Defining parameters
| Level: | \( N \) | \(=\) | \( 2 \) |
| Weight: | \( k \) | \(=\) | \( 80 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(20\) | ||
| Trace bound: | \(1\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{80}(\Gamma_0(2))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 21 | 7 | 14 |
| Cusp forms | 19 | 7 | 12 |
| Eisenstein series | 2 | 0 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||
| \(+\) | \(11\) | \(4\) | \(7\) | \(10\) | \(4\) | \(6\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(10\) | \(3\) | \(7\) | \(9\) | \(3\) | \(6\) | \(1\) | \(0\) | \(1\) | |||
Trace form
Decomposition of \(S_{80}^{\mathrm{new}}(\Gamma_0(2))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | |||||||
| 2.80.a.a | $3$ | $79.047$ | \(\mathbb{Q}[x]/(x^{3} - \cdots)\) | None | \(16\!\cdots\!64\) | \(-45\!\cdots\!36\) | \(-40\!\cdots\!50\) | \(14\!\cdots\!12\) | $-$ | \(q+2^{39}q^{2}+(-1528323113916241812+\cdots)q^{3}+\cdots\) | |
| 2.80.a.b | $4$ | $79.047$ | \(\mathbb{Q}[x]/(x^{4} - \cdots)\) | None | \(-21\!\cdots\!52\) | \(43\!\cdots\!88\) | \(-20\!\cdots\!80\) | \(25\!\cdots\!04\) | $+$ | \(q-2^{39}q^{2}+(1099291558848636972+\cdots)q^{3}+\cdots\) | |
Decomposition of \(S_{80}^{\mathrm{old}}(\Gamma_0(2))\) into lower level spaces
\( S_{80}^{\mathrm{old}}(\Gamma_0(2)) \simeq \) \(S_{80}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 2}\)