1.90767e113 −0.918624
\(629\) 1.03551e113 0.467522
\(630\) 3.53633e113 1.49713
\(631\) −6.21561e112 −0.246771 −0.123386 0.992359i \(-0.539375\pi\)
−0.123386 + 0.992359i \(0.539375\pi\)
\(632\) 8.67770e112 0.323120
\(633\) −9.50807e112 −0.332080
\(634\) 3.35486e113 1.09916
\(635\) −4.44345e113 −1.36579
\(636\) −5.87268e112 −0.169365
\(637\) 3.13715e113 0.848961
\(638\) −1.84560e113 −0.468707
\(639\) −5.68773e112 −0.135567
\(640\) 6.84693e112 0.153182
\(641\) −4.58440e113 −0.962791 −0.481395 0.876504i \(-0.659870\pi\)
−0.481395 + 0.876504i \(0.659870\pi\)
\(642\) −8.95790e111 −0.0176619
\(643\) 8.00576e113 1.48203 0.741017 0.671487i \(-0.234344\pi\)
0.741017 + 0.671487i \(0.234344\pi\)
\(644\) 5.09520e113 0.885694
\(645\) 3.84592e113 0.627816
\(646\) −1.09049e114 −1.67188
\(647\) 1.59847e113 0.230187 0.115094 0.993355i \(-0.463283\pi\)
0.115094 + 0.993355i \(0.463283\pi\)
\(648\) −1.84844e113 −0.250045
\(649\) −9.93246e112 −0.126225
\(650\) −1.18964e114 −1.42044
\(651\) 4.87371e113 0.546802
\(652\) 2.92364e113 0.308245
\(653\) 6.78733e112 0.0672535 0.0336268 0.999434i \(-0.489294\pi\)
0.0336268 + 0.999434i \(0.489294\pi\)
\(654\) −2.50244e113 −0.233058
\(655\) −2.20943e114 −1.93422
\(656\) 2.99568e113 0.246542
\(657\) −3.15332e113 −0.243989
\(658\) 7.01750e112 0.0510544
\(659\) −1.15470e114 −0.789971 −0.394986 0.918687i \(-0.629250\pi\)
−0.394986 + 0.918687i \(0.629250\pi\)
\(660\) −3.80032e113 −0.244507
\(661\) 9.38352e112 0.0567815 0.0283907 0.999597i \(-0.490962\pi\)
0.0283907 + 0.999597i \(0.490962\pi\)
\(662\) −3.20994e113 −0.182704
\(663\) 1.00858e114 0.540025
\(664\) 6.13051e113 0.308809
\(665\) 6.93241e114 3.28555
\(666\) 3.93221e113 0.175360
\(667\) −2.31875e114 −0.973100
\(668\) −1.11216e114 −0.439260
\(669\) −6.54184e113 −0.243188
\(670\) 6.35628e113 0.222420
\(671\) 9.83178e113 0.323870
\(672\) 2.46158e113 0.0763412
\(673\) 2.92718e114 0.854749 0.427375 0.904075i \(-0.359439\pi\)
0.427375 + 0.904075i \(0.359439\pi\)
\(674\) 1.07558e114 0.295745
\(675\) −4.66927e114 −1.20905
\(676\) 1.09463e112 0.00266948
\(677\) 6.11293e114 1.40413 0.702066 0.712112i \(-0.252261\pi\)
0.702066 + 0.712112i \(0.252261\pi\)
\(678\) −6.64248e113 −0.143723
\(679\) 3.29608e113 0.0671849
\(680\) 5.40755e114 1.03846
\(681\) 6.10516e113 0.110469
\(682\) 4.66254e114 0.794978
\(683\) −2.78748e114 −0.447893 −0.223946 0.974601i \(-0.571894\pi\)
−0.223946 + 0.974601i \(0.571894\pi\)
\(684\) −4.14100e114 −0.627094
\(685\) −1.89877e115 −2.71022
\(686\) −1.09482e114 −0.147304
\(687\) −2.21153e113 −0.0280508
\(688\) −2.38318e114 −0.284987
\(689\) −9.47879e114 −1.06875
\(690\) −4.77458e114 −0.507629
\(691\) −1.70001e115 −1.70448 −0.852238 0.523154i \(-0.824755\pi\)
−0.852238 + 0.523154i \(0.824755\pi\)
\(692\) 6.82391e114 0.645262
\(693\) 1.21628e115 1.08477
\(694\) 1.58551e115 1.33386
\(695\) −3.94749e114 −0.313283
\(696\) −1.12023e114 −0.0838750
\(697\) 2.36592e115 1.67137
\(698\) −4.49519e114 −0.299642
\(699\) 2.06021e114 0.129594
\(700\) −2.29310e115 −1.36129
\(701\) 7.00261e114 0.392356 0.196178 0.980568i \(-0.437147\pi\)
0.196178 + 0.980568i \(0.437147\pi\)
\(702\) 8.09016e114 0.427862
\(703\) 7.70846e114 0.384837
\(704\) 2.35492e114 0.110990
\(705\) −6.57591e113 −0.0292615
\(706\) −6.05427e114 −0.254373
\(707\) −4.32289e115 −1.71509
\(708\) −6.02871e113 −0.0225880
\(709\) 3.61313e115 1.27853 0.639265 0.768987i \(-0.279239\pi\)
0.639265 + 0.768987i \(0.279239\pi\)
\(710\) 5.52903e114 0.184793
\(711\) 2.60251e115 0.821625
\(712\) −3.30073e113 −0.00984397
\(713\) 5.85783e115 1.65048
\(714\) 1.94410e115 0.517537
\(715\) −6.13390e115 −1.54291
\(716\) −2.41383e115 −0.573758
\(717\) 1.07889e115 0.242354
\(718\) −3.67105e115 −0.779381
\(719\) 6.20059e115 1.24427 0.622133 0.782912i \(-0.286266\pi\)
0.622133 + 0.782912i \(0.286266\pi\)
\(720\) 2.05345e115 0.389509
\(721\) 4.95001e114 0.0887622
\(722\) −3.94675e115 −0.669087
\(723\) −1.28006e115 −0.205178
\(724\) −5.74946e115 −0.871396
\(725\) 1.04355e116 1.49563
\(726\) 3.50804e114 0.0475480
\(727\) −9.02035e115 −1.15632 −0.578162 0.815922i \(-0.696230\pi\)
−0.578162 + 0.815922i \(0.696230\pi\)
\(728\) 3.97311e115 0.481737
\(729\) −3.87152e115 −0.444034
\(730\) 3.06533e115 0.332584
\(731\) −1.88218e116 −1.93200
\(732\) 5.96761e114 0.0579564
\(733\) 4.30476e115 0.395583 0.197792 0.980244i \(-0.436623\pi\)
0.197792 + 0.980244i \(0.436623\pi\)
\(734\) 1.01746e115 0.0884760
\(735\) −5.66651e115 −0.466314
\(736\) 2.95864e115 0.230430
\(737\) 2.18617e115 0.161158
\(738\) 8.98428e115 0.626903
\(739\) −1.99772e116 −1.31957 −0.659787 0.751453i \(-0.729354\pi\)
−0.659787 + 0.751453i \(0.729354\pi\)
\(740\) −3.82249e115 −0.239035
\(741\) 7.50803e115 0.444517
\(742\) −1.82709e116 −1.02424
\(743\) −2.69721e116 −1.43175 −0.715875 0.698229i \(-0.753972\pi\)
−0.715875 + 0.698229i \(0.753972\pi\)
\(744\) 2.83002e115 0.142261
\(745\) 4.40105e116 2.09521
\(746\) 1.30869e116 0.590084
\(747\) 1.83859e116 0.785236
\(748\) 1.85986e116 0.752430
\(749\) −2.78695e115 −0.106811
\(750\) 1.07626e116 0.390784
\(751\) 2.54242e115 0.0874642 0.0437321 0.999043i \(-0.486075\pi\)
0.0437321 + 0.999043i \(0.486075\pi\)
\(752\) 4.07486e114 0.0132828
\(753\) −1.20372e116 −0.371818
\(754\) −1.80810e116 −0.529278
\(755\) 5.33902e116 1.48119
\(756\) 1.55942e116 0.410045
\(757\) −3.57617e116 −0.891324 −0.445662 0.895201i \(-0.647032\pi\)
−0.445662 + 0.895201i \(0.647032\pi\)
\(758\) 4.04156e116 0.954875
\(759\) −1.64216e116 −0.367810
\(760\) 4.02545e116 0.854799
\(761\) −4.42911e116 −0.891738 −0.445869 0.895098i \(-0.647105\pi\)
−0.445869 + 0.895098i \(0.647105\pi\)
\(762\) −9.27618e115 −0.177089
\(763\) −7.78550e116 −1.40943
\(764\) −1.96538e116 −0.337416
\(765\) 1.62176e117 2.64058
\(766\) −5.19819e116 −0.802763
\(767\) −9.73063e115 −0.142537
\(768\) 1.42937e115 0.0198616
\(769\) −6.08745e116 −0.802452 −0.401226 0.915979i \(-0.631416\pi\)
−0.401226 + 0.915979i \(0.631416\pi\)
\(770\) −1.18234e117 −1.47866
\(771\) 2.57210e116 0.305201
\(772\) −5.56447e116 −0.626503
\(773\) 8.60858e116 0.919734 0.459867 0.887988i \(-0.347897\pi\)
0.459867 + 0.887988i \(0.347897\pi\)
\(774\) −7.14734e116 −0.724663
\(775\) −2.63632e117 −2.53676
\(776\) 1.91394e115 0.0174795
\(777\) −1.37425e116 −0.119128
\(778\) 3.12370e116 0.257037
\(779\) 1.76122e117 1.37577
\(780\) −3.72310e116 −0.276104
\(781\) 1.90165e116 0.133894
\(782\) 2.33666e117 1.56215
\(783\) −7.09670e116 −0.450511
\(784\) 3.51133e116 0.211676
\(785\) 5.56161e117 3.18405
\(786\) −4.61241e116 −0.250793
\(787\) −1.56938e117 −0.810497 −0.405249 0.914207i \(-0.632815\pi\)
−0.405249 + 0.914207i \(0.632815\pi\)
\(788\) −8.16755e116 −0.400664
\(789\) −6.02011e116 −0.280534
\(790\) −2.52989e117 −1.11997
\(791\) −2.06659e117 −0.869173
\(792\) 7.06259e116 0.282224
\(793\) 9.63200e116 0.365723
\(794\) 8.78809e116 0.317077
\(795\) 1.71212e117 0.587037
\(796\) 1.85037e117 0.602948
\(797\) 2.05637e117 0.636852 0.318426 0.947948i \(-0.396846\pi\)
0.318426 + 0.947948i \(0.396846\pi\)
\(798\) 1.44722e117 0.426006
\(799\) 3.21823e116 0.0900476
\(800\) −1.33153e117 −0.354167
\(801\) −9.89914e115 −0.0250311
\(802\) 8.54970e115 0.0205536
\(803\) 1.05429e117 0.240979
\(804\) 1.32694e116 0.0288391
\(805\) −1.48545e118 −3.06991
\(806\) 4.56780e117 0.897713
\(807\) 2.54290e117 0.475281
\(808\) −2.51017e117 −0.446215
\(809\) 8.24793e116 0.139454 0.0697268 0.997566i \(-0.477787\pi\)
0.0697268 + 0.997566i \(0.477787\pi\)
\(810\) 5.38894e117 0.866682
\(811\) 1.65717e116 0.0253525 0.0126763 0.999920i \(-0.495965\pi\)
0.0126763 + 0.999920i \(0.495965\pi\)
\(812\) −3.48522e117 −0.507237
\(813\) 1.26698e117 0.175429
\(814\) −1.31470e117 −0.173196
\(815\) −8.52355e117 −1.06841
\(816\) 1.12888e117 0.134647
\(817\) −1.40112e118 −1.59031
\(818\) 1.08058e118 1.16721
\(819\) 1.19157e118 1.22496
\(820\) −8.73359e117 −0.854539
\(821\) 3.14330e117 0.292744 0.146372 0.989230i \(-0.453240\pi\)
0.146372 + 0.989230i \(0.453240\pi\)
\(822\) −3.96389e117 −0.351409
\(823\) −5.83159e117 −0.492146 −0.246073 0.969251i \(-0.579140\pi\)
−0.246073 + 0.969251i \(0.579140\pi\)
\(824\) 2.87433e116 0.0230932
\(825\) 7.39055e117 0.565317
\(826\) −1.87563e117 −0.136602
\(827\) −1.09629e118 −0.760244 −0.380122 0.924936i \(-0.624118\pi\)
−0.380122 + 0.924936i \(0.624118\pi\)
\(828\) 8.87317e117 0.585936
\(829\) −8.44862e117 −0.531284 −0.265642 0.964072i \(-0.585584\pi\)
−0.265642 + 0.964072i \(0.585584\pi\)
\(830\) −1.78729e118 −1.07036
\(831\) −5.03538e117 −0.287204
\(832\) 2.30707e117 0.125333
\(833\) 2.77317e118 1.43501
\(834\) −8.24081e116 −0.0406205
\(835\) 3.24239e118 1.52252
\(836\) 1.38451e118 0.619357
\(837\) 1.79283e118 0.764116
\(838\) −4.45736e117 −0.181007
\(839\) 3.52818e118 1.36518 0.682592 0.730800i \(-0.260853\pi\)
0.682592 + 0.730800i \(0.260853\pi\)
\(840\) −7.17648e117 −0.264606
\(841\) −1.25995e118 −0.442705
\(842\) 2.69627e118 0.902868
\(843\) −9.07006e117 −0.289463
\(844\) −1.71770e118 −0.522489
\(845\) −3.19128e116 −0.00925270
\(846\) 1.22208e117 0.0337754
\(847\) 1.09141e118 0.287548
\(848\) −1.06094e118 −0.266476
\(849\) −5.54191e117 −0.132708
\(850\) −1.05162e119 −2.40099
\(851\) −1.65174e118 −0.359579
\(852\) 1.15424e117 0.0239604
\(853\) −6.56253e118 −1.29908 −0.649539 0.760328i \(-0.725038\pi\)
−0.649539 + 0.760328i \(0.725038\pi\)
\(854\) 1.85662e118 0.350493
\(855\) 1.20726e119 2.17357
\(856\) −1.61830e117 −0.0277890
\(857\) −5.70433e118 −0.934289 −0.467144 0.884181i \(-0.654717\pi\)
−0.467144 + 0.884181i \(0.654717\pi\)
\(858\) −1.28052e118 −0.200055
\(859\) −1.04384e119 −1.55564 −0.777819 0.628488i \(-0.783674\pi\)
−0.777819 + 0.628488i \(0.783674\pi\)
\(860\) 6.94791e118 0.987796
\(861\) −3.13987e118 −0.425877
\(862\) 9.11608e118 1.17968
\(863\) 6.24052e118 0.770519 0.385260 0.922808i \(-0.374112\pi\)
0.385260 + 0.922808i \(0.374112\pi\)
\(864\) 9.05512e117 0.106681
\(865\) −1.98944e119 −2.23655
\(866\) −1.21463e119 −1.30307
\(867\) 5.81176e118 0.595023
\(868\) 8.80468e118 0.860330
\(869\) −8.70128e118 −0.811488
\(870\) 3.26591e118 0.290720
\(871\) 2.14175e118 0.181984
\(872\) −4.52082e118 −0.366690
\(873\) 5.74005e117 0.0444466
\(874\) 1.73944e119 1.28587
\(875\) 3.34843e119 2.36328
\(876\) 6.39921e117 0.0431231
\(877\) 2.58533e119 1.66354 0.831769 0.555123i \(-0.187329\pi\)
0.831769 + 0.555123i \(0.187329\pi\)
\(878\) −1.49750e119 −0.920108
\(879\) −9.30493e117 −0.0545963
\(880\) −6.86552e118 −0.384703
\(881\) −2.75252e118 −0.147301 −0.0736507 0.997284i \(-0.523465\pi\)
−0.0736507 + 0.997284i \(0.523465\pi\)
\(882\) 1.05308e119 0.538247
\(883\) −3.27327e119 −1.59799 −0.798993 0.601341i \(-0.794633\pi\)
−0.798993 + 0.601341i \(0.794633\pi\)
\(884\) 1.82207e119 0.849667
\(885\) 1.75761e118 0.0782924
\(886\) 8.46462e118 0.360198
\(887\) −2.67700e119 −1.08828 −0.544142 0.838993i \(-0.683145\pi\)
−0.544142 + 0.838993i \(0.683145\pi\)
\(888\) −7.97986e117 −0.0309935
\(889\) −2.88597e119 −1.07095
\(890\) 9.62293e117 0.0341202
\(891\) 1.85346e119 0.627967
\(892\) −1.18183e119 −0.382628
\(893\) 2.39569e118 0.0741220
\(894\) 9.18766e118 0.271666
\(895\) 7.03726e119 1.98871
\(896\) 4.44701e118 0.120114
\(897\) −1.60879e119 −0.415342
\(898\) −2.29459e119 −0.566257
\(899\) −4.00688e119 −0.945232
\(900\) −3.99337e119 −0.900572
\(901\) −8.37905e119 −1.80651
\(902\) −3.00382e119 −0.619169
\(903\) 2.49789e119 0.492288
\(904\) −1.20001e119 −0.226132
\(905\) 1.67620e120 3.02035
\(906\) 1.11458e119 0.192052
\(907\) −2.97974e119 −0.491002 −0.245501 0.969396i \(-0.578953\pi\)
−0.245501 + 0.969396i \(0.578953\pi\)
\(908\) 1.10294e119 0.173810
\(909\) −7.52821e119 −1.13463
\(910\) −1.15832e120 −1.66975
\(911\) 1.26584e120 1.74536 0.872680 0.488292i \(-0.162380\pi\)
0.872680 + 0.488292i \(0.162380\pi\)
\(912\) 8.40356e118 0.110834
\(913\) −6.14716e119 −0.775547
\(914\) 1.00643e120 1.21468
\(915\) −1.73979e119 −0.200883
\(916\) −3.99528e118 −0.0441347
\(917\) −1.43500e120 −1.51668
\(918\) 7.15153e119 0.723220
\(919\) 1.87946e120 1.81868 0.909339 0.416056i \(-0.136588\pi\)
0.909339 + 0.416056i \(0.136588\pi\)
\(920\) −8.62559e119 −0.798696
\(921\) −4.89153e119 −0.433440
\(922\) −3.38533e119 −0.287077
\(923\) 1.86300e119 0.151198
\(924\) −2.46827e119 −0.191724
\(925\) 7.43366e119 0.552666
\(926\) 1.63652e120 1.16460
\(927\) 8.62033e118 0.0587212
\(928\) −2.02377e119 −0.131968
\(929\) 1.42412e120 0.889018 0.444509 0.895774i \(-0.353378\pi\)
0.444509 + 0.895774i \(0.353378\pi\)
\(930\) −8.25064e119 −0.493092
\(931\) 2.06439e120 1.18121
\(932\) 3.72190e119 0.203901
\(933\) 8.98161e119 0.471137
\(934\) 1.37918e120 0.692745
\(935\) −5.42223e120 −2.60800
\(936\) 6.91908e119 0.318696
\(937\) 2.02607e120 0.893719 0.446859 0.894604i \(-0.352542\pi\)
0.446859 + 0.894604i \(0.352542\pi\)
\(938\) 4.12834e119 0.174406
\(939\) −1.78302e119 −0.0721440
\(940\) −1.18798e119 −0.0460396
\(941\) −3.81619e120 −1.41661 −0.708305 0.705906i \(-0.750540\pi\)
−0.708305 + 0.705906i \(0.750540\pi\)
\(942\) 1.16105e120 0.412846
\(943\) −3.77388e120 −1.28548
\(944\) −1.08913e119 −0.0355396
\(945\) −4.54633e120 −1.42126
\(946\) 2.38966e120 0.715722
\(947\) −1.25627e120 −0.360504 −0.180252 0.983620i \(-0.557691\pi\)
−0.180252 + 0.983620i \(0.557691\pi\)
\(948\) −5.28142e119 −0.145216
\(949\) 1.03286e120 0.272121
\(950\) −7.82837e120 −1.97636
\(951\) −2.04183e120 −0.493980
\(952\) 3.51215e120 0.814284
\(953\) 4.95221e120 1.10036 0.550182 0.835045i \(-0.314558\pi\)
0.550182 + 0.835045i \(0.314558\pi\)
\(954\) −3.18184e120 −0.677593
\(955\) 5.72986e120 1.16952
\(956\) 1.94908e120 0.381316
\(957\) 1.12327e120 0.210645
\(958\) 5.25419e120 0.944502
\(959\) −1.23323e121 −2.12516
\(960\) −4.16718e119 −0.0688425
\(961\) 3.80865e120 0.603217
\(962\) −1.28799e120 −0.195579
\(963\) −4.85342e119 −0.0706615
\(964\) −2.31252e120 −0.322824
\(965\) 1.62226e121 2.17152
\(966\) −3.10104e120 −0.398046
\(967\) 2.60825e119 0.0321053 0.0160527 0.999871i \(-0.494890\pi\)
0.0160527 + 0.999871i \(0.494890\pi\)
\(968\) 6.33751e119 0.0748112
\(969\) 6.63694e120 0.751372
\(970\) −5.57988e119 −0.0605856
\(971\) 1.32288e121 1.37766 0.688829 0.724924i \(-0.258125\pi\)
0.688829 + 0.724924i \(0.258125\pi\)
\(972\) 4.14576e120 0.414115
\(973\) −2.56386e120 −0.245654
\(974\) 1.21128e120 0.111329
\(975\) 7.24038e120 0.638373
\(976\) 1.07809e120 0.0911877
\(977\) −1.28652e121 −1.04397 −0.521985 0.852955i \(-0.674808\pi\)
−0.521985 + 0.852955i \(0.674808\pi\)
\(978\) −1.77938e120 −0.138531
\(979\) 3.30970e119 0.0247223
\(980\) −1.02369e121 −0.733691
\(981\) −1.35583e121 −0.932416
\(982\) −4.18772e120 −0.276352
\(983\) −2.73991e121 −1.73508 −0.867538 0.497372i \(-0.834299\pi\)
−0.867538 + 0.497372i \(0.834299\pi\)
\(984\) −1.82323e120 −0.110800
\(985\) 2.38116e121 1.38874
\(986\) −1.59832e121 −0.894643
\(987\) −4.27099e119 −0.0229448
\(988\) 1.35638e121 0.699397
\(989\) 3.00227e121 1.48594
\(990\) −2.05902e121 −0.978219
\(991\) 1.65989e121 0.757002 0.378501 0.925601i \(-0.376440\pi\)
0.378501 + 0.925601i \(0.376440\pi\)
\(992\) 5.11263e120 0.223832
\(993\) 1.95363e120 0.0821105
\(994\) 3.59105e120 0.144901
\(995\) −5.39456e121 −2.08988
\(996\) −3.73115e120 −0.138784
\(997\) −5.55404e120 −0.198360 −0.0991802 0.995069i \(-0.531622\pi\)
−0.0991802 + 0.995069i \(0.531622\pi\)
\(998\) 1.46622e121 0.502819
\(999\) −5.05528e120 −0.166473
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))