Properties

Label 2.80.a
Level $2$
Weight $80$
Character orbit 2.a
Rep. character $\chi_{2}(1,\cdot)$
Character field $\Q$
Dimension $7$
Newform subspaces $2$
Sturm bound $20$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2 \)
Weight: \( k \) \(=\) \( 80 \)
Character orbit: \([\chi]\) \(=\) 2.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(20\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{80}(\Gamma_0(2))\).

Total New Old
Modular forms 21 7 14
Cusp forms 19 7 12
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(11\)\(4\)\(7\)\(10\)\(4\)\(6\)\(1\)\(0\)\(1\)
\(-\)\(10\)\(3\)\(7\)\(9\)\(3\)\(6\)\(1\)\(0\)\(1\)

Trace form

\( 7 q - 549755813888 q^{2} - 18\!\cdots\!48 q^{3} + 21\!\cdots\!08 q^{4} - 61\!\cdots\!30 q^{5} - 49\!\cdots\!12 q^{6} + 40\!\cdots\!16 q^{7} - 16\!\cdots\!72 q^{8} + 10\!\cdots\!99 q^{9} - 10\!\cdots\!60 q^{10}+ \cdots - 23\!\cdots\!92 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{80}^{\mathrm{new}}(\Gamma_0(2))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2
2.80.a.a 2.a 1.a $3$ $79.047$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 2.80.a.a \(16\!\cdots\!64\) \(-45\!\cdots\!36\) \(-40\!\cdots\!50\) \(14\!\cdots\!12\) $-$ $\mathrm{SU}(2)$ \(q+2^{39}q^{2}+(-1528323113916241812+\cdots)q^{3}+\cdots\)
2.80.a.b 2.a 1.a $4$ $79.047$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 2.80.a.b \(-21\!\cdots\!52\) \(43\!\cdots\!88\) \(-20\!\cdots\!80\) \(25\!\cdots\!04\) $+$ $\mathrm{SU}(2)$ \(q-2^{39}q^{2}+(1099291558848636972+\cdots)q^{3}+\cdots\)

Decomposition of \(S_{80}^{\mathrm{old}}(\Gamma_0(2))\) into lower level spaces

\( S_{80}^{\mathrm{old}}(\Gamma_0(2)) \simeq \) \(S_{80}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 2}\)