Properties

Label 2.66.a.b.1.3
Level $2$
Weight $66$
Character 2.1
Self dual yes
Analytic conductor $53.514$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2,66,Mod(1,2)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2, base_ring=CyclotomicField(1)) chi = DirichletCharacter(H, H._module([])) N = Newforms(chi, 66, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2.1"); S:= CuspForms(chi, 66); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2 \)
Weight: \( k \) \(=\) \( 66 \)
Character orbit: \([\chi]\) \(=\) 2.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(53.5144712945\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\mathbb{Q}[x]/(x^{3} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4862367805520722608042x + 130125819203569060903952569933488 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{22}\cdot 3^{8}\cdot 5^{3}\cdot 7\cdot 11\cdot 13 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(3.84791e10\) of defining polynomial
Character \(\chi\) \(=\) 2.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.29497e9 q^{2} +5.69189e15 q^{3} +1.84467e19 q^{4} +8.97760e21 q^{5} +2.44465e25 q^{6} +5.30637e27 q^{7} +7.92282e28 q^{8} +2.20965e31 q^{9} +3.85585e31 q^{10} -2.32174e33 q^{11} +1.04997e35 q^{12} -1.46940e36 q^{13} +2.27907e37 q^{14} +5.10995e37 q^{15} +3.40282e38 q^{16} +2.91263e39 q^{17} +9.49039e40 q^{18} +2.74117e41 q^{19} +1.65607e41 q^{20} +3.02032e43 q^{21} -9.97178e42 q^{22} -3.50267e44 q^{23} +4.50958e44 q^{24} -2.62991e45 q^{25} -6.31103e45 q^{26} +6.71385e46 q^{27} +9.78852e46 q^{28} +3.29469e47 q^{29} +2.19471e47 q^{30} -6.66257e47 q^{31} +1.46150e48 q^{32} -1.32151e49 q^{33} +1.25097e49 q^{34} +4.76384e49 q^{35} +4.07609e50 q^{36} -1.78528e51 q^{37} +1.17732e51 q^{38} -8.36367e51 q^{39} +7.11278e50 q^{40} +1.18784e52 q^{41} +1.29722e53 q^{42} -2.18004e52 q^{43} -4.28285e52 q^{44} +1.98374e53 q^{45} -1.50438e54 q^{46} -1.89566e54 q^{47} +1.93685e54 q^{48} +1.96192e55 q^{49} -1.12954e55 q^{50} +1.65784e55 q^{51} -2.71057e55 q^{52} +8.64760e55 q^{53} +2.88358e56 q^{54} -2.08436e55 q^{55} +4.20414e56 q^{56} +1.56024e57 q^{57} +1.41506e57 q^{58} +8.99708e56 q^{59} +9.42619e56 q^{60} -4.97059e56 q^{61} -2.86155e57 q^{62} +1.17252e59 q^{63} +6.27710e57 q^{64} -1.31917e58 q^{65} -5.67583e58 q^{66} +1.70781e59 q^{67} +5.37286e58 q^{68} -1.99368e60 q^{69} +2.04605e59 q^{70} -8.12672e58 q^{71} +1.75067e60 q^{72} +2.82381e60 q^{73} -7.66773e60 q^{74} -1.49691e61 q^{75} +5.05656e60 q^{76} -1.23200e61 q^{77} -3.59217e61 q^{78} +4.27954e61 q^{79} +3.05492e60 q^{80} +1.54527e62 q^{81} +5.10173e61 q^{82} -2.84429e62 q^{83} +5.57151e62 q^{84} +2.61484e61 q^{85} -9.36321e61 q^{86} +1.87530e63 q^{87} -1.83947e62 q^{88} +1.66021e63 q^{89} +8.52009e62 q^{90} -7.79719e63 q^{91} -6.46128e63 q^{92} -3.79226e63 q^{93} -8.14180e63 q^{94} +2.46091e63 q^{95} +8.31870e63 q^{96} -3.26740e64 q^{97} +8.42638e64 q^{98} -5.13023e64 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 12884901888 q^{2} + 29\!\cdots\!12 q^{3} + 55\!\cdots\!48 q^{4} + 39\!\cdots\!50 q^{5} + 12\!\cdots\!52 q^{6} + 42\!\cdots\!64 q^{7} + 23\!\cdots\!08 q^{8} + 85\!\cdots\!19 q^{9} + 16\!\cdots\!00 q^{10}+ \cdots - 11\!\cdots\!32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.29497e9 0.707107
\(3\) 5.69189e15 1.77344 0.886718 0.462311i \(-0.152980\pi\)
0.886718 + 0.462311i \(0.152980\pi\)
\(4\) 1.84467e19 0.500000
\(5\) 8.97760e21 0.172439 0.0862194 0.996276i \(-0.472521\pi\)
0.0862194 + 0.996276i \(0.472521\pi\)
\(6\) 2.44465e25 1.25401
\(7\) 5.30637e27 1.81598 0.907990 0.418992i \(-0.137617\pi\)
0.907990 + 0.418992i \(0.137617\pi\)
\(8\) 7.92282e28 0.353553
\(9\) 2.20965e31 2.14508
\(10\) 3.85585e31 0.121933
\(11\) −2.32174e33 −0.331551 −0.165776 0.986163i \(-0.553013\pi\)
−0.165776 + 0.986163i \(0.553013\pi\)
\(12\) 1.04997e35 0.886718
\(13\) −1.46940e36 −0.920411 −0.460205 0.887812i \(-0.652224\pi\)
−0.460205 + 0.887812i \(0.652224\pi\)
\(14\) 2.27907e37 1.28409
\(15\) 5.10995e37 0.305809
\(16\) 3.40282e38 0.250000
\(17\) 2.91263e39 0.298329 0.149165 0.988812i \(-0.452342\pi\)
0.149165 + 0.988812i \(0.452342\pi\)
\(18\) 9.49039e40 1.51680
\(19\) 2.74117e41 0.755863 0.377932 0.925833i \(-0.376635\pi\)
0.377932 + 0.925833i \(0.376635\pi\)
\(20\) 1.65607e41 0.0862194
\(21\) 3.02032e43 3.22052
\(22\) −9.97178e42 −0.234442
\(23\) −3.50267e44 −1.94198 −0.970989 0.239125i \(-0.923139\pi\)
−0.970989 + 0.239125i \(0.923139\pi\)
\(24\) 4.50958e44 0.627004
\(25\) −2.62991e45 −0.970265
\(26\) −6.31103e45 −0.650829
\(27\) 6.71385e46 2.03072
\(28\) 9.78852e46 0.907990
\(29\) 3.29469e47 0.976967 0.488483 0.872573i \(-0.337550\pi\)
0.488483 + 0.872573i \(0.337550\pi\)
\(30\) 2.19471e47 0.216240
\(31\) −6.66257e47 −0.226145 −0.113072 0.993587i \(-0.536069\pi\)
−0.113072 + 0.993587i \(0.536069\pi\)
\(32\) 1.46150e48 0.176777
\(33\) −1.32151e49 −0.587985
\(34\) 1.25097e49 0.210951
\(35\) 4.76384e49 0.313145
\(36\) 4.07609e50 1.07254
\(37\) −1.78528e51 −1.92820 −0.964098 0.265548i \(-0.914447\pi\)
−0.964098 + 0.265548i \(0.914447\pi\)
\(38\) 1.17732e51 0.534476
\(39\) −8.36367e51 −1.63229
\(40\) 7.11278e50 0.0609663
\(41\) 1.18784e52 0.456334 0.228167 0.973622i \(-0.426727\pi\)
0.228167 + 0.973622i \(0.426727\pi\)
\(42\) 1.29722e53 2.27725
\(43\) −2.18004e52 −0.178131 −0.0890656 0.996026i \(-0.528388\pi\)
−0.0890656 + 0.996026i \(0.528388\pi\)
\(44\) −4.28285e52 −0.165776
\(45\) 1.98374e53 0.369894
\(46\) −1.50438e54 −1.37319
\(47\) −1.89566e54 −0.860162 −0.430081 0.902790i \(-0.641515\pi\)
−0.430081 + 0.902790i \(0.641515\pi\)
\(48\) 1.93685e54 0.443359
\(49\) 1.96192e55 2.29778
\(50\) −1.12954e55 −0.686081
\(51\) 1.65784e55 0.529068
\(52\) −2.71057e55 −0.460205
\(53\) 8.64760e55 0.790551 0.395275 0.918563i \(-0.370649\pi\)
0.395275 + 0.918563i \(0.370649\pi\)
\(54\) 2.88358e56 1.43593
\(55\) −2.08436e55 −0.0571723
\(56\) 4.20414e56 0.642046
\(57\) 1.56024e57 1.34048
\(58\) 1.41506e57 0.690820
\(59\) 8.99708e56 0.252006 0.126003 0.992030i \(-0.459785\pi\)
0.126003 + 0.992030i \(0.459785\pi\)
\(60\) 9.42619e56 0.152905
\(61\) −4.97059e56 −0.0471181 −0.0235591 0.999722i \(-0.507500\pi\)
−0.0235591 + 0.999722i \(0.507500\pi\)
\(62\) −2.86155e57 −0.159908
\(63\) 1.17252e59 3.89541
\(64\) 6.27710e57 0.125000
\(65\) −1.31917e58 −0.158715
\(66\) −5.67583e58 −0.415768
\(67\) 1.70781e59 0.767376 0.383688 0.923463i \(-0.374654\pi\)
0.383688 + 0.923463i \(0.374654\pi\)
\(68\) 5.37286e58 0.149165
\(69\) −1.99368e60 −3.44397
\(70\) 2.04605e59 0.221427
\(71\) −8.12672e58 −0.0554650 −0.0277325 0.999615i \(-0.508829\pi\)
−0.0277325 + 0.999615i \(0.508829\pi\)
\(72\) 1.75067e60 0.758399
\(73\) 2.82381e60 0.781345 0.390673 0.920530i \(-0.372242\pi\)
0.390673 + 0.920530i \(0.372242\pi\)
\(74\) −7.66773e60 −1.36344
\(75\) −1.49691e61 −1.72070
\(76\) 5.05656e60 0.377932
\(77\) −1.23200e61 −0.602090
\(78\) −3.59217e61 −1.15420
\(79\) 4.27954e61 0.908902 0.454451 0.890772i \(-0.349836\pi\)
0.454451 + 0.890772i \(0.349836\pi\)
\(80\) 3.05492e60 0.0431097
\(81\) 1.54527e62 1.45627
\(82\) 5.10173e61 0.322677
\(83\) −2.84429e62 −1.21321 −0.606604 0.795004i \(-0.707469\pi\)
−0.606604 + 0.795004i \(0.707469\pi\)
\(84\) 5.57151e62 1.61026
\(85\) 2.61484e61 0.0514435
\(86\) −9.36321e61 −0.125958
\(87\) 1.87530e63 1.73259
\(88\) −1.83947e62 −0.117221
\(89\) 1.66021e63 0.732802 0.366401 0.930457i \(-0.380590\pi\)
0.366401 + 0.930457i \(0.380590\pi\)
\(90\) 8.52009e62 0.261555
\(91\) −7.79719e63 −1.67145
\(92\) −6.46128e63 −0.970989
\(93\) −3.79226e63 −0.401053
\(94\) −8.14180e63 −0.608226
\(95\) 2.46091e63 0.130340
\(96\) 8.31870e63 0.313502
\(97\) −3.26740e64 −0.879267 −0.439634 0.898177i \(-0.644892\pi\)
−0.439634 + 0.898177i \(0.644892\pi\)
\(98\) 8.42638e64 1.62478
\(99\) −5.13023e64 −0.711202
\(100\) −4.85132e64 −0.485132
\(101\) −1.61191e65 −1.16653 −0.583264 0.812283i \(-0.698225\pi\)
−0.583264 + 0.812283i \(0.698225\pi\)
\(102\) 7.12036e64 0.374107
\(103\) 2.11435e65 0.809035 0.404518 0.914530i \(-0.367439\pi\)
0.404518 + 0.914530i \(0.367439\pi\)
\(104\) −1.16418e65 −0.325414
\(105\) 2.71152e65 0.555343
\(106\) 3.71411e65 0.559004
\(107\) 9.86617e65 1.09440 0.547200 0.837002i \(-0.315694\pi\)
0.547200 + 0.837002i \(0.315694\pi\)
\(108\) 1.23849e66 1.01536
\(109\) 2.20993e66 1.34282 0.671409 0.741087i \(-0.265689\pi\)
0.671409 + 0.741087i \(0.265689\pi\)
\(110\) −8.95226e64 −0.0404269
\(111\) −1.01616e67 −3.41953
\(112\) 1.80566e66 0.453995
\(113\) −5.21878e66 −0.982922 −0.491461 0.870899i \(-0.663537\pi\)
−0.491461 + 0.870899i \(0.663537\pi\)
\(114\) 6.70118e66 0.947859
\(115\) −3.14455e66 −0.334872
\(116\) 6.07763e66 0.488483
\(117\) −3.24687e67 −1.97435
\(118\) 3.86422e66 0.178195
\(119\) 1.54555e67 0.541760
\(120\) 4.04852e66 0.108120
\(121\) −4.36466e67 −0.890074
\(122\) −2.13485e66 −0.0333176
\(123\) 6.76105e67 0.809279
\(124\) −1.22903e67 −0.113072
\(125\) −4.79441e67 −0.339750
\(126\) 5.03595e68 2.75447
\(127\) −1.52520e67 −0.0645219 −0.0322609 0.999479i \(-0.510271\pi\)
−0.0322609 + 0.999479i \(0.510271\pi\)
\(128\) 2.69599e67 0.0883883
\(129\) −1.24086e68 −0.315904
\(130\) −5.66579e67 −0.112228
\(131\) −9.37591e68 −1.44776 −0.723880 0.689926i \(-0.757643\pi\)
−0.723880 + 0.689926i \(0.757643\pi\)
\(132\) −2.43775e68 −0.293992
\(133\) 1.45456e69 1.37263
\(134\) 7.33498e68 0.542617
\(135\) 6.02743e68 0.350174
\(136\) 2.30763e68 0.105475
\(137\) −3.37510e69 −1.21582 −0.607908 0.794008i \(-0.707991\pi\)
−0.607908 + 0.794008i \(0.707991\pi\)
\(138\) −8.56278e69 −2.43526
\(139\) 4.30456e69 0.968160 0.484080 0.875024i \(-0.339154\pi\)
0.484080 + 0.875024i \(0.339154\pi\)
\(140\) 8.78774e68 0.156573
\(141\) −1.07899e70 −1.52544
\(142\) −3.49040e68 −0.0392197
\(143\) 3.41156e69 0.305163
\(144\) 7.51906e69 0.536269
\(145\) 2.95784e69 0.168467
\(146\) 1.21282e70 0.552495
\(147\) 1.11670e71 4.07497
\(148\) −3.29327e70 −0.964098
\(149\) −2.48674e70 −0.584894 −0.292447 0.956282i \(-0.594469\pi\)
−0.292447 + 0.956282i \(0.594469\pi\)
\(150\) −6.42920e70 −1.21672
\(151\) −2.23228e70 −0.340406 −0.170203 0.985409i \(-0.554442\pi\)
−0.170203 + 0.985409i \(0.554442\pi\)
\(152\) 2.17178e70 0.267238
\(153\) 6.43591e70 0.639939
\(154\) −5.29139e70 −0.425742
\(155\) −5.98138e69 −0.0389961
\(156\) −1.54283e71 −0.816145
\(157\) −1.51090e71 −0.649379 −0.324690 0.945821i \(-0.605260\pi\)
−0.324690 + 0.945821i \(0.605260\pi\)
\(158\) 1.83805e71 0.642690
\(159\) 4.92211e71 1.40199
\(160\) 1.31208e70 0.0304832
\(161\) −1.85864e72 −3.52659
\(162\) 6.63690e71 1.02974
\(163\) −5.12887e70 −0.0651515 −0.0325757 0.999469i \(-0.510371\pi\)
−0.0325757 + 0.999469i \(0.510371\pi\)
\(164\) 2.19118e71 0.228167
\(165\) −1.18639e71 −0.101391
\(166\) −1.22161e72 −0.857867
\(167\) 2.11811e72 1.22367 0.611833 0.790987i \(-0.290433\pi\)
0.611833 + 0.790987i \(0.290433\pi\)
\(168\) 2.39295e72 1.13863
\(169\) −3.89552e71 −0.152844
\(170\) 1.12307e71 0.0363761
\(171\) 6.05703e72 1.62138
\(172\) −4.02147e71 −0.0890656
\(173\) −5.72260e72 −1.04977 −0.524886 0.851173i \(-0.675892\pi\)
−0.524886 + 0.851173i \(0.675892\pi\)
\(174\) 8.05436e72 1.22512
\(175\) −1.39553e73 −1.76198
\(176\) −7.90046e71 −0.0828878
\(177\) 5.12103e72 0.446917
\(178\) 7.13053e72 0.518169
\(179\) −1.12057e72 −0.0678760 −0.0339380 0.999424i \(-0.510805\pi\)
−0.0339380 + 0.999424i \(0.510805\pi\)
\(180\) 3.65935e72 0.184947
\(181\) −2.09131e73 −0.882803 −0.441402 0.897310i \(-0.645519\pi\)
−0.441402 + 0.897310i \(0.645519\pi\)
\(182\) −3.34887e73 −1.18189
\(183\) −2.82920e72 −0.0835610
\(184\) −2.77510e73 −0.686593
\(185\) −1.60275e73 −0.332496
\(186\) −1.62876e73 −0.283587
\(187\) −6.76237e72 −0.0989114
\(188\) −3.49688e73 −0.430081
\(189\) 3.56262e74 3.68774
\(190\) 1.05695e73 0.0921644
\(191\) 6.14516e72 0.0451803 0.0225901 0.999745i \(-0.492809\pi\)
0.0225901 + 0.999745i \(0.492809\pi\)
\(192\) 3.57286e73 0.221679
\(193\) 7.80236e73 0.408897 0.204448 0.978877i \(-0.434460\pi\)
0.204448 + 0.978877i \(0.434460\pi\)
\(194\) −1.40334e74 −0.621736
\(195\) −7.50857e73 −0.281470
\(196\) 3.61910e74 1.14889
\(197\) −3.22186e74 −0.866871 −0.433435 0.901185i \(-0.642699\pi\)
−0.433435 + 0.901185i \(0.642699\pi\)
\(198\) −2.20342e74 −0.502896
\(199\) −7.02681e74 −1.36155 −0.680775 0.732493i \(-0.738357\pi\)
−0.680775 + 0.732493i \(0.738357\pi\)
\(200\) −2.08363e74 −0.343040
\(201\) 9.72066e74 1.36089
\(202\) −6.92308e74 −0.824860
\(203\) 1.74828e75 1.77415
\(204\) 3.05817e74 0.264534
\(205\) 1.06639e74 0.0786896
\(206\) 9.08107e74 0.572074
\(207\) −7.73968e75 −4.16569
\(208\) −5.00012e74 −0.230103
\(209\) −6.36427e74 −0.250607
\(210\) 1.16459e75 0.392687
\(211\) 3.67552e75 1.06204 0.531018 0.847361i \(-0.321810\pi\)
0.531018 + 0.847361i \(0.321810\pi\)
\(212\) 1.59520e75 0.395275
\(213\) −4.62564e74 −0.0983636
\(214\) 4.23749e75 0.773858
\(215\) −1.95715e74 −0.0307167
\(216\) 5.31926e75 0.717967
\(217\) −3.53540e75 −0.410674
\(218\) 9.49157e75 0.949516
\(219\) 1.60728e76 1.38567
\(220\) −3.84497e74 −0.0285861
\(221\) −4.27983e75 −0.274585
\(222\) −4.36439e76 −2.41797
\(223\) 2.74243e76 1.31289 0.656443 0.754376i \(-0.272060\pi\)
0.656443 + 0.754376i \(0.272060\pi\)
\(224\) 7.75526e75 0.321023
\(225\) −5.81118e76 −2.08129
\(226\) −2.24145e76 −0.695031
\(227\) 3.88821e76 1.04450 0.522252 0.852792i \(-0.325092\pi\)
0.522252 + 0.852792i \(0.325092\pi\)
\(228\) 2.87814e76 0.670238
\(229\) −2.55453e76 −0.516009 −0.258004 0.966144i \(-0.583065\pi\)
−0.258004 + 0.966144i \(0.583065\pi\)
\(230\) −1.35058e76 −0.236790
\(231\) −7.01240e76 −1.06777
\(232\) 2.61032e76 0.345410
\(233\) 4.94054e76 0.568469 0.284234 0.958755i \(-0.408261\pi\)
0.284234 + 0.958755i \(0.408261\pi\)
\(234\) −1.39452e77 −1.39608
\(235\) −1.70185e76 −0.148325
\(236\) 1.65967e76 0.126003
\(237\) 2.43587e77 1.61188
\(238\) 6.63808e76 0.383082
\(239\) 1.99210e77 1.00318 0.501591 0.865105i \(-0.332748\pi\)
0.501591 + 0.865105i \(0.332748\pi\)
\(240\) 1.73882e76 0.0764523
\(241\) 9.09862e75 0.0349479 0.0174740 0.999847i \(-0.494438\pi\)
0.0174740 + 0.999847i \(0.494438\pi\)
\(242\) −1.87461e77 −0.629377
\(243\) 1.87955e77 0.551888
\(244\) −9.16912e75 −0.0235591
\(245\) 1.76133e77 0.396227
\(246\) 2.90385e77 0.572246
\(247\) −4.02788e77 −0.695705
\(248\) −5.27863e76 −0.0799542
\(249\) −1.61894e78 −2.15155
\(250\) −2.05918e77 −0.240240
\(251\) −1.08437e78 −1.11117 −0.555585 0.831460i \(-0.687506\pi\)
−0.555585 + 0.831460i \(0.687506\pi\)
\(252\) 2.16292e78 1.94771
\(253\) 8.13227e77 0.643865
\(254\) −6.55070e76 −0.0456238
\(255\) 1.48834e77 0.0912318
\(256\) 1.15792e77 0.0625000
\(257\) 9.52048e77 0.452723 0.226361 0.974043i \(-0.427317\pi\)
0.226361 + 0.974043i \(0.427317\pi\)
\(258\) −5.32943e77 −0.223378
\(259\) −9.47337e78 −3.50156
\(260\) −2.43344e77 −0.0793573
\(261\) 7.28013e78 2.09567
\(262\) −4.02692e78 −1.02372
\(263\) 3.36688e78 0.756252 0.378126 0.925754i \(-0.376569\pi\)
0.378126 + 0.925754i \(0.376569\pi\)
\(264\) −1.04701e78 −0.207884
\(265\) 7.76346e77 0.136322
\(266\) 6.24730e78 0.970598
\(267\) 9.44971e78 1.29958
\(268\) 3.15035e78 0.383688
\(269\) 6.19433e78 0.668413 0.334207 0.942500i \(-0.391532\pi\)
0.334207 + 0.942500i \(0.391532\pi\)
\(270\) 2.58876e78 0.247611
\(271\) 1.47194e79 1.24850 0.624249 0.781226i \(-0.285405\pi\)
0.624249 + 0.781226i \(0.285405\pi\)
\(272\) 9.91117e77 0.0745823
\(273\) −4.43807e79 −2.96420
\(274\) −1.44959e79 −0.859711
\(275\) 6.10595e78 0.321693
\(276\) −3.67769e79 −1.72199
\(277\) 7.58919e78 0.315939 0.157969 0.987444i \(-0.449505\pi\)
0.157969 + 0.987444i \(0.449505\pi\)
\(278\) 1.84879e79 0.684593
\(279\) −1.47220e79 −0.485097
\(280\) 3.77430e78 0.110714
\(281\) −2.23104e78 −0.0582842 −0.0291421 0.999575i \(-0.509278\pi\)
−0.0291421 + 0.999575i \(0.509278\pi\)
\(282\) −4.63422e79 −1.07865
\(283\) 5.16588e79 1.07173 0.535864 0.844304i \(-0.319986\pi\)
0.535864 + 0.844304i \(0.319986\pi\)
\(284\) −1.49911e78 −0.0277325
\(285\) 1.40072e79 0.231150
\(286\) 1.46526e79 0.215783
\(287\) 6.30311e79 0.828693
\(288\) 3.22941e79 0.379199
\(289\) −8.68357e79 −0.911000
\(290\) 1.27038e79 0.119124
\(291\) −1.85977e80 −1.55932
\(292\) 5.20902e79 0.390673
\(293\) 9.09899e79 0.610655 0.305327 0.952247i \(-0.401234\pi\)
0.305327 + 0.952247i \(0.401234\pi\)
\(294\) 4.79620e80 2.88144
\(295\) 8.07721e78 0.0434556
\(296\) −1.41445e80 −0.681720
\(297\) −1.55878e80 −0.673287
\(298\) −1.06805e80 −0.413582
\(299\) 5.14683e80 1.78742
\(300\) −2.76132e80 −0.860351
\(301\) −1.15681e80 −0.323483
\(302\) −9.58756e79 −0.240704
\(303\) −9.17479e80 −2.06876
\(304\) 9.32770e79 0.188966
\(305\) −4.46239e78 −0.00812499
\(306\) 2.76420e80 0.452505
\(307\) −1.71322e80 −0.252242 −0.126121 0.992015i \(-0.540253\pi\)
−0.126121 + 0.992015i \(0.540253\pi\)
\(308\) −2.27264e80 −0.301045
\(309\) 1.20347e81 1.43477
\(310\) −2.56898e79 −0.0275744
\(311\) −1.47283e81 −1.42377 −0.711884 0.702297i \(-0.752158\pi\)
−0.711884 + 0.702297i \(0.752158\pi\)
\(312\) −6.62638e80 −0.577102
\(313\) 1.01559e81 0.797125 0.398563 0.917141i \(-0.369509\pi\)
0.398563 + 0.917141i \(0.369509\pi\)
\(314\) −6.48929e80 −0.459180
\(315\) 1.05264e81 0.671720
\(316\) 7.89436e80 0.454451
\(317\) −9.07031e80 −0.471190 −0.235595 0.971851i \(-0.575704\pi\)
−0.235595 + 0.971851i \(0.575704\pi\)
\(318\) 2.11403e81 0.991357
\(319\) −7.64941e80 −0.323915
\(320\) 5.63533e79 0.0215548
\(321\) 5.61572e81 1.94085
\(322\) −7.98281e81 −2.49368
\(323\) 7.98401e80 0.225496
\(324\) 2.85053e81 0.728136
\(325\) 3.86439e81 0.893042
\(326\) −2.20283e80 −0.0460691
\(327\) 1.25787e82 2.38140
\(328\) 9.41104e80 0.161338
\(329\) −1.00591e82 −1.56204
\(330\) −5.09553e80 −0.0716945
\(331\) −1.00183e82 −1.27757 −0.638784 0.769387i \(-0.720562\pi\)
−0.638784 + 0.769387i \(0.720562\pi\)
\(332\) −5.24678e81 −0.606604
\(333\) −3.94486e82 −4.13612
\(334\) 9.09720e81 0.865262
\(335\) 1.53320e81 0.132325
\(336\) 1.02776e82 0.805131
\(337\) 2.55002e82 1.81373 0.906864 0.421424i \(-0.138470\pi\)
0.906864 + 0.421424i \(0.138470\pi\)
\(338\) −1.67312e81 −0.108077
\(339\) −2.97047e82 −1.74315
\(340\) 4.82354e80 0.0257218
\(341\) 1.54687e81 0.0749786
\(342\) 2.60147e82 1.14649
\(343\) 5.87992e82 2.35675
\(344\) −1.72721e81 −0.0629789
\(345\) −1.78984e82 −0.593874
\(346\) −2.45784e82 −0.742301
\(347\) 4.89783e82 1.34678 0.673388 0.739289i \(-0.264838\pi\)
0.673388 + 0.739289i \(0.264838\pi\)
\(348\) 3.45932e82 0.866294
\(349\) −1.82843e82 −0.417110 −0.208555 0.978011i \(-0.566876\pi\)
−0.208555 + 0.978011i \(0.566876\pi\)
\(350\) −5.99374e82 −1.24591
\(351\) −9.86535e82 −1.86909
\(352\) −3.39322e81 −0.0586105
\(353\) 7.47308e82 1.17712 0.588561 0.808452i \(-0.299694\pi\)
0.588561 + 0.808452i \(0.299694\pi\)
\(354\) 2.19947e82 0.316018
\(355\) −7.29584e80 −0.00956431
\(356\) 3.06254e82 0.366401
\(357\) 8.79709e82 0.960776
\(358\) −4.81282e81 −0.0479956
\(359\) 1.54524e82 0.140743 0.0703714 0.997521i \(-0.477582\pi\)
0.0703714 + 0.997521i \(0.477582\pi\)
\(360\) 1.57168e82 0.130777
\(361\) −5.63777e82 −0.428671
\(362\) −8.98209e82 −0.624236
\(363\) −2.48432e83 −1.57849
\(364\) −1.43833e83 −0.835724
\(365\) 2.53511e82 0.134734
\(366\) −1.21513e82 −0.0590866
\(367\) −8.31838e82 −0.370162 −0.185081 0.982723i \(-0.559255\pi\)
−0.185081 + 0.982723i \(0.559255\pi\)
\(368\) −1.19190e83 −0.485494
\(369\) 2.62471e83 0.978870
\(370\) −6.88378e82 −0.235110
\(371\) 4.58873e83 1.43562
\(372\) −6.99548e82 −0.200527
\(373\) 4.55055e83 1.19544 0.597718 0.801706i \(-0.296074\pi\)
0.597718 + 0.801706i \(0.296074\pi\)
\(374\) −2.90441e82 −0.0699409
\(375\) −2.72892e83 −0.602525
\(376\) −1.50190e83 −0.304113
\(377\) −4.84123e83 −0.899211
\(378\) 1.53013e84 2.60763
\(379\) 1.58011e83 0.247123 0.123561 0.992337i \(-0.460568\pi\)
0.123561 + 0.992337i \(0.460568\pi\)
\(380\) 4.53957e82 0.0651701
\(381\) −8.68129e82 −0.114425
\(382\) 2.63933e82 0.0319473
\(383\) −1.03903e84 −1.15523 −0.577613 0.816310i \(-0.696016\pi\)
−0.577613 + 0.816310i \(0.696016\pi\)
\(384\) 1.53453e83 0.156751
\(385\) −1.10604e83 −0.103824
\(386\) 3.35109e83 0.289134
\(387\) −4.81714e83 −0.382105
\(388\) −6.02729e83 −0.439634
\(389\) 2.14998e84 1.44236 0.721178 0.692750i \(-0.243601\pi\)
0.721178 + 0.692750i \(0.243601\pi\)
\(390\) −3.22490e83 −0.199029
\(391\) −1.02020e84 −0.579349
\(392\) 1.55439e84 0.812389
\(393\) −5.33666e84 −2.56751
\(394\) −1.38378e84 −0.612970
\(395\) 3.84200e83 0.156730
\(396\) −9.46361e83 −0.355601
\(397\) −2.17837e84 −0.754121 −0.377060 0.926189i \(-0.623065\pi\)
−0.377060 + 0.926189i \(0.623065\pi\)
\(398\) −3.01799e84 −0.962761
\(399\) 8.27921e84 2.43428
\(400\) −8.94911e83 −0.242566
\(401\) 9.71673e83 0.242844 0.121422 0.992601i \(-0.461255\pi\)
0.121422 + 0.992601i \(0.461255\pi\)
\(402\) 4.17499e84 0.962296
\(403\) 9.78999e83 0.208146
\(404\) −2.97344e84 −0.583264
\(405\) 1.38729e84 0.251118
\(406\) 7.50882e84 1.25451
\(407\) 4.14496e84 0.639296
\(408\) 1.31347e84 0.187054
\(409\) 1.14593e85 1.50713 0.753564 0.657374i \(-0.228333\pi\)
0.753564 + 0.657374i \(0.228333\pi\)
\(410\) 4.58013e83 0.0556420
\(411\) −1.92107e85 −2.15617
\(412\) 3.90029e84 0.404518
\(413\) 4.77418e84 0.457638
\(414\) −3.32417e85 −2.94559
\(415\) −2.55348e84 −0.209204
\(416\) −2.14753e84 −0.162707
\(417\) 2.45010e85 1.71697
\(418\) −2.73343e84 −0.177206
\(419\) −1.45063e85 −0.870163 −0.435081 0.900391i \(-0.643280\pi\)
−0.435081 + 0.900391i \(0.643280\pi\)
\(420\) 5.00188e84 0.277672
\(421\) 1.57997e85 0.811857 0.405929 0.913905i \(-0.366948\pi\)
0.405929 + 0.913905i \(0.366948\pi\)
\(422\) 1.57862e85 0.750972
\(423\) −4.18875e85 −1.84511
\(424\) 6.85133e84 0.279502
\(425\) −7.65996e84 −0.289458
\(426\) −1.98670e84 −0.0695535
\(427\) −2.63758e84 −0.0855656
\(428\) 1.81999e85 0.547200
\(429\) 1.94182e85 0.541188
\(430\) −8.40591e83 −0.0217200
\(431\) −4.68317e85 −1.12209 −0.561046 0.827784i \(-0.689601\pi\)
−0.561046 + 0.827784i \(0.689601\pi\)
\(432\) 2.28461e85 0.507679
\(433\) −6.52893e85 −1.34582 −0.672908 0.739726i \(-0.734955\pi\)
−0.672908 + 0.739726i \(0.734955\pi\)
\(434\) −1.51844e85 −0.290390
\(435\) 1.68357e85 0.298765
\(436\) 4.07660e85 0.671409
\(437\) −9.60139e85 −1.46787
\(438\) 6.90323e85 0.979814
\(439\) 7.75117e85 1.02158 0.510788 0.859707i \(-0.329354\pi\)
0.510788 + 0.859707i \(0.329354\pi\)
\(440\) −1.65140e84 −0.0202135
\(441\) 4.33516e86 4.92891
\(442\) −1.83817e85 −0.194161
\(443\) −9.85191e85 −0.966940 −0.483470 0.875361i \(-0.660624\pi\)
−0.483470 + 0.875361i \(0.660624\pi\)
\(444\) −1.87449e86 −1.70977
\(445\) 1.49047e85 0.126364
\(446\) 1.17786e86 0.928350
\(447\) −1.41543e86 −1.03727
\(448\) 3.33086e85 0.226997
\(449\) −1.36456e86 −0.864939 −0.432469 0.901649i \(-0.642358\pi\)
−0.432469 + 0.901649i \(0.642358\pi\)
\(450\) −2.49588e86 −1.47170
\(451\) −2.75785e85 −0.151298
\(452\) −9.62694e85 −0.491461
\(453\) −1.27059e86 −0.603689
\(454\) 1.66997e86 0.738575
\(455\) −7.00000e85 −0.288222
\(456\) 1.23615e86 0.473930
\(457\) −2.23657e85 −0.0798558 −0.0399279 0.999203i \(-0.512713\pi\)
−0.0399279 + 0.999203i \(0.512713\pi\)
\(458\) −1.09716e86 −0.364873
\(459\) 1.95550e86 0.605822
\(460\) −5.80068e85 −0.167436
\(461\) 3.57063e86 0.960428 0.480214 0.877151i \(-0.340559\pi\)
0.480214 + 0.877151i \(0.340559\pi\)
\(462\) −3.01180e86 −0.755026
\(463\) −4.15876e86 −0.971812 −0.485906 0.874011i \(-0.661510\pi\)
−0.485906 + 0.874011i \(0.661510\pi\)
\(464\) 1.12113e86 0.244242
\(465\) −3.40454e85 −0.0691571
\(466\) 2.12194e86 0.401968
\(467\) 1.07360e87 1.89689 0.948447 0.316937i \(-0.102654\pi\)
0.948447 + 0.316937i \(0.102654\pi\)
\(468\) −5.98942e86 −0.987175
\(469\) 9.06226e86 1.39354
\(470\) −7.30938e85 −0.104882
\(471\) −8.59990e86 −1.15163
\(472\) 7.12822e85 0.0890976
\(473\) 5.06148e85 0.0590596
\(474\) 1.04620e87 1.13977
\(475\) −7.20902e86 −0.733388
\(476\) 2.85104e86 0.270880
\(477\) 1.91082e87 1.69579
\(478\) 8.55602e86 0.709357
\(479\) −1.75484e87 −1.35936 −0.679679 0.733509i \(-0.737881\pi\)
−0.679679 + 0.733509i \(0.737881\pi\)
\(480\) 7.46819e85 0.0540599
\(481\) 2.62330e87 1.77473
\(482\) 3.90783e85 0.0247119
\(483\) −1.05792e88 −6.25418
\(484\) −8.05138e86 −0.445037
\(485\) −2.93334e86 −0.151620
\(486\) 8.07263e86 0.390244
\(487\) 3.32055e87 1.50148 0.750739 0.660599i \(-0.229698\pi\)
0.750739 + 0.660599i \(0.229698\pi\)
\(488\) −3.93811e85 −0.0166588
\(489\) −2.91929e86 −0.115542
\(490\) 7.56487e86 0.280175
\(491\) 2.59897e87 0.900850 0.450425 0.892814i \(-0.351272\pi\)
0.450425 + 0.892814i \(0.351272\pi\)
\(492\) 1.24719e87 0.404639
\(493\) 9.59623e86 0.291458
\(494\) −1.72996e87 −0.491938
\(495\) −4.60571e86 −0.122639
\(496\) −2.26715e86 −0.0565362
\(497\) −4.31233e86 −0.100723
\(498\) −6.95327e87 −1.52137
\(499\) 5.11644e87 1.04882 0.524409 0.851466i \(-0.324286\pi\)
0.524409 + 0.851466i \(0.324286\pi\)
\(500\) −8.84412e86 −0.169875
\(501\) 1.20560e88 2.17009
\(502\) −4.65732e87 −0.785716
\(503\) −8.80885e87 −1.39303 −0.696514 0.717543i \(-0.745267\pi\)
−0.696514 + 0.717543i \(0.745267\pi\)
\(504\) 9.28968e87 1.37724
\(505\) −1.44710e87 −0.201155
\(506\) 3.49278e87 0.455281
\(507\) −2.21729e87 −0.271059
\(508\) −2.81350e86 −0.0322609
\(509\) −8.67295e87 −0.932908 −0.466454 0.884546i \(-0.654469\pi\)
−0.466454 + 0.884546i \(0.654469\pi\)
\(510\) 6.39237e86 0.0645106
\(511\) 1.49842e88 1.41891
\(512\) 4.97323e86 0.0441942
\(513\) 1.84038e88 1.53495
\(514\) 4.08901e87 0.320123
\(515\) 1.89818e87 0.139509
\(516\) −2.28897e87 −0.157952
\(517\) 4.40123e87 0.285188
\(518\) −4.06878e88 −2.47598
\(519\) −3.25724e88 −1.86170
\(520\) −1.04515e87 −0.0561141
\(521\) −8.28543e87 −0.417916 −0.208958 0.977925i \(-0.567007\pi\)
−0.208958 + 0.977925i \(0.567007\pi\)
\(522\) 3.12679e88 1.48186
\(523\) −5.89576e86 −0.0262564 −0.0131282 0.999914i \(-0.504179\pi\)
−0.0131282 + 0.999914i \(0.504179\pi\)
\(524\) −1.72955e88 −0.723880
\(525\) −7.94318e88 −3.12476
\(526\) 1.44607e88 0.534751
\(527\) −1.94056e87 −0.0674656
\(528\) −4.49685e87 −0.146996
\(529\) 9.01549e88 2.77128
\(530\) 3.33438e87 0.0963939
\(531\) 1.98804e88 0.540572
\(532\) 2.68320e88 0.686316
\(533\) −1.74541e88 −0.420015
\(534\) 4.05862e88 0.918940
\(535\) 8.85745e87 0.188717
\(536\) 1.35307e88 0.271308
\(537\) −6.37817e87 −0.120374
\(538\) 2.66044e88 0.472640
\(539\) −4.55506e88 −0.761832
\(540\) 1.11186e88 0.175087
\(541\) 5.57539e88 0.826731 0.413366 0.910565i \(-0.364353\pi\)
0.413366 + 0.910565i \(0.364353\pi\)
\(542\) 6.32193e88 0.882821
\(543\) −1.19035e89 −1.56559
\(544\) 4.25682e87 0.0527376
\(545\) 1.98399e88 0.231554
\(546\) −1.90614e89 −2.09601
\(547\) 7.07942e88 0.733516 0.366758 0.930316i \(-0.380468\pi\)
0.366758 + 0.930316i \(0.380468\pi\)
\(548\) −6.22595e88 −0.607908
\(549\) −1.09833e88 −0.101072
\(550\) 2.62249e88 0.227471
\(551\) 9.03130e88 0.738454
\(552\) −1.57956e89 −1.21763
\(553\) 2.27088e89 1.65055
\(554\) 3.25953e88 0.223402
\(555\) −9.12270e88 −0.589660
\(556\) 7.94050e88 0.484080
\(557\) −3.02981e89 −1.74229 −0.871146 0.491024i \(-0.836623\pi\)
−0.871146 + 0.491024i \(0.836623\pi\)
\(558\) −6.32303e88 −0.343016
\(559\) 3.20336e88 0.163954
\(560\) 1.62105e88 0.0782863
\(561\) −3.84906e88 −0.175413
\(562\) −9.58222e87 −0.0412132
\(563\) −1.71058e89 −0.694419 −0.347209 0.937788i \(-0.612871\pi\)
−0.347209 + 0.937788i \(0.612871\pi\)
\(564\) −1.99038e89 −0.762721
\(565\) −4.68521e88 −0.169494
\(566\) 2.21873e89 0.757827
\(567\) 8.19979e89 2.64456
\(568\) −6.43865e87 −0.0196098
\(569\) −3.16278e89 −0.909747 −0.454874 0.890556i \(-0.650316\pi\)
−0.454874 + 0.890556i \(0.650316\pi\)
\(570\) 6.01605e88 0.163448
\(571\) 5.85264e88 0.150203 0.0751014 0.997176i \(-0.476072\pi\)
0.0751014 + 0.997176i \(0.476072\pi\)
\(572\) 6.29323e88 0.152582
\(573\) 3.49776e88 0.0801244
\(574\) 2.70717e89 0.585974
\(575\) 9.21169e89 1.88423
\(576\) 1.38702e89 0.268134
\(577\) −4.96515e89 −0.907232 −0.453616 0.891197i \(-0.649866\pi\)
−0.453616 + 0.891197i \(0.649866\pi\)
\(578\) −3.72956e89 −0.644174
\(579\) 4.44102e89 0.725152
\(580\) 5.45625e88 0.0842335
\(581\) −1.50928e90 −2.20316
\(582\) −7.98764e89 −1.10261
\(583\) −2.00774e89 −0.262108
\(584\) 2.23726e89 0.276247
\(585\) −2.91491e89 −0.340455
\(586\) 3.90799e89 0.431798
\(587\) 1.11789e90 1.16859 0.584293 0.811543i \(-0.301372\pi\)
0.584293 + 0.811543i \(0.301372\pi\)
\(588\) 2.05995e90 2.03748
\(589\) −1.82632e89 −0.170935
\(590\) 3.46914e88 0.0307278
\(591\) −1.83385e90 −1.53734
\(592\) −6.07500e89 −0.482049
\(593\) −2.22286e89 −0.166969 −0.0834843 0.996509i \(-0.526605\pi\)
−0.0834843 + 0.996509i \(0.526605\pi\)
\(594\) −6.69491e89 −0.476086
\(595\) 1.38753e89 0.0934204
\(596\) −4.58723e89 −0.292447
\(597\) −3.99958e90 −2.41462
\(598\) 2.21055e90 1.26389
\(599\) −1.31948e90 −0.714549 −0.357275 0.933999i \(-0.616294\pi\)
−0.357275 + 0.933999i \(0.616294\pi\)
\(600\) −1.18598e90 −0.608360
\(601\) 3.59225e90 1.74561 0.872803 0.488072i \(-0.162300\pi\)
0.872803 + 0.488072i \(0.162300\pi\)
\(602\) −4.96846e89 −0.228737
\(603\) 3.77367e90 1.64608
\(604\) −4.11783e89 −0.170203
\(605\) −3.91842e89 −0.153483
\(606\) −3.94054e90 −1.46284
\(607\) −8.43740e88 −0.0296877 −0.0148438 0.999890i \(-0.504725\pi\)
−0.0148438 + 0.999890i \(0.504725\pi\)
\(608\) 4.00622e89 0.133619
\(609\) 9.95104e90 3.14634
\(610\) −1.91658e88 −0.00574524
\(611\) 2.78549e90 0.791702
\(612\) 1.18722e90 0.319969
\(613\) 3.45526e90 0.883111 0.441556 0.897234i \(-0.354427\pi\)
0.441556 + 0.897234i \(0.354427\pi\)
\(614\) −7.35824e89 −0.178362
\(615\) 6.06980e89 0.139551
\(616\) −9.76090e89 −0.212871
\(617\) −4.93363e90 −1.02070 −0.510351 0.859966i \(-0.670485\pi\)
−0.510351 + 0.859966i \(0.670485\pi\)
\(618\) 5.16884e90 1.01454
\(619\) −6.19575e90 −1.15385 −0.576923 0.816798i \(-0.695747\pi\)
−0.576923 + 0.816798i \(0.695747\pi\)
\(620\) −1.10337e89 −0.0194981
\(621\) −2.35164e91 −3.94361
\(622\) −6.32575e90 −1.00676
\(623\) 8.80966e90 1.33075
\(624\) −2.84601e90 −0.408072
\(625\) 6.69796e90 0.911679
\(626\) 4.36192e90 0.563653
\(627\) −3.62247e90 −0.444436
\(628\) −2.78713e90 −0.324690
\(629\) −5.19987e90 −0.575237
\(630\) 4.52107e90 0.474978
\(631\) −6.36353e89 −0.0634956 −0.0317478 0.999496i \(-0.510107\pi\)
−0.0317478 + 0.999496i \(0.510107\pi\)
\(632\) 3.39060e90 0.321345
\(633\) 2.09206e91 1.88345
\(634\) −3.89567e90 −0.333182
\(635\) −1.36927e89 −0.0111261
\(636\) 9.07970e90 0.700995
\(637\) −2.88285e91 −2.11490
\(638\) −3.28539e90 −0.229042
\(639\) −1.79572e90 −0.118977
\(640\) 2.42035e89 0.0152416
\(641\) 2.26994e91 1.35871 0.679357 0.733808i \(-0.262259\pi\)
0.679357 + 0.733808i \(0.262259\pi\)
\(642\) 2.41193e91 1.37239
\(643\) −1.14475e90 −0.0619234 −0.0309617 0.999521i \(-0.509857\pi\)
−0.0309617 + 0.999521i \(0.509857\pi\)
\(644\) −3.42859e91 −1.76330
\(645\) −1.11399e90 −0.0544741
\(646\) 3.42911e90 0.159450
\(647\) 1.43147e91 0.632983 0.316492 0.948595i \(-0.397495\pi\)
0.316492 + 0.948595i \(0.397495\pi\)
\(648\) 1.22429e91 0.514870
\(649\) −2.08888e90 −0.0835529
\(650\) 1.65974e91 0.631476
\(651\) −2.01231e91 −0.728304
\(652\) −9.46109e89 −0.0325757
\(653\) −3.65589e91 −1.19761 −0.598804 0.800896i \(-0.704357\pi\)
−0.598804 + 0.800896i \(0.704357\pi\)
\(654\) 5.40250e91 1.68391
\(655\) −8.41731e90 −0.249650
\(656\) 4.04201e90 0.114083
\(657\) 6.23965e91 1.67604
\(658\) −4.32034e91 −1.10453
\(659\) 6.82976e91 1.66199 0.830996 0.556278i \(-0.187771\pi\)
0.830996 + 0.556278i \(0.187771\pi\)
\(660\) −2.18851e90 −0.0506957
\(661\) −6.45046e91 −1.42247 −0.711235 0.702954i \(-0.751864\pi\)
−0.711235 + 0.702954i \(0.751864\pi\)
\(662\) −4.30282e91 −0.903376
\(663\) −2.43603e91 −0.486960
\(664\) −2.25348e91 −0.428934
\(665\) 1.30585e91 0.236695
\(666\) −1.69430e92 −2.92468
\(667\) −1.15402e92 −1.89725
\(668\) 3.90722e91 0.611833
\(669\) 1.56096e92 2.32832
\(670\) 6.58505e90 0.0935682
\(671\) 1.15404e90 0.0156221
\(672\) 4.41421e91 0.569314
\(673\) 1.08533e92 1.33374 0.666870 0.745174i \(-0.267633\pi\)
0.666870 + 0.745174i \(0.267633\pi\)
\(674\) 1.09523e92 1.28250
\(675\) −1.76568e92 −1.97033
\(676\) −7.18598e90 −0.0764219
\(677\) 1.17420e92 1.19017 0.595087 0.803661i \(-0.297117\pi\)
0.595087 + 0.803661i \(0.297117\pi\)
\(678\) −1.27581e92 −1.23259
\(679\) −1.73380e92 −1.59673
\(680\) 2.07169e90 0.0181880
\(681\) 2.21313e92 1.85236
\(682\) 6.64377e90 0.0530178
\(683\) 6.85366e91 0.521495 0.260747 0.965407i \(-0.416031\pi\)
0.260747 + 0.965407i \(0.416031\pi\)
\(684\) 1.11732e92 0.810692
\(685\) −3.03002e91 −0.209654
\(686\) 2.52541e92 1.66647
\(687\) −1.45401e92 −0.915109
\(688\) −7.41830e90 −0.0445328
\(689\) −1.27068e92 −0.727631
\(690\) −7.68732e91 −0.419933
\(691\) 2.46496e92 1.28462 0.642308 0.766447i \(-0.277977\pi\)
0.642308 + 0.766447i \(0.277977\pi\)
\(692\) −1.05563e92 −0.524886
\(693\) −2.72229e92 −1.29153
\(694\) 2.10360e92 0.952315
\(695\) 3.86446e91 0.166948
\(696\) 1.48577e92 0.612562
\(697\) 3.45974e91 0.136138
\(698\) −7.85303e91 −0.294942
\(699\) 2.81210e92 1.00814
\(700\) −2.57429e92 −0.880991
\(701\) 1.34120e90 0.00438184 0.00219092 0.999998i \(-0.499303\pi\)
0.00219092 + 0.999998i \(0.499303\pi\)
\(702\) −4.23714e92 −1.32165
\(703\) −4.89376e92 −1.45745
\(704\) −1.45738e91 −0.0414439
\(705\) −9.68673e91 −0.263045
\(706\) 3.20966e92 0.832352
\(707\) −8.55336e92 −2.11839
\(708\) 9.44664e91 0.223458
\(709\) −7.78630e92 −1.75925 −0.879627 0.475665i \(-0.842208\pi\)
−0.879627 + 0.475665i \(0.842208\pi\)
\(710\) −3.13354e90 −0.00676299
\(711\) 9.45630e92 1.94966
\(712\) 1.31535e92 0.259085
\(713\) 2.33367e92 0.439168
\(714\) 3.77832e92 0.679371
\(715\) 3.06276e91 0.0526220
\(716\) −2.06709e91 −0.0339380
\(717\) 1.13388e93 1.77908
\(718\) 6.63675e91 0.0995202
\(719\) 3.66023e92 0.524589 0.262294 0.964988i \(-0.415521\pi\)
0.262294 + 0.964988i \(0.415521\pi\)
\(720\) 6.75031e91 0.0924735
\(721\) 1.12195e93 1.46919
\(722\) −2.42141e92 −0.303116
\(723\) 5.17883e91 0.0619779
\(724\) −3.85778e92 −0.441402
\(725\) −8.66474e92 −0.947917
\(726\) −1.06701e93 −1.11616
\(727\) 6.64158e92 0.664359 0.332180 0.943216i \(-0.392216\pi\)
0.332180 + 0.943216i \(0.392216\pi\)
\(728\) −6.17757e92 −0.590946
\(729\) −5.21974e92 −0.477534
\(730\) 1.08882e92 0.0952715
\(731\) −6.34966e91 −0.0531417
\(732\) −5.21896e91 −0.0417805
\(733\) −2.54774e92 −0.195108 −0.0975540 0.995230i \(-0.531102\pi\)
−0.0975540 + 0.995230i \(0.531102\pi\)
\(734\) −3.57272e92 −0.261744
\(735\) 1.00253e93 0.702683
\(736\) −5.11915e92 −0.343296
\(737\) −3.96508e92 −0.254424
\(738\) 1.12731e93 0.692166
\(739\) 3.17995e93 1.86843 0.934214 0.356713i \(-0.116103\pi\)
0.934214 + 0.356713i \(0.116103\pi\)
\(740\) −2.95656e92 −0.166248
\(741\) −2.29262e93 −1.23379
\(742\) 1.97085e93 1.01514
\(743\) −2.89059e93 −1.42512 −0.712559 0.701613i \(-0.752464\pi\)
−0.712559 + 0.701613i \(0.752464\pi\)
\(744\) −3.00454e92 −0.141794
\(745\) −2.23250e92 −0.100858
\(746\) 1.95445e93 0.845302
\(747\) −6.28488e93 −2.60242
\(748\) −1.24744e92 −0.0494557
\(749\) 5.23535e93 1.98741
\(750\) −1.17206e93 −0.426049
\(751\) −1.81741e93 −0.632638 −0.316319 0.948653i \(-0.602447\pi\)
−0.316319 + 0.948653i \(0.602447\pi\)
\(752\) −6.45060e92 −0.215041
\(753\) −6.17210e93 −1.97059
\(754\) −2.07929e93 −0.635838
\(755\) −2.00405e92 −0.0586992
\(756\) 6.57187e93 1.84387
\(757\) 2.17655e93 0.584997 0.292498 0.956266i \(-0.405513\pi\)
0.292498 + 0.956266i \(0.405513\pi\)
\(758\) 6.78652e92 0.174742
\(759\) 4.62880e93 1.14185
\(760\) 1.94973e92 0.0460822
\(761\) −1.56556e93 −0.354541 −0.177271 0.984162i \(-0.556727\pi\)
−0.177271 + 0.984162i \(0.556727\pi\)
\(762\) −3.72858e92 −0.0809110
\(763\) 1.17267e94 2.43853
\(764\) 1.13358e92 0.0225901
\(765\) 5.77790e92 0.110350
\(766\) −4.46259e93 −0.816869
\(767\) −1.32203e93 −0.231949
\(768\) 6.59076e92 0.110840
\(769\) 1.67026e93 0.269263 0.134632 0.990896i \(-0.457015\pi\)
0.134632 + 0.990896i \(0.457015\pi\)
\(770\) −4.75040e92 −0.0734144
\(771\) 5.41895e93 0.802874
\(772\) 1.43928e93 0.204448
\(773\) 8.36386e93 1.13913 0.569565 0.821946i \(-0.307112\pi\)
0.569565 + 0.821946i \(0.307112\pi\)
\(774\) −2.06894e93 −0.270189
\(775\) 1.75219e93 0.219420
\(776\) −2.58870e93 −0.310868
\(777\) −5.39213e94 −6.20980
\(778\) 9.23409e93 1.01990
\(779\) 3.25607e93 0.344926
\(780\) −1.38509e93 −0.140735
\(781\) 1.88681e92 0.0183895
\(782\) −4.38172e93 −0.409661
\(783\) 2.21201e94 1.98394
\(784\) 6.67607e93 0.574445
\(785\) −1.35643e93 −0.111978
\(786\) −2.29208e94 −1.81550
\(787\) 1.17315e94 0.891608 0.445804 0.895131i \(-0.352918\pi\)
0.445804 + 0.895131i \(0.352918\pi\)
\(788\) −5.94328e93 −0.433435
\(789\) 1.91639e94 1.34116
\(790\) 1.65013e93 0.110825
\(791\) −2.76927e94 −1.78497
\(792\) −4.06459e93 −0.251448
\(793\) 7.30379e92 0.0433680
\(794\) −9.35604e93 −0.533244
\(795\) 4.41888e93 0.241758
\(796\) −1.29622e94 −0.680775
\(797\) 1.47465e94 0.743523 0.371762 0.928328i \(-0.378754\pi\)
0.371762 + 0.928328i \(0.378754\pi\)
\(798\) 3.55589e94 1.72129
\(799\) −5.52136e93 −0.256611
\(800\) −3.84362e93 −0.171520
\(801\) 3.66848e94 1.57192
\(802\) 4.17331e93 0.171717
\(803\) −6.55615e93 −0.259056
\(804\) 1.79314e94 0.680446
\(805\) −1.66862e94 −0.608121
\(806\) 4.20477e93 0.147181
\(807\) 3.52574e94 1.18539
\(808\) −1.27708e94 −0.412430
\(809\) −4.60643e94 −1.42902 −0.714508 0.699627i \(-0.753350\pi\)
−0.714508 + 0.699627i \(0.753350\pi\)
\(810\) 5.95834e93 0.177567
\(811\) −5.13493e94 −1.47013 −0.735067 0.677995i \(-0.762849\pi\)
−0.735067 + 0.677995i \(0.762849\pi\)
\(812\) 3.22502e94 0.887076
\(813\) 8.37811e94 2.21413
\(814\) 1.78025e94 0.452050
\(815\) −4.60449e92 −0.0112346
\(816\) 5.64133e93 0.132267
\(817\) −5.97586e93 −0.134643
\(818\) 4.92173e94 1.06570
\(819\) −1.72291e95 −3.58538
\(820\) 1.96715e93 0.0393448
\(821\) −8.87475e94 −1.70610 −0.853048 0.521833i \(-0.825249\pi\)
−0.853048 + 0.521833i \(0.825249\pi\)
\(822\) −8.25092e94 −1.52464
\(823\) −1.31924e91 −0.000234330 0 −0.000117165 1.00000i \(-0.500037\pi\)
−0.000117165 1.00000i \(0.500037\pi\)
\(824\) 1.67516e94 0.286037
\(825\) 3.47544e94 0.570501
\(826\) 2.05049e94 0.323599
\(827\) 6.22659e94 0.944760 0.472380 0.881395i \(-0.343395\pi\)
0.472380 + 0.881395i \(0.343395\pi\)
\(828\) −1.42772e95 −2.08284
\(829\) 1.32545e95 1.85927 0.929633 0.368487i \(-0.120124\pi\)
0.929633 + 0.368487i \(0.120124\pi\)
\(830\) −1.09671e94 −0.147930
\(831\) 4.31968e94 0.560297
\(832\) −9.22359e93 −0.115051
\(833\) 5.71435e94 0.685495
\(834\) 1.05231e95 1.21408
\(835\) 1.90155e94 0.211007
\(836\) −1.17400e94 −0.125304
\(837\) −4.47315e94 −0.459236
\(838\) −6.23040e94 −0.615298
\(839\) −1.09266e95 −1.03806 −0.519030 0.854756i \(-0.673707\pi\)
−0.519030 + 0.854756i \(0.673707\pi\)
\(840\) 2.14829e94 0.196343
\(841\) −5.17872e93 −0.0455357
\(842\) 6.78590e94 0.574070
\(843\) −1.26988e94 −0.103363
\(844\) 6.78014e94 0.531018
\(845\) −3.49724e93 −0.0263562
\(846\) −1.79906e95 −1.30469
\(847\) −2.31605e95 −1.61636
\(848\) 2.94262e94 0.197638
\(849\) 2.94036e95 1.90064
\(850\) −3.28993e94 −0.204678
\(851\) 6.25325e95 3.74451
\(852\) −8.53279e93 −0.0491818
\(853\) −2.86943e95 −1.59203 −0.796017 0.605275i \(-0.793063\pi\)
−0.796017 + 0.605275i \(0.793063\pi\)
\(854\) −1.13283e94 −0.0605040
\(855\) 5.43775e94 0.279589
\(856\) 7.81679e94 0.386929
\(857\) −1.20587e93 −0.00574676 −0.00287338 0.999996i \(-0.500915\pi\)
−0.00287338 + 0.999996i \(0.500915\pi\)
\(858\) 8.34007e94 0.382677
\(859\) −1.83240e95 −0.809548 −0.404774 0.914417i \(-0.632650\pi\)
−0.404774 + 0.914417i \(0.632650\pi\)
\(860\) −3.61031e93 −0.0153584
\(861\) 3.58766e95 1.46963
\(862\) −2.01141e95 −0.793439
\(863\) −1.65941e95 −0.630381 −0.315191 0.949028i \(-0.602068\pi\)
−0.315191 + 0.949028i \(0.602068\pi\)
\(864\) 9.81231e94 0.358984
\(865\) −5.13752e94 −0.181021
\(866\) −2.80416e95 −0.951635
\(867\) −4.94259e95 −1.61560
\(868\) −6.52166e94 −0.205337
\(869\) −9.93597e94 −0.301347
\(870\) 7.23088e94 0.211259
\(871\) −2.50946e95 −0.706301
\(872\) 1.75089e95 0.474758
\(873\) −7.21982e95 −1.88609
\(874\) −4.12377e95 −1.03794
\(875\) −2.54409e95 −0.616979
\(876\) 2.96491e95 0.692833
\(877\) 1.48207e95 0.333719 0.166859 0.985981i \(-0.446637\pi\)
0.166859 + 0.985981i \(0.446637\pi\)
\(878\) 3.32910e95 0.722363
\(879\) 5.17904e95 1.08296
\(880\) −7.09271e93 −0.0142931
\(881\) 7.47412e95 1.45159 0.725794 0.687912i \(-0.241473\pi\)
0.725794 + 0.687912i \(0.241473\pi\)
\(882\) 1.86194e96 3.48527
\(883\) 5.01949e94 0.0905601 0.0452800 0.998974i \(-0.485582\pi\)
0.0452800 + 0.998974i \(0.485582\pi\)
\(884\) −7.89489e94 −0.137293
\(885\) 4.59746e94 0.0770658
\(886\) −4.23136e95 −0.683730
\(887\) −6.49378e94 −0.101153 −0.0505766 0.998720i \(-0.516106\pi\)
−0.0505766 + 0.998720i \(0.516106\pi\)
\(888\) −8.05087e95 −1.20899
\(889\) −8.09329e94 −0.117170
\(890\) 6.40150e94 0.0893525
\(891\) −3.58772e95 −0.482829
\(892\) 5.05888e95 0.656443
\(893\) −5.19632e95 −0.650165
\(894\) −6.07921e95 −0.733462
\(895\) −1.00600e94 −0.0117045
\(896\) 1.43059e95 0.160511
\(897\) 2.92952e96 3.16987
\(898\) −5.86073e95 −0.611604
\(899\) −2.19511e95 −0.220936
\(900\) −1.07197e96 −1.04065
\(901\) 2.51873e95 0.235844
\(902\) −1.18449e95 −0.106984
\(903\) −6.58443e95 −0.573676
\(904\) −4.13474e95 −0.347516
\(905\) −1.87749e95 −0.152229
\(906\) −5.45713e95 −0.426872
\(907\) 6.33080e95 0.477773 0.238886 0.971048i \(-0.423218\pi\)
0.238886 + 0.971048i \(0.423218\pi\)
\(908\) 7.17249e95 0.522252
\(909\) −3.56175e96 −2.50229
\(910\) −3.00648e95 −0.203804
\(911\) 2.64509e96 1.73019 0.865095 0.501608i \(-0.167258\pi\)
0.865095 + 0.501608i \(0.167258\pi\)
\(912\) 5.30922e95 0.335119
\(913\) 6.60368e95 0.402241
\(914\) −9.60600e94 −0.0564666
\(915\) −2.53994e94 −0.0144092
\(916\) −4.71227e95 −0.258004
\(917\) −4.97520e96 −2.62910
\(918\) 8.39880e95 0.428381
\(919\) 2.77233e95 0.136487 0.0682434 0.997669i \(-0.478261\pi\)
0.0682434 + 0.997669i \(0.478261\pi\)
\(920\) −2.49137e95 −0.118395
\(921\) −9.75148e95 −0.447335
\(922\) 1.53357e96 0.679125
\(923\) 1.19414e95 0.0510506
\(924\) −1.29356e96 −0.533884
\(925\) 4.69513e96 1.87086
\(926\) −1.78618e96 −0.687175
\(927\) 4.67198e96 1.73544
\(928\) 4.81520e95 0.172705
\(929\) −1.60427e96 −0.555605 −0.277802 0.960638i \(-0.589606\pi\)
−0.277802 + 0.960638i \(0.589606\pi\)
\(930\) −1.46224e95 −0.0489015
\(931\) 5.37795e96 1.73681
\(932\) 9.11368e95 0.284234
\(933\) −8.38317e96 −2.52496
\(934\) 4.61107e96 1.34131
\(935\) −6.07098e94 −0.0170562
\(936\) −2.57243e96 −0.698038
\(937\) −6.51536e94 −0.0170766 −0.00853830 0.999964i \(-0.502718\pi\)
−0.00853830 + 0.999964i \(0.502718\pi\)
\(938\) 3.89221e96 0.985381
\(939\) 5.78061e96 1.41365
\(940\) −3.13935e95 −0.0741626
\(941\) −1.98209e96 −0.452336 −0.226168 0.974088i \(-0.572620\pi\)
−0.226168 + 0.974088i \(0.572620\pi\)
\(942\) −3.69363e96 −0.814327
\(943\) −4.16061e96 −0.886190
\(944\) 3.06155e95 0.0630015
\(945\) 3.19837e96 0.635910
\(946\) 2.17389e95 0.0417615
\(947\) −8.35493e96 −1.55085 −0.775423 0.631442i \(-0.782463\pi\)
−0.775423 + 0.631442i \(0.782463\pi\)
\(948\) 4.49338e96 0.805939
\(949\) −4.14932e96 −0.719159
\(950\) −3.09625e96 −0.518583
\(951\) −5.16272e96 −0.835625
\(952\) 1.22451e96 0.191541
\(953\) 1.12245e97 1.69687 0.848435 0.529300i \(-0.177545\pi\)
0.848435 + 0.529300i \(0.177545\pi\)
\(954\) 8.20690e96 1.19910
\(955\) 5.51688e94 0.00779083
\(956\) 3.67478e96 0.501591
\(957\) −4.35396e96 −0.574442
\(958\) −7.53699e96 −0.961212
\(959\) −1.79095e97 −2.20790
\(960\) 3.20757e95 0.0382261
\(961\) −8.23591e96 −0.948859
\(962\) 1.12670e97 1.25492
\(963\) 2.18008e97 2.34757
\(964\) 1.67840e95 0.0174740
\(965\) 7.00465e95 0.0705096
\(966\) −4.54373e97 −4.42238
\(967\) 1.34440e97 1.26523 0.632615 0.774466i \(-0.281981\pi\)
0.632615 + 0.774466i \(0.281981\pi\)
\(968\) −3.45804e96 −0.314689
\(969\) 4.54441e96 0.399903
\(970\) −1.25986e96 −0.107211
\(971\) −1.89806e97 −1.56201 −0.781006 0.624524i \(-0.785293\pi\)
−0.781006 + 0.624524i \(0.785293\pi\)
\(972\) 3.46717e96 0.275944
\(973\) 2.28415e97 1.75816
\(974\) 1.42617e97 1.06170
\(975\) 2.19957e97 1.58375
\(976\) −1.69140e95 −0.0117795
\(977\) −1.74539e97 −1.17576 −0.587882 0.808947i \(-0.700038\pi\)
−0.587882 + 0.808947i \(0.700038\pi\)
\(978\) −1.25383e96 −0.0817005
\(979\) −3.85456e96 −0.242961
\(980\) 3.24909e96 0.198113
\(981\) 4.88318e97 2.88045
\(982\) 1.11625e97 0.636997
\(983\) 1.63070e97 0.900293 0.450146 0.892955i \(-0.351372\pi\)
0.450146 + 0.892955i \(0.351372\pi\)
\(984\) 5.35666e96 0.286123
\(985\) −2.89246e96 −0.149482
\(986\) 4.12155e96 0.206092
\(987\) −5.72551e97 −2.77017
\(988\) −7.43012e96 −0.347852
\(989\) 7.63596e96 0.345927
\(990\) −1.97814e96 −0.0867188
\(991\) 3.17629e97 1.34749 0.673747 0.738962i \(-0.264684\pi\)
0.673747 + 0.738962i \(0.264684\pi\)
\(992\) −9.73735e95 −0.0399771
\(993\) −5.70230e97 −2.26568
\(994\) −1.85213e96 −0.0712221
\(995\) −6.30839e96 −0.234784
\(996\) −2.98641e97 −1.07577
\(997\) 6.25056e96 0.217935 0.108967 0.994045i \(-0.465246\pi\)
0.108967 + 0.994045i \(0.465246\pi\)
\(998\) 2.19749e97 0.741627
\(999\) −1.19861e98 −3.91562
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2.66.a.b.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2.66.a.b.1.3 3 1.1 even 1 trivial