Properties

Label 2.66.a
Level $2$
Weight $66$
Character orbit 2.a
Rep. character $\chi_{2}(1,\cdot)$
Character field $\Q$
Dimension $5$
Newform subspaces $2$
Sturm bound $16$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2 \)
Weight: \( k \) \(=\) \( 66 \)
Character orbit: \([\chi]\) \(=\) 2.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(16\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{66}(\Gamma_0(2))\).

Total New Old
Modular forms 17 5 12
Cusp forms 15 5 10
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(8\)\(2\)\(6\)\(7\)\(2\)\(5\)\(1\)\(0\)\(1\)
\(-\)\(9\)\(3\)\(6\)\(8\)\(3\)\(5\)\(1\)\(0\)\(1\)

Trace form

\( 5 q + 4294967296 q^{2} + 41\!\cdots\!04 q^{3} + 92\!\cdots\!80 q^{4} - 70\!\cdots\!50 q^{5} + 78\!\cdots\!20 q^{6} + 70\!\cdots\!88 q^{7} + 79\!\cdots\!36 q^{8} + 42\!\cdots\!65 q^{9} + 33\!\cdots\!00 q^{10}+ \cdots - 94\!\cdots\!20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{66}^{\mathrm{new}}(\Gamma_0(2))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2
2.66.a.a 2.a 1.a $2$ $53.514$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None 2.66.a.a \(-8589934592\) \(11\!\cdots\!92\) \(-74\!\cdots\!00\) \(27\!\cdots\!24\) $+$ $\mathrm{SU}(2)$ \(q-2^{32}q^{2}+(574529980102596-111\beta )q^{3}+\cdots\)
2.66.a.b 2.a 1.a $3$ $53.514$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 2.66.a.b \(12884901888\) \(29\!\cdots\!12\) \(39\!\cdots\!50\) \(42\!\cdots\!64\) $-$ $\mathrm{SU}(2)$ \(q+2^{32}q^{2}+(994852866070404-\beta _{1}+\cdots)q^{3}+\cdots\)

Decomposition of \(S_{66}^{\mathrm{old}}(\Gamma_0(2))\) into lower level spaces

\( S_{66}^{\mathrm{old}}(\Gamma_0(2)) \simeq \) \(S_{66}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 2}\)