Properties

Label 2.44.a.a.1.2
Level 2
Weight 44
Character 2.1
Self dual Yes
Analytic conductor 23.422
Analytic rank 0
Dimension 2
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 2 \)
Weight: \( k \) = \( 44 \)
Character orbit: \([\chi]\) = 2.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(23.4220790691\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\mathbb{Q}[x]/(x^{2} - \cdots)\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{8}\cdot 3\cdot 5\cdot 11 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-156187.\)
Character \(\chi\) = 2.1

$q$-expansion

\(f(q)\) \(=\) \(q-2.09715e6 q^{2} +1.06542e8 q^{3} +4.39805e12 q^{4} -2.06968e15 q^{5} -2.23436e14 q^{6} +1.84575e18 q^{7} -9.22337e18 q^{8} -3.28246e20 q^{9} +O(q^{10})\) \(q-2.09715e6 q^{2} +1.06542e8 q^{3} +4.39805e12 q^{4} -2.06968e15 q^{5} -2.23436e14 q^{6} +1.84575e18 q^{7} -9.22337e18 q^{8} -3.28246e20 q^{9} +4.34044e21 q^{10} -3.48878e22 q^{11} +4.68578e20 q^{12} -4.35696e23 q^{13} -3.87082e24 q^{14} -2.20509e23 q^{15} +1.93428e25 q^{16} -5.00873e24 q^{17} +6.88381e26 q^{18} +2.39806e27 q^{19} -9.10256e27 q^{20} +1.96651e26 q^{21} +7.31649e28 q^{22} +3.90831e27 q^{23} -9.82680e26 q^{24} +3.14672e30 q^{25} +9.13721e29 q^{26} -6.99454e28 q^{27} +8.11771e30 q^{28} +3.01099e31 q^{29} +4.62441e29 q^{30} +4.83774e31 q^{31} -4.05648e31 q^{32} -3.71703e30 q^{33} +1.05041e31 q^{34} -3.82012e33 q^{35} -1.44364e33 q^{36} +3.30039e33 q^{37} -5.02909e33 q^{38} -4.64201e31 q^{39} +1.90894e34 q^{40} +4.18404e34 q^{41} -4.12407e32 q^{42} +3.60631e34 q^{43} -1.53438e35 q^{44} +6.79364e35 q^{45} -8.19632e33 q^{46} -1.27935e36 q^{47} +2.06083e33 q^{48} +1.22299e36 q^{49} -6.59914e36 q^{50} -5.33642e32 q^{51} -1.91621e36 q^{52} -1.39570e36 q^{53} +1.46686e35 q^{54} +7.22066e37 q^{55} -1.70241e37 q^{56} +2.55495e35 q^{57} -6.31451e37 q^{58} +1.27247e38 q^{59} -9.69808e35 q^{60} -1.47259e38 q^{61} -1.01455e38 q^{62} -6.05860e38 q^{63} +8.50706e37 q^{64} +9.01752e38 q^{65} +7.79517e36 q^{66} -2.49457e39 q^{67} -2.20286e37 q^{68} +4.16400e35 q^{69} +8.01138e39 q^{70} +2.98574e39 q^{71} +3.02753e39 q^{72} +3.76985e38 q^{73} -6.92142e39 q^{74} +3.35259e38 q^{75} +1.05468e40 q^{76} -6.43942e40 q^{77} +9.73500e37 q^{78} -3.92521e40 q^{79} -4.00335e40 q^{80} +1.07741e41 q^{81} -8.77456e40 q^{82} +3.07544e41 q^{83} +8.64880e38 q^{84} +1.03665e40 q^{85} -7.56297e40 q^{86} +3.20798e39 q^{87} +3.21783e41 q^{88} +8.59629e41 q^{89} -1.42473e42 q^{90} -8.04187e41 q^{91} +1.71889e40 q^{92} +5.15424e39 q^{93} +2.68299e42 q^{94} -4.96321e42 q^{95} -4.32187e39 q^{96} -5.70573e42 q^{97} -2.56479e42 q^{98} +1.14518e43 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 4194304q^{2} - 12981630984q^{3} + 8796093022208q^{4} - 398662711282500q^{5} + 27224453381357568q^{6} + 1174870033543241008q^{7} - 18446744073709551616q^{8} - 485202301172100019926q^{9} + O(q^{10}) \) \( 2q - 4194304q^{2} - 12981630984q^{3} + 8796093022208q^{4} - 398662711282500q^{5} + 27224453381357568q^{6} + 1174870033543241008q^{7} - 18446744073709551616q^{8} - \)\(48\!\cdots\!26\)\(q^{9} + \)\(83\!\cdots\!00\)\(q^{10} - \)\(11\!\cdots\!76\)\(q^{11} - \)\(57\!\cdots\!36\)\(q^{12} - \)\(16\!\cdots\!84\)\(q^{13} - \)\(24\!\cdots\!16\)\(q^{14} - \)\(22\!\cdots\!00\)\(q^{15} + \)\(38\!\cdots\!32\)\(q^{16} + \)\(34\!\cdots\!68\)\(q^{17} + \)\(10\!\cdots\!52\)\(q^{18} - \)\(52\!\cdots\!00\)\(q^{19} - \)\(17\!\cdots\!00\)\(q^{20} + \)\(89\!\cdots\!64\)\(q^{21} + \)\(24\!\cdots\!52\)\(q^{22} + \)\(22\!\cdots\!36\)\(q^{23} + \)\(11\!\cdots\!72\)\(q^{24} + \)\(48\!\cdots\!50\)\(q^{25} + \)\(34\!\cdots\!68\)\(q^{26} + \)\(62\!\cdots\!60\)\(q^{27} + \)\(51\!\cdots\!32\)\(q^{28} + \)\(34\!\cdots\!20\)\(q^{29} + \)\(46\!\cdots\!00\)\(q^{30} + \)\(16\!\cdots\!04\)\(q^{31} - \)\(81\!\cdots\!64\)\(q^{32} - \)\(30\!\cdots\!08\)\(q^{33} - \)\(71\!\cdots\!36\)\(q^{34} - \)\(49\!\cdots\!00\)\(q^{35} - \)\(21\!\cdots\!04\)\(q^{36} - \)\(43\!\cdots\!32\)\(q^{37} + \)\(11\!\cdots\!00\)\(q^{38} + \)\(15\!\cdots\!28\)\(q^{39} + \)\(36\!\cdots\!00\)\(q^{40} + \)\(73\!\cdots\!24\)\(q^{41} - \)\(18\!\cdots\!28\)\(q^{42} + \)\(23\!\cdots\!36\)\(q^{43} - \)\(51\!\cdots\!04\)\(q^{44} + \)\(41\!\cdots\!00\)\(q^{45} - \)\(48\!\cdots\!72\)\(q^{46} - \)\(39\!\cdots\!92\)\(q^{47} - \)\(25\!\cdots\!44\)\(q^{48} - \)\(51\!\cdots\!54\)\(q^{49} - \)\(10\!\cdots\!00\)\(q^{50} - \)\(45\!\cdots\!56\)\(q^{51} - \)\(72\!\cdots\!36\)\(q^{52} + \)\(21\!\cdots\!56\)\(q^{53} - \)\(13\!\cdots\!20\)\(q^{54} + \)\(11\!\cdots\!00\)\(q^{55} - \)\(10\!\cdots\!64\)\(q^{56} + \)\(38\!\cdots\!00\)\(q^{57} - \)\(71\!\cdots\!40\)\(q^{58} + \)\(67\!\cdots\!40\)\(q^{59} - \)\(97\!\cdots\!00\)\(q^{60} + \)\(10\!\cdots\!04\)\(q^{61} - \)\(34\!\cdots\!08\)\(q^{62} - \)\(50\!\cdots\!04\)\(q^{63} + \)\(17\!\cdots\!28\)\(q^{64} - \)\(11\!\cdots\!00\)\(q^{65} + \)\(64\!\cdots\!16\)\(q^{66} - \)\(12\!\cdots\!52\)\(q^{67} + \)\(15\!\cdots\!72\)\(q^{68} - \)\(29\!\cdots\!12\)\(q^{69} + \)\(10\!\cdots\!00\)\(q^{70} + \)\(10\!\cdots\!64\)\(q^{71} + \)\(44\!\cdots\!08\)\(q^{72} - \)\(10\!\cdots\!24\)\(q^{73} + \)\(92\!\cdots\!64\)\(q^{74} - \)\(21\!\cdots\!00\)\(q^{75} - \)\(23\!\cdots\!00\)\(q^{76} - \)\(80\!\cdots\!04\)\(q^{77} - \)\(33\!\cdots\!56\)\(q^{78} - \)\(66\!\cdots\!20\)\(q^{79} - \)\(77\!\cdots\!00\)\(q^{80} + \)\(76\!\cdots\!82\)\(q^{81} - \)\(15\!\cdots\!48\)\(q^{82} + \)\(54\!\cdots\!56\)\(q^{83} + \)\(39\!\cdots\!56\)\(q^{84} + \)\(59\!\cdots\!00\)\(q^{85} - \)\(49\!\cdots\!72\)\(q^{86} - \)\(49\!\cdots\!40\)\(q^{87} + \)\(10\!\cdots\!08\)\(q^{88} + \)\(29\!\cdots\!20\)\(q^{89} - \)\(87\!\cdots\!00\)\(q^{90} + \)\(16\!\cdots\!64\)\(q^{91} + \)\(10\!\cdots\!44\)\(q^{92} - \)\(14\!\cdots\!68\)\(q^{93} + \)\(82\!\cdots\!84\)\(q^{94} - \)\(98\!\cdots\!00\)\(q^{95} + \)\(52\!\cdots\!88\)\(q^{96} - \)\(22\!\cdots\!12\)\(q^{97} + \)\(10\!\cdots\!08\)\(q^{98} + \)\(77\!\cdots\!88\)\(q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.09715e6 −0.707107
\(3\) 1.06542e8 0.00588052 0.00294026 0.999996i \(-0.499064\pi\)
0.00294026 + 0.999996i \(0.499064\pi\)
\(4\) 4.39805e12 0.500000
\(5\) −2.06968e15 −1.94110 −0.970552 0.240894i \(-0.922560\pi\)
−0.970552 + 0.240894i \(0.922560\pi\)
\(6\) −2.23436e14 −0.00415815
\(7\) 1.84575e18 1.24901 0.624505 0.781021i \(-0.285301\pi\)
0.624505 + 0.781021i \(0.285301\pi\)
\(8\) −9.22337e18 −0.353553
\(9\) −3.28246e20 −0.999965
\(10\) 4.34044e21 1.37257
\(11\) −3.48878e22 −1.42145 −0.710723 0.703472i \(-0.751632\pi\)
−0.710723 + 0.703472i \(0.751632\pi\)
\(12\) 4.68578e20 0.00294026
\(13\) −4.35696e23 −0.489104 −0.244552 0.969636i \(-0.578641\pi\)
−0.244552 + 0.969636i \(0.578641\pi\)
\(14\) −3.87082e24 −0.883183
\(15\) −2.20509e23 −0.0114147
\(16\) 1.93428e25 0.250000
\(17\) −5.00873e24 −0.0175823 −0.00879115 0.999961i \(-0.502798\pi\)
−0.00879115 + 0.999961i \(0.502798\pi\)
\(18\) 6.88381e26 0.707082
\(19\) 2.39806e27 0.770295 0.385147 0.922855i \(-0.374151\pi\)
0.385147 + 0.922855i \(0.374151\pi\)
\(20\) −9.10256e27 −0.970552
\(21\) 1.96651e26 0.00734482
\(22\) 7.31649e28 1.00511
\(23\) 3.90831e27 0.0206462 0.0103231 0.999947i \(-0.496714\pi\)
0.0103231 + 0.999947i \(0.496714\pi\)
\(24\) −9.82680e26 −0.00207908
\(25\) 3.14672e30 2.76788
\(26\) 9.13721e29 0.345849
\(27\) −6.99454e28 −0.0117608
\(28\) 8.11771e30 0.624505
\(29\) 3.01099e31 1.08931 0.544657 0.838659i \(-0.316660\pi\)
0.544657 + 0.838659i \(0.316660\pi\)
\(30\) 4.62441e29 0.00807140
\(31\) 4.83774e31 0.417221 0.208610 0.977999i \(-0.433106\pi\)
0.208610 + 0.977999i \(0.433106\pi\)
\(32\) −4.05648e31 −0.176777
\(33\) −3.71703e30 −0.00835884
\(34\) 1.05041e31 0.0124326
\(35\) −3.82012e33 −2.42446
\(36\) −1.44364e33 −0.499983
\(37\) 3.30039e33 0.634203 0.317102 0.948392i \(-0.397290\pi\)
0.317102 + 0.948392i \(0.397290\pi\)
\(38\) −5.02909e33 −0.544681
\(39\) −4.64201e31 −0.00287619
\(40\) 1.90894e34 0.686284
\(41\) 4.18404e34 0.884591 0.442296 0.896869i \(-0.354164\pi\)
0.442296 + 0.896869i \(0.354164\pi\)
\(42\) −4.12407e32 −0.00519357
\(43\) 3.60631e34 0.273836 0.136918 0.990582i \(-0.456280\pi\)
0.136918 + 0.990582i \(0.456280\pi\)
\(44\) −1.53438e35 −0.710723
\(45\) 6.79364e35 1.94104
\(46\) −8.19632e33 −0.0145991
\(47\) −1.27935e36 −1.43511 −0.717556 0.696501i \(-0.754739\pi\)
−0.717556 + 0.696501i \(0.754739\pi\)
\(48\) 2.06083e33 0.00147013
\(49\) 1.22299e36 0.560024
\(50\) −6.59914e36 −1.95719
\(51\) −5.33642e32 −0.000103393 0
\(52\) −1.91621e36 −0.244552
\(53\) −1.39570e36 −0.118266 −0.0591330 0.998250i \(-0.518834\pi\)
−0.0591330 + 0.998250i \(0.518834\pi\)
\(54\) 1.46686e35 0.00831616
\(55\) 7.22066e37 2.75917
\(56\) −1.70241e37 −0.441591
\(57\) 2.55495e35 0.00452973
\(58\) −6.31451e37 −0.770261
\(59\) 1.27247e38 1.07480 0.537402 0.843326i \(-0.319406\pi\)
0.537402 + 0.843326i \(0.319406\pi\)
\(60\) −9.69808e35 −0.00570734
\(61\) −1.47259e38 −0.607422 −0.303711 0.952764i \(-0.598226\pi\)
−0.303711 + 0.952764i \(0.598226\pi\)
\(62\) −1.01455e38 −0.295020
\(63\) −6.05860e38 −1.24897
\(64\) 8.50706e37 0.125000
\(65\) 9.01752e38 0.949402
\(66\) 7.79517e36 0.00591059
\(67\) −2.49457e39 −1.36895 −0.684474 0.729037i \(-0.739968\pi\)
−0.684474 + 0.729037i \(0.739968\pi\)
\(68\) −2.20286e37 −0.00879115
\(69\) 4.16400e35 0.000121410 0
\(70\) 8.01138e39 1.71435
\(71\) 2.98574e39 0.470974 0.235487 0.971877i \(-0.424331\pi\)
0.235487 + 0.971877i \(0.424331\pi\)
\(72\) 3.02753e39 0.353541
\(73\) 3.76985e38 0.0327252 0.0163626 0.999866i \(-0.494791\pi\)
0.0163626 + 0.999866i \(0.494791\pi\)
\(74\) −6.92142e39 −0.448449
\(75\) 3.35259e38 0.0162766
\(76\) 1.05468e40 0.385147
\(77\) −6.43942e40 −1.77540
\(78\) 9.73500e37 0.00203377
\(79\) −3.92521e40 −0.623563 −0.311781 0.950154i \(-0.600926\pi\)
−0.311781 + 0.950154i \(0.600926\pi\)
\(80\) −4.00335e40 −0.485276
\(81\) 1.07741e41 0.999896
\(82\) −8.77456e40 −0.625500
\(83\) 3.07544e41 1.68939 0.844693 0.535252i \(-0.179783\pi\)
0.844693 + 0.535252i \(0.179783\pi\)
\(84\) 8.64880e38 0.00367241
\(85\) 1.03665e40 0.0341291
\(86\) −7.56297e40 −0.193631
\(87\) 3.20798e39 0.00640572
\(88\) 3.21783e41 0.502557
\(89\) 8.59629e41 1.05299 0.526497 0.850177i \(-0.323505\pi\)
0.526497 + 0.850177i \(0.323505\pi\)
\(90\) −1.42473e42 −1.37252
\(91\) −8.04187e41 −0.610896
\(92\) 1.71889e40 0.0103231
\(93\) 5.15424e39 0.00245347
\(94\) 2.68299e42 1.01478
\(95\) −4.96321e42 −1.49522
\(96\) −4.32187e39 −0.00103954
\(97\) −5.70573e42 −1.09830 −0.549148 0.835725i \(-0.685047\pi\)
−0.549148 + 0.835725i \(0.685047\pi\)
\(98\) −2.56479e42 −0.395997
\(99\) 1.14518e43 1.42140
\(100\) 1.38394e43 1.38394
\(101\) −1.05999e42 −0.0855842 −0.0427921 0.999084i \(-0.513625\pi\)
−0.0427921 + 0.999084i \(0.513625\pi\)
\(102\) 1.11913e39 7.31099e−5 0
\(103\) 6.46081e42 0.342205 0.171103 0.985253i \(-0.445267\pi\)
0.171103 + 0.985253i \(0.445267\pi\)
\(104\) 4.01859e42 0.172925
\(105\) −4.07005e41 −0.0142571
\(106\) 2.92699e42 0.0836267
\(107\) −2.23888e43 −0.522733 −0.261366 0.965240i \(-0.584173\pi\)
−0.261366 + 0.965240i \(0.584173\pi\)
\(108\) −3.07623e41 −0.00588041
\(109\) −3.44429e43 −0.540045 −0.270022 0.962854i \(-0.587031\pi\)
−0.270022 + 0.962854i \(0.587031\pi\)
\(110\) −1.51428e44 −1.95103
\(111\) 3.51632e41 0.00372944
\(112\) 3.57020e43 0.312252
\(113\) 1.79557e44 1.29723 0.648613 0.761118i \(-0.275349\pi\)
0.648613 + 0.761118i \(0.275349\pi\)
\(114\) −5.35811e41 −0.00320300
\(115\) −8.08896e42 −0.0400764
\(116\) 1.32425e44 0.544657
\(117\) 1.43015e44 0.489087
\(118\) −2.66856e44 −0.760001
\(119\) −9.24487e42 −0.0219605
\(120\) 2.03384e42 0.00403570
\(121\) 6.14755e44 1.02051
\(122\) 3.08825e44 0.429512
\(123\) 4.45777e42 0.00520185
\(124\) 2.12766e44 0.208610
\(125\) −4.15975e45 −3.43164
\(126\) 1.27058e45 0.883152
\(127\) 2.00065e45 1.17325 0.586626 0.809858i \(-0.300456\pi\)
0.586626 + 0.809858i \(0.300456\pi\)
\(128\) −1.78406e44 −0.0883883
\(129\) 3.84224e42 0.00161030
\(130\) −1.89111e45 −0.671329
\(131\) −4.83548e45 −1.45582 −0.727909 0.685674i \(-0.759508\pi\)
−0.727909 + 0.685674i \(0.759508\pi\)
\(132\) −1.63477e43 −0.00417942
\(133\) 4.42622e45 0.962105
\(134\) 5.23149e45 0.967993
\(135\) 1.44765e44 0.0228290
\(136\) 4.61974e43 0.00621628
\(137\) 1.55654e46 1.78924 0.894618 0.446832i \(-0.147448\pi\)
0.894618 + 0.446832i \(0.147448\pi\)
\(138\) −8.73255e41 −8.58501e−5 0
\(139\) −5.96200e44 −0.0501850 −0.0250925 0.999685i \(-0.507988\pi\)
−0.0250925 + 0.999685i \(0.507988\pi\)
\(140\) −1.68011e46 −1.21223
\(141\) −1.36305e44 −0.00843920
\(142\) −6.26154e45 −0.333029
\(143\) 1.52005e46 0.695235
\(144\) −6.34919e45 −0.249991
\(145\) −6.23180e46 −2.11447
\(146\) −7.90594e44 −0.0231402
\(147\) 1.30300e44 0.00329323
\(148\) 1.45153e46 0.317102
\(149\) 2.53943e46 0.479989 0.239995 0.970774i \(-0.422854\pi\)
0.239995 + 0.970774i \(0.422854\pi\)
\(150\) −7.03088e44 −0.0115093
\(151\) 6.65104e46 0.943812 0.471906 0.881649i \(-0.343566\pi\)
0.471906 + 0.881649i \(0.343566\pi\)
\(152\) −2.21182e46 −0.272340
\(153\) 1.64409e45 0.0175817
\(154\) 1.35044e47 1.25540
\(155\) −1.00126e47 −0.809869
\(156\) −2.04158e44 −0.00143809
\(157\) −2.40178e46 −0.147465 −0.0737327 0.997278i \(-0.523491\pi\)
−0.0737327 + 0.997278i \(0.523491\pi\)
\(158\) 8.23176e46 0.440925
\(159\) −1.48701e44 −0.000695466 0
\(160\) 8.39563e46 0.343142
\(161\) 7.21377e45 0.0257873
\(162\) −2.25950e47 −0.707033
\(163\) −4.09519e47 −1.12264 −0.561320 0.827599i \(-0.689706\pi\)
−0.561320 + 0.827599i \(0.689706\pi\)
\(164\) 1.84016e47 0.442296
\(165\) 7.69306e45 0.0162254
\(166\) −6.44967e47 −1.19458
\(167\) 8.96692e47 1.45962 0.729809 0.683652i \(-0.239609\pi\)
0.729809 + 0.683652i \(0.239609\pi\)
\(168\) −1.81378e45 −0.00259679
\(169\) −6.03700e47 −0.760777
\(170\) −2.17401e46 −0.0241329
\(171\) −7.87151e47 −0.770268
\(172\) 1.58607e47 0.136918
\(173\) 8.13600e47 0.620040 0.310020 0.950730i \(-0.399664\pi\)
0.310020 + 0.950730i \(0.399664\pi\)
\(174\) −6.72763e45 −0.00452953
\(175\) 5.80806e48 3.45711
\(176\) −6.74827e47 −0.355361
\(177\) 1.35572e46 0.00632040
\(178\) −1.80277e48 −0.744579
\(179\) −4.40713e48 −1.61367 −0.806836 0.590775i \(-0.798822\pi\)
−0.806836 + 0.590775i \(0.798822\pi\)
\(180\) 2.98788e48 0.970518
\(181\) −4.00198e48 −1.15395 −0.576973 0.816763i \(-0.695766\pi\)
−0.576973 + 0.816763i \(0.695766\pi\)
\(182\) 1.68650e48 0.431969
\(183\) −1.56893e46 −0.00357195
\(184\) −3.60478e46 −0.00729954
\(185\) −6.83076e48 −1.23105
\(186\) −1.08092e46 −0.00173487
\(187\) 1.74743e47 0.0249923
\(188\) −5.62665e48 −0.717556
\(189\) −1.29102e47 −0.0146894
\(190\) 1.04086e49 1.05728
\(191\) 5.52608e48 0.501418 0.250709 0.968063i \(-0.419336\pi\)
0.250709 + 0.968063i \(0.419336\pi\)
\(192\) 9.06362e45 0.000735065 0
\(193\) 1.07272e49 0.778043 0.389022 0.921229i \(-0.372813\pi\)
0.389022 + 0.921229i \(0.372813\pi\)
\(194\) 1.19658e49 0.776612
\(195\) 9.60749e46 0.00558297
\(196\) 5.37876e48 0.280012
\(197\) −2.18374e49 −1.01901 −0.509504 0.860468i \(-0.670171\pi\)
−0.509504 + 0.860468i \(0.670171\pi\)
\(198\) −2.40161e49 −1.00508
\(199\) 3.52049e49 1.32209 0.661047 0.750344i \(-0.270112\pi\)
0.661047 + 0.750344i \(0.270112\pi\)
\(200\) −2.90233e49 −0.978594
\(201\) −2.65777e47 −0.00805012
\(202\) 2.22297e48 0.0605172
\(203\) 5.55755e49 1.36056
\(204\) −2.34698e45 −5.16965e−5 0
\(205\) −8.65963e49 −1.71708
\(206\) −1.35493e49 −0.241976
\(207\) −1.28288e48 −0.0206455
\(208\) −8.42759e48 −0.122276
\(209\) −8.36628e49 −1.09493
\(210\) 8.53551e47 0.0100813
\(211\) 1.53515e50 1.63711 0.818554 0.574430i \(-0.194776\pi\)
0.818554 + 0.574430i \(0.194776\pi\)
\(212\) −6.13834e48 −0.0591330
\(213\) 3.18108e47 0.00276957
\(214\) 4.69527e49 0.369628
\(215\) −7.46391e49 −0.531544
\(216\) 6.45132e47 0.00415808
\(217\) 8.92927e49 0.521113
\(218\) 7.22319e49 0.381869
\(219\) 4.01648e46 0.000192441 0
\(220\) 3.17568e50 1.37959
\(221\) 2.18228e48 0.00859958
\(222\) −7.37425e47 −0.00263711
\(223\) 6.20052e49 0.201314 0.100657 0.994921i \(-0.467906\pi\)
0.100657 + 0.994921i \(0.467906\pi\)
\(224\) −7.48726e49 −0.220796
\(225\) −1.03290e51 −2.76779
\(226\) −3.76558e50 −0.917278
\(227\) 4.13480e50 0.916006 0.458003 0.888951i \(-0.348565\pi\)
0.458003 + 0.888951i \(0.348565\pi\)
\(228\) 1.12368e48 0.00226487
\(229\) 1.11692e50 0.204909 0.102455 0.994738i \(-0.467330\pi\)
0.102455 + 0.994738i \(0.467330\pi\)
\(230\) 1.69638e49 0.0283383
\(231\) −6.86071e48 −0.0104403
\(232\) −2.77715e50 −0.385130
\(233\) −8.69051e50 −1.09874 −0.549368 0.835581i \(-0.685131\pi\)
−0.549368 + 0.835581i \(0.685131\pi\)
\(234\) −2.99925e50 −0.345837
\(235\) 2.64785e51 2.78570
\(236\) 5.59638e50 0.537402
\(237\) −4.18201e48 −0.00366687
\(238\) 1.93879e49 0.0155284
\(239\) −3.18038e50 −0.232769 −0.116384 0.993204i \(-0.537130\pi\)
−0.116384 + 0.993204i \(0.537130\pi\)
\(240\) −4.26526e48 −0.00285367
\(241\) 2.26900e51 1.38825 0.694127 0.719853i \(-0.255791\pi\)
0.694127 + 0.719853i \(0.255791\pi\)
\(242\) −1.28923e51 −0.721609
\(243\) 3.44391e49 0.0176407
\(244\) −6.47652e50 −0.303711
\(245\) −2.53120e51 −1.08706
\(246\) −9.34863e48 −0.00367827
\(247\) −1.04482e51 −0.376755
\(248\) −4.46203e50 −0.147510
\(249\) 3.27665e49 0.00993446
\(250\) 8.72362e51 2.42654
\(251\) −6.50684e51 −1.66106 −0.830529 0.556975i \(-0.811962\pi\)
−0.830529 + 0.556975i \(0.811962\pi\)
\(252\) −2.66460e51 −0.624483
\(253\) −1.36352e50 −0.0293475
\(254\) −4.19567e51 −0.829615
\(255\) 1.10447e48 0.000200696 0
\(256\) 3.74144e50 0.0625000
\(257\) 2.78532e51 0.427871 0.213935 0.976848i \(-0.431372\pi\)
0.213935 + 0.976848i \(0.431372\pi\)
\(258\) −8.05777e48 −0.00113865
\(259\) 6.09171e51 0.792126
\(260\) 3.96595e51 0.474701
\(261\) −9.88345e51 −1.08928
\(262\) 1.01407e52 1.02942
\(263\) 6.39160e51 0.597807 0.298903 0.954283i \(-0.403379\pi\)
0.298903 + 0.954283i \(0.403379\pi\)
\(264\) 3.42835e49 0.00295529
\(265\) 2.88865e51 0.229567
\(266\) −9.28245e51 −0.680311
\(267\) 9.15869e49 0.00619215
\(268\) −1.09712e52 −0.684474
\(269\) 2.28281e52 1.31461 0.657303 0.753626i \(-0.271697\pi\)
0.657303 + 0.753626i \(0.271697\pi\)
\(270\) −3.03594e50 −0.0161425
\(271\) 1.88294e52 0.924693 0.462347 0.886699i \(-0.347008\pi\)
0.462347 + 0.886699i \(0.347008\pi\)
\(272\) −9.68829e49 −0.00439558
\(273\) −8.56800e49 −0.00359238
\(274\) −3.26430e52 −1.26518
\(275\) −1.09782e53 −3.93439
\(276\) 1.83135e48 6.07052e−5 0
\(277\) 4.61782e52 1.41619 0.708095 0.706117i \(-0.249555\pi\)
0.708095 + 0.706117i \(0.249555\pi\)
\(278\) 1.25032e51 0.0354862
\(279\) −1.58797e52 −0.417207
\(280\) 3.52344e52 0.857174
\(281\) 5.52503e52 1.24494 0.622471 0.782643i \(-0.286129\pi\)
0.622471 + 0.782643i \(0.286129\pi\)
\(282\) 2.85853e50 0.00596742
\(283\) 4.51872e51 0.0874193 0.0437097 0.999044i \(-0.486082\pi\)
0.0437097 + 0.999044i \(0.486082\pi\)
\(284\) 1.31314e52 0.235487
\(285\) −5.28793e50 −0.00879267
\(286\) −3.18777e52 −0.491606
\(287\) 7.72270e52 1.10486
\(288\) 1.33152e52 0.176771
\(289\) −8.11277e52 −0.999691
\(290\) 1.30690e53 1.49516
\(291\) −6.07902e50 −0.00645854
\(292\) 1.65800e51 0.0163626
\(293\) 2.13481e52 0.195752 0.0978758 0.995199i \(-0.468795\pi\)
0.0978758 + 0.995199i \(0.468795\pi\)
\(294\) −2.73259e50 −0.00232867
\(295\) −2.63361e53 −2.08631
\(296\) −3.04407e52 −0.224225
\(297\) 2.44024e51 0.0167174
\(298\) −5.32557e52 −0.339404
\(299\) −1.70283e51 −0.0100982
\(300\) 1.47448e51 0.00813829
\(301\) 6.65635e52 0.342024
\(302\) −1.39482e53 −0.667376
\(303\) −1.12934e50 −0.000503280 0
\(304\) 4.63852e52 0.192574
\(305\) 3.04779e53 1.17907
\(306\) −3.44791e51 −0.0124321
\(307\) 3.27926e52 0.110230 0.0551152 0.998480i \(-0.482447\pi\)
0.0551152 + 0.998480i \(0.482447\pi\)
\(308\) −2.83209e53 −0.887700
\(309\) 6.88351e50 0.00201234
\(310\) 2.09979e53 0.572664
\(311\) −1.84457e53 −0.469405 −0.234702 0.972067i \(-0.575412\pi\)
−0.234702 + 0.972067i \(0.575412\pi\)
\(312\) 4.28150e50 0.00101689
\(313\) −3.25940e52 −0.0722661 −0.0361330 0.999347i \(-0.511504\pi\)
−0.0361330 + 0.999347i \(0.511504\pi\)
\(314\) 5.03689e52 0.104274
\(315\) 1.25394e54 2.42437
\(316\) −1.72632e53 −0.311781
\(317\) 2.60991e53 0.440404 0.220202 0.975454i \(-0.429328\pi\)
0.220202 + 0.975454i \(0.429328\pi\)
\(318\) 3.11849e50 0.000491768 0
\(319\) −1.05047e54 −1.54840
\(320\) −1.76069e53 −0.242638
\(321\) −2.38536e51 −0.00307394
\(322\) −1.51284e52 −0.0182344
\(323\) −1.20112e52 −0.0135436
\(324\) 4.73852e53 0.499948
\(325\) −1.37101e54 −1.35378
\(326\) 8.58823e53 0.793826
\(327\) −3.66963e51 −0.00317574
\(328\) −3.85909e53 −0.312750
\(329\) −2.36137e54 −1.79247
\(330\) −1.61335e52 −0.0114731
\(331\) −1.93099e53 −0.128670 −0.0643350 0.997928i \(-0.520493\pi\)
−0.0643350 + 0.997928i \(0.520493\pi\)
\(332\) 1.35259e54 0.844693
\(333\) −1.08334e54 −0.634181
\(334\) −1.88050e54 −1.03211
\(335\) 5.16296e54 2.65727
\(336\) 3.80378e51 0.00183620
\(337\) 2.65509e54 1.20237 0.601183 0.799111i \(-0.294696\pi\)
0.601183 + 0.799111i \(0.294696\pi\)
\(338\) 1.26605e54 0.537951
\(339\) 1.91304e52 0.00762836
\(340\) 4.55923e52 0.0170645
\(341\) −1.68778e54 −0.593057
\(342\) 1.65078e54 0.544662
\(343\) −1.77345e54 −0.549534
\(344\) −3.32623e53 −0.0968157
\(345\) −8.61817e50 −0.000235670 0
\(346\) −1.70624e54 −0.438435
\(347\) 3.27098e54 0.789941 0.394970 0.918694i \(-0.370755\pi\)
0.394970 + 0.918694i \(0.370755\pi\)
\(348\) 1.41089e52 0.00320286
\(349\) 2.42552e54 0.517676 0.258838 0.965921i \(-0.416660\pi\)
0.258838 + 0.965921i \(0.416660\pi\)
\(350\) −1.21804e55 −2.44455
\(351\) 3.04749e52 0.00575227
\(352\) 1.41522e54 0.251279
\(353\) −5.87621e54 −0.981615 −0.490807 0.871268i \(-0.663298\pi\)
−0.490807 + 0.871268i \(0.663298\pi\)
\(354\) −2.84315e52 −0.00446920
\(355\) −6.17953e54 −0.914209
\(356\) 3.78069e54 0.526497
\(357\) −9.84971e50 −0.000129139 0
\(358\) 9.24241e54 1.14104
\(359\) 1.22420e55 1.42338 0.711690 0.702494i \(-0.247930\pi\)
0.711690 + 0.702494i \(0.247930\pi\)
\(360\) −6.26603e54 −0.686260
\(361\) −3.94114e54 −0.406646
\(362\) 8.39276e54 0.815963
\(363\) 6.54975e52 0.00600112
\(364\) −3.53685e54 −0.305448
\(365\) −7.80238e53 −0.0635230
\(366\) 3.29029e52 0.00252575
\(367\) 6.65116e54 0.481479 0.240739 0.970590i \(-0.422610\pi\)
0.240739 + 0.970590i \(0.422610\pi\)
\(368\) 7.55977e52 0.00516155
\(369\) −1.37339e55 −0.884561
\(370\) 1.43251e55 0.870486
\(371\) −2.57611e54 −0.147715
\(372\) 2.26686e52 0.00122674
\(373\) 1.69267e55 0.864632 0.432316 0.901722i \(-0.357697\pi\)
0.432316 + 0.901722i \(0.357697\pi\)
\(374\) −3.66463e53 −0.0176722
\(375\) −4.43189e53 −0.0201798
\(376\) 1.17999e55 0.507389
\(377\) −1.31188e55 −0.532788
\(378\) 2.70746e53 0.0103870
\(379\) −4.11600e55 −1.49188 −0.745938 0.666016i \(-0.767998\pi\)
−0.745938 + 0.666016i \(0.767998\pi\)
\(380\) −2.18284e55 −0.747611
\(381\) 2.13154e53 0.00689933
\(382\) −1.15890e55 −0.354556
\(383\) −4.06771e55 −1.17646 −0.588229 0.808694i \(-0.700175\pi\)
−0.588229 + 0.808694i \(0.700175\pi\)
\(384\) −1.90078e52 −0.000519769 0
\(385\) 1.33275e56 3.44623
\(386\) −2.24965e55 −0.550160
\(387\) −1.18375e55 −0.273827
\(388\) −2.50941e55 −0.549148
\(389\) −3.95636e55 −0.819180 −0.409590 0.912270i \(-0.634328\pi\)
−0.409590 + 0.912270i \(0.634328\pi\)
\(390\) −2.01484e53 −0.00394776
\(391\) −1.95757e52 −0.000363008 0
\(392\) −1.12801e55 −0.197998
\(393\) −5.15184e53 −0.00856096
\(394\) 4.57964e55 0.720547
\(395\) 8.12393e55 1.21040
\(396\) 5.03653e55 0.710698
\(397\) 1.01362e56 1.35481 0.677404 0.735611i \(-0.263105\pi\)
0.677404 + 0.735611i \(0.263105\pi\)
\(398\) −7.38301e55 −0.934862
\(399\) 4.71580e53 0.00565768
\(400\) 6.08663e55 0.691970
\(401\) −6.40929e54 −0.0690567 −0.0345284 0.999404i \(-0.510993\pi\)
−0.0345284 + 0.999404i \(0.510993\pi\)
\(402\) 5.57375e53 0.00569230
\(403\) −2.10778e55 −0.204065
\(404\) −4.66190e54 −0.0427921
\(405\) −2.22991e56 −1.94090
\(406\) −1.16550e56 −0.962063
\(407\) −1.15143e56 −0.901486
\(408\) 4.92198e51 3.65550e−5 0
\(409\) −1.48591e55 −0.104699 −0.0523495 0.998629i \(-0.516671\pi\)
−0.0523495 + 0.998629i \(0.516671\pi\)
\(410\) 1.81606e56 1.21416
\(411\) 1.65837e54 0.0105216
\(412\) 2.84150e55 0.171103
\(413\) 2.34866e56 1.34244
\(414\) 2.69040e54 0.0145986
\(415\) −6.36519e56 −3.27927
\(416\) 1.76739e55 0.0864623
\(417\) −6.35206e52 −0.000295114 0
\(418\) 1.75454e56 0.774234
\(419\) 3.48862e56 1.46235 0.731177 0.682187i \(-0.238971\pi\)
0.731177 + 0.682187i \(0.238971\pi\)
\(420\) −1.79003e54 −0.00712853
\(421\) 3.31748e56 1.25529 0.627645 0.778500i \(-0.284019\pi\)
0.627645 + 0.778500i \(0.284019\pi\)
\(422\) −3.21944e56 −1.15761
\(423\) 4.19942e56 1.43506
\(424\) 1.28730e55 0.0418134
\(425\) −1.57611e55 −0.0486657
\(426\) −6.67120e53 −0.00195838
\(427\) −2.71804e56 −0.758676
\(428\) −9.84670e55 −0.261366
\(429\) 1.61949e54 0.00408834
\(430\) 1.56529e56 0.375859
\(431\) 3.50172e56 0.799872 0.399936 0.916543i \(-0.369032\pi\)
0.399936 + 0.916543i \(0.369032\pi\)
\(432\) −1.35294e54 −0.00294021
\(433\) −6.19424e56 −1.28085 −0.640425 0.768020i \(-0.721242\pi\)
−0.640425 + 0.768020i \(0.721242\pi\)
\(434\) −1.87260e56 −0.368482
\(435\) −6.63951e54 −0.0124342
\(436\) −1.51481e56 −0.270022
\(437\) 9.37234e54 0.0159037
\(438\) −8.42318e52 −0.000136076 0
\(439\) 9.86613e56 1.51761 0.758804 0.651319i \(-0.225784\pi\)
0.758804 + 0.651319i \(0.225784\pi\)
\(440\) −6.65988e56 −0.975515
\(441\) −4.01441e56 −0.560005
\(442\) −4.57658e54 −0.00608082
\(443\) 4.08147e56 0.516579 0.258290 0.966068i \(-0.416841\pi\)
0.258290 + 0.966068i \(0.416841\pi\)
\(444\) 1.54649e54 0.00186472
\(445\) −1.77916e57 −2.04397
\(446\) −1.30034e56 −0.142350
\(447\) 2.70557e54 0.00282258
\(448\) 1.57019e56 0.156126
\(449\) 7.25652e56 0.687753 0.343876 0.939015i \(-0.388260\pi\)
0.343876 + 0.939015i \(0.388260\pi\)
\(450\) 2.16614e57 1.95712
\(451\) −1.45972e57 −1.25740
\(452\) 7.89700e56 0.648613
\(453\) 7.08618e54 0.00555010
\(454\) −8.67130e56 −0.647714
\(455\) 1.66441e57 1.18581
\(456\) −2.35652e54 −0.00160150
\(457\) 5.03696e56 0.326565 0.163283 0.986579i \(-0.447792\pi\)
0.163283 + 0.986579i \(0.447792\pi\)
\(458\) −2.34236e56 −0.144893
\(459\) 3.50337e53 0.000206782 0
\(460\) −3.55756e55 −0.0200382
\(461\) 7.57000e56 0.406936 0.203468 0.979082i \(-0.434779\pi\)
0.203468 + 0.979082i \(0.434779\pi\)
\(462\) 1.43880e55 0.00738238
\(463\) 6.94436e56 0.340127 0.170063 0.985433i \(-0.445603\pi\)
0.170063 + 0.985433i \(0.445603\pi\)
\(464\) 5.82411e56 0.272328
\(465\) −1.06676e55 −0.00476245
\(466\) 1.82253e57 0.776923
\(467\) −3.37517e57 −1.37399 −0.686994 0.726663i \(-0.741070\pi\)
−0.686994 + 0.726663i \(0.741070\pi\)
\(468\) 6.28988e56 0.244544
\(469\) −4.60436e57 −1.70983
\(470\) −5.55295e57 −1.96979
\(471\) −2.55891e54 −0.000867173 0
\(472\) −1.17365e57 −0.380001
\(473\) −1.25816e57 −0.389243
\(474\) 8.77031e54 0.00259287
\(475\) 7.54600e57 2.13208
\(476\) −4.06594e55 −0.0109802
\(477\) 4.58132e56 0.118262
\(478\) 6.66975e56 0.164592
\(479\) 2.97595e57 0.702121 0.351060 0.936353i \(-0.385821\pi\)
0.351060 + 0.936353i \(0.385821\pi\)
\(480\) 8.94490e54 0.00201785
\(481\) −1.43797e57 −0.310192
\(482\) −4.75845e57 −0.981644
\(483\) 7.68572e53 0.000151643 0
\(484\) 2.70372e57 0.510254
\(485\) 1.18091e58 2.13190
\(486\) −7.22240e55 −0.0124739
\(487\) −6.28542e57 −1.03863 −0.519316 0.854582i \(-0.673813\pi\)
−0.519316 + 0.854582i \(0.673813\pi\)
\(488\) 1.35822e57 0.214756
\(489\) −4.36311e55 −0.00660170
\(490\) 5.30831e57 0.768671
\(491\) 5.70226e57 0.790305 0.395153 0.918615i \(-0.370692\pi\)
0.395153 + 0.918615i \(0.370692\pi\)
\(492\) 1.96055e55 0.00260093
\(493\) −1.50812e56 −0.0191526
\(494\) 2.19115e57 0.266406
\(495\) −2.37015e58 −2.75908
\(496\) 9.35755e56 0.104305
\(497\) 5.51093e57 0.588251
\(498\) −6.87163e55 −0.00702472
\(499\) −7.55319e57 −0.739552 −0.369776 0.929121i \(-0.620566\pi\)
−0.369776 + 0.929121i \(0.620566\pi\)
\(500\) −1.82948e58 −1.71582
\(501\) 9.55357e55 0.00858330
\(502\) 1.36458e58 1.17455
\(503\) 1.01823e57 0.0839718 0.0419859 0.999118i \(-0.486632\pi\)
0.0419859 + 0.999118i \(0.486632\pi\)
\(504\) 5.58807e57 0.441576
\(505\) 2.19385e57 0.166128
\(506\) 2.85951e56 0.0207518
\(507\) −6.43197e55 −0.00447376
\(508\) 8.79896e57 0.586626
\(509\) −1.61549e58 −1.03246 −0.516229 0.856451i \(-0.672665\pi\)
−0.516229 + 0.856451i \(0.672665\pi\)
\(510\) −2.31624e54 −0.000141914 0
\(511\) 6.95820e56 0.0408741
\(512\) −7.84638e56 −0.0441942
\(513\) −1.67733e56 −0.00905930
\(514\) −5.84123e57 −0.302550
\(515\) −1.33718e58 −0.664256
\(516\) 1.68984e55 0.000805149 0
\(517\) 4.46337e58 2.03993
\(518\) −1.27752e58 −0.560117
\(519\) 8.66829e55 0.00364616
\(520\) −8.31720e57 −0.335664
\(521\) 2.87022e58 1.11148 0.555742 0.831355i \(-0.312434\pi\)
0.555742 + 0.831355i \(0.312434\pi\)
\(522\) 2.07271e58 0.770234
\(523\) 3.54622e58 1.26468 0.632339 0.774692i \(-0.282095\pi\)
0.632339 + 0.774692i \(0.282095\pi\)
\(524\) −2.12667e58 −0.727909
\(525\) 6.18805e56 0.0203296
\(526\) −1.34042e58 −0.422713
\(527\) −2.42309e56 −0.00733571
\(528\) −7.18977e55 −0.00208971
\(529\) −3.58189e58 −0.999574
\(530\) −6.05794e57 −0.162328
\(531\) −4.17683e58 −1.07477
\(532\) 1.94667e58 0.481053
\(533\) −1.82297e58 −0.432657
\(534\) −1.92072e56 −0.00437851
\(535\) 4.63377e58 1.01468
\(536\) 2.30083e58 0.483996
\(537\) −4.69546e56 −0.00948923
\(538\) −4.78740e58 −0.929567
\(539\) −4.26673e58 −0.796044
\(540\) 6.36682e56 0.0114145
\(541\) −6.62227e58 −1.14095 −0.570473 0.821316i \(-0.693240\pi\)
−0.570473 + 0.821316i \(0.693240\pi\)
\(542\) −3.94882e58 −0.653857
\(543\) −4.26381e56 −0.00678580
\(544\) 2.03178e56 0.00310814
\(545\) 7.12858e58 1.04828
\(546\) 1.79684e56 0.00254020
\(547\) −4.90873e58 −0.667178 −0.333589 0.942719i \(-0.608260\pi\)
−0.333589 + 0.942719i \(0.608260\pi\)
\(548\) 6.84573e58 0.894618
\(549\) 4.83371e58 0.607401
\(550\) 2.30229e59 2.78204
\(551\) 7.22053e58 0.839092
\(552\) −3.84062e54 −4.29250e−5 0
\(553\) −7.24496e58 −0.778836
\(554\) −9.68427e58 −1.00140
\(555\) −7.27766e56 −0.00723923
\(556\) −2.62212e57 −0.0250925
\(557\) 2.53254e58 0.233168 0.116584 0.993181i \(-0.462806\pi\)
0.116584 + 0.993181i \(0.462806\pi\)
\(558\) 3.33021e58 0.295010
\(559\) −1.57125e58 −0.133934
\(560\) −7.38919e58 −0.606114
\(561\) 1.86176e55 0.000146968 0
\(562\) −1.15868e59 −0.880307
\(563\) 2.25761e59 1.65089 0.825445 0.564483i \(-0.190924\pi\)
0.825445 + 0.564483i \(0.190924\pi\)
\(564\) −5.99476e56 −0.00421960
\(565\) −3.71626e59 −2.51805
\(566\) −9.47645e57 −0.0618148
\(567\) 1.98864e59 1.24888
\(568\) −2.75386e58 −0.166514
\(569\) −2.32353e59 −1.35280 −0.676402 0.736533i \(-0.736462\pi\)
−0.676402 + 0.736533i \(0.736462\pi\)
\(570\) 1.10896e57 0.00621736
\(571\) −7.96462e57 −0.0430020 −0.0215010 0.999769i \(-0.506845\pi\)
−0.0215010 + 0.999769i \(0.506845\pi\)
\(572\) 6.68523e58 0.347618
\(573\) 5.88762e56 0.00294860
\(574\) −1.61957e59 −0.781256
\(575\) 1.22983e58 0.0571463
\(576\) −2.79240e58 −0.124996
\(577\) 2.06427e59 0.890199 0.445099 0.895481i \(-0.353168\pi\)
0.445099 + 0.895481i \(0.353168\pi\)
\(578\) 1.70137e59 0.706888
\(579\) 1.14290e57 0.00457530
\(580\) −2.74077e59 −1.05723
\(581\) 5.67651e59 2.11006
\(582\) 1.27486e57 0.00456688
\(583\) 4.86928e58 0.168109
\(584\) −3.47707e57 −0.0115701
\(585\) −2.95996e59 −0.949369
\(586\) −4.47702e58 −0.138417
\(587\) −2.18486e59 −0.651185 −0.325593 0.945510i \(-0.605564\pi\)
−0.325593 + 0.945510i \(0.605564\pi\)
\(588\) 5.73066e56 0.00164662
\(589\) 1.16012e59 0.321383
\(590\) 5.52308e59 1.47524
\(591\) −2.32661e57 −0.00599229
\(592\) 6.38389e58 0.158551
\(593\) 1.66747e56 0.000399375 0 0.000199688 1.00000i \(-0.499936\pi\)
0.000199688 1.00000i \(0.499936\pi\)
\(594\) −5.11755e57 −0.0118210
\(595\) 1.91340e58 0.0426275
\(596\) 1.11685e59 0.239995
\(597\) 3.75082e57 0.00777460
\(598\) 3.57110e57 0.00714047
\(599\) −8.31418e59 −1.60377 −0.801887 0.597476i \(-0.796170\pi\)
−0.801887 + 0.597476i \(0.796170\pi\)
\(600\) −3.09222e57 −0.00575464
\(601\) 3.62301e58 0.0650531 0.0325265 0.999471i \(-0.489645\pi\)
0.0325265 + 0.999471i \(0.489645\pi\)
\(602\) −1.39594e59 −0.241847
\(603\) 8.18831e59 1.36890
\(604\) 2.92516e59 0.471906
\(605\) −1.27235e60 −1.98091
\(606\) 2.36840e56 0.000355872 0
\(607\) −8.13623e59 −1.17996 −0.589979 0.807419i \(-0.700864\pi\)
−0.589979 + 0.807419i \(0.700864\pi\)
\(608\) −9.72767e58 −0.136170
\(609\) 5.92114e57 0.00800081
\(610\) −6.39169e59 −0.833727
\(611\) 5.57408e59 0.701920
\(612\) 7.23080e57 0.00879085
\(613\) 1.45687e60 1.71010 0.855050 0.518545i \(-0.173526\pi\)
0.855050 + 0.518545i \(0.173526\pi\)
\(614\) −6.87711e58 −0.0779446
\(615\) −9.22618e57 −0.0100973
\(616\) 5.93931e59 0.627698
\(617\) −8.99399e59 −0.917955 −0.458978 0.888448i \(-0.651784\pi\)
−0.458978 + 0.888448i \(0.651784\pi\)
\(618\) −1.44358e57 −0.00142294
\(619\) −1.01581e60 −0.967078 −0.483539 0.875323i \(-0.660649\pi\)
−0.483539 + 0.875323i \(0.660649\pi\)
\(620\) −4.40358e59 −0.404934
\(621\) −2.73368e56 −0.000242817 0
\(622\) 3.86835e59 0.331919
\(623\) 1.58666e60 1.31520
\(624\) −8.97895e56 −0.000719047 0
\(625\) 5.03195e60 3.89328
\(626\) 6.83546e58 0.0510998
\(627\) −8.91364e57 −0.00643877
\(628\) −1.05631e59 −0.0737327
\(629\) −1.65308e58 −0.0111508
\(630\) −2.62970e60 −1.71429
\(631\) −1.44520e60 −0.910534 −0.455267 0.890355i \(-0.650456\pi\)
−0.455267 + 0.890355i \(0.650456\pi\)
\(632\) 3.62037e59 0.220463
\(633\) 1.63558e58 0.00962704
\(634\) −5.47338e59 −0.311413
\(635\) −4.14071e60 −2.27740
\(636\) −6.53994e56 −0.000347733 0
\(637\) −5.32851e59 −0.273910
\(638\) 2.20299e60 1.09488
\(639\) −9.80055e59 −0.470958
\(640\) 3.69244e59 0.171571
\(641\) −1.14193e59 −0.0513089 −0.0256545 0.999671i \(-0.508167\pi\)
−0.0256545 + 0.999671i \(0.508167\pi\)
\(642\) 5.00246e57 0.00217360
\(643\) −1.22490e59 −0.0514712 −0.0257356 0.999669i \(-0.508193\pi\)
−0.0257356 + 0.999669i \(0.508193\pi\)
\(644\) 3.17265e58 0.0128937
\(645\) −7.95223e57 −0.00312575
\(646\) 2.51893e58 0.00957674
\(647\) 2.04374e60 0.751594 0.375797 0.926702i \(-0.377369\pi\)
0.375797 + 0.926702i \(0.377369\pi\)
\(648\) −9.93740e59 −0.353517
\(649\) −4.43936e60 −1.52778
\(650\) 2.87522e60 0.957269
\(651\) 9.51346e57 0.00306441
\(652\) −1.80108e60 −0.561320
\(653\) −6.31762e59 −0.190511 −0.0952555 0.995453i \(-0.530367\pi\)
−0.0952555 + 0.995453i \(0.530367\pi\)
\(654\) 7.69576e57 0.00224559
\(655\) 1.00079e61 2.82589
\(656\) 8.09311e59 0.221148
\(657\) −1.23744e59 −0.0327241
\(658\) 4.95214e60 1.26747
\(659\) −6.26841e60 −1.55282 −0.776409 0.630229i \(-0.782961\pi\)
−0.776409 + 0.630229i \(0.782961\pi\)
\(660\) 3.38344e58 0.00811268
\(661\) 4.90303e60 1.13798 0.568989 0.822345i \(-0.307335\pi\)
0.568989 + 0.822345i \(0.307335\pi\)
\(662\) 4.04957e59 0.0909834
\(663\) 2.32506e56 5.05700e−5 0
\(664\) −2.83660e60 −0.597288
\(665\) −9.16087e60 −1.86755
\(666\) 2.27193e60 0.448434
\(667\) 1.17679e59 0.0224902
\(668\) 3.94369e60 0.729809
\(669\) 6.60618e57 0.00118383
\(670\) −1.08275e61 −1.87897
\(671\) 5.13754e60 0.863417
\(672\) −7.97711e57 −0.00129839
\(673\) 6.30665e60 0.994203 0.497102 0.867692i \(-0.334398\pi\)
0.497102 + 0.867692i \(0.334398\pi\)
\(674\) −5.56813e60 −0.850201
\(675\) −2.20098e59 −0.0325526
\(676\) −2.65510e60 −0.380388
\(677\) 9.09208e60 1.26185 0.630924 0.775845i \(-0.282676\pi\)
0.630924 + 0.775845i \(0.282676\pi\)
\(678\) −4.01194e58 −0.00539407
\(679\) −1.05314e61 −1.37178
\(680\) −9.56139e58 −0.0120664
\(681\) 4.40531e58 0.00538659
\(682\) 3.53953e60 0.419355
\(683\) 9.34804e60 1.07319 0.536593 0.843841i \(-0.319711\pi\)
0.536593 + 0.843841i \(0.319711\pi\)
\(684\) −3.46193e60 −0.385134
\(685\) −3.22154e61 −3.47309
\(686\) 3.71919e60 0.388579
\(687\) 1.19000e58 0.00120497
\(688\) 6.97561e59 0.0684590
\(689\) 6.08100e59 0.0578445
\(690\) 1.80736e57 0.000166644 0
\(691\) 1.90200e61 1.69993 0.849967 0.526836i \(-0.176622\pi\)
0.849967 + 0.526836i \(0.176622\pi\)
\(692\) 3.57825e60 0.310020
\(693\) 2.11371e61 1.77534
\(694\) −6.85975e60 −0.558572
\(695\) 1.23395e60 0.0974143
\(696\) −2.95884e58 −0.00226477
\(697\) −2.09567e59 −0.0155532
\(698\) −5.08668e60 −0.366052
\(699\) −9.25908e58 −0.00646113
\(700\) 2.55441e61 1.72855
\(701\) −2.19436e61 −1.44002 −0.720012 0.693962i \(-0.755864\pi\)
−0.720012 + 0.693962i \(0.755864\pi\)
\(702\) −6.39105e58 −0.00406747
\(703\) 7.91452e60 0.488523
\(704\) −2.96792e60 −0.177681
\(705\) 2.82108e59 0.0163814
\(706\) 1.23233e61 0.694106
\(707\) −1.95649e60 −0.106896
\(708\) 5.96252e58 0.00316020
\(709\) −3.13056e61 −1.60964 −0.804818 0.593522i \(-0.797737\pi\)
−0.804818 + 0.593522i \(0.797737\pi\)
\(710\) 1.29594e61 0.646444
\(711\) 1.28843e61 0.623541
\(712\) −7.92868e60 −0.372289
\(713\) 1.89074e59 0.00861403
\(714\) 2.06563e57 9.13149e−5 0
\(715\) −3.14601e61 −1.34952
\(716\) −1.93827e61 −0.806836
\(717\) −3.38846e58 −0.00136880
\(718\) −2.56733e61 −1.00648
\(719\) −4.08353e61 −1.55369 −0.776845 0.629691i \(-0.783181\pi\)
−0.776845 + 0.629691i \(0.783181\pi\)
\(720\) 1.31408e61 0.485259
\(721\) 1.19251e61 0.427418
\(722\) 8.26516e60 0.287542
\(723\) 2.41745e59 0.00816365
\(724\) −1.76009e61 −0.576973
\(725\) 9.47474e61 3.01509
\(726\) −1.37358e59 −0.00424343
\(727\) 3.27882e61 0.983395 0.491698 0.870766i \(-0.336377\pi\)
0.491698 + 0.870766i \(0.336377\pi\)
\(728\) 7.41732e60 0.215984
\(729\) −3.53632e61 −0.999793
\(730\) 1.63628e60 0.0449175
\(731\) −1.80630e59 −0.00481467
\(732\) −6.90024e58 −0.00178598
\(733\) 8.88787e60 0.223389 0.111695 0.993743i \(-0.464372\pi\)
0.111695 + 0.993743i \(0.464372\pi\)
\(734\) −1.39485e61 −0.340457
\(735\) −2.69680e59 −0.00639250
\(736\) −1.58540e59 −0.00364977
\(737\) 8.70299e61 1.94589
\(738\) 2.88021e61 0.625479
\(739\) −4.67983e61 −0.987131 −0.493565 0.869709i \(-0.664307\pi\)
−0.493565 + 0.869709i \(0.664307\pi\)
\(740\) −3.00420e61 −0.615527
\(741\) −1.11318e59 −0.00221551
\(742\) 5.40250e60 0.104451
\(743\) 7.75880e61 1.45725 0.728627 0.684911i \(-0.240159\pi\)
0.728627 + 0.684911i \(0.240159\pi\)
\(744\) −4.75395e58 −0.000867434 0
\(745\) −5.25581e61 −0.931709
\(746\) −3.54978e61 −0.611387
\(747\) −1.00950e62 −1.68933
\(748\) 7.68529e59 0.0124961
\(749\) −4.13242e61 −0.652898
\(750\) 9.29436e59 0.0142693
\(751\) 8.12743e61 1.21254 0.606268 0.795260i \(-0.292666\pi\)
0.606268 + 0.795260i \(0.292666\pi\)
\(752\) −2.47463e61 −0.358778
\(753\) −6.93254e59 −0.00976788
\(754\) 2.75121e61 0.376738
\(755\) −1.37655e62 −1.83204
\(756\) −5.67796e59 −0.00734469
\(757\) 5.81763e61 0.731450 0.365725 0.930723i \(-0.380821\pi\)
0.365725 + 0.930723i \(0.380821\pi\)
\(758\) 8.63188e61 1.05492
\(759\) −1.45273e58 −0.000172578 0
\(760\) 4.57776e61 0.528641
\(761\) −8.00450e61 −0.898595 −0.449298 0.893382i \(-0.648326\pi\)
−0.449298 + 0.893382i \(0.648326\pi\)
\(762\) −4.47017e59 −0.00487856
\(763\) −6.35730e61 −0.674521
\(764\) 2.43040e61 0.250709
\(765\) −3.40275e60 −0.0341279
\(766\) 8.53061e61 0.831882
\(767\) −5.54410e61 −0.525691
\(768\) 3.98622e58 0.000367532 0
\(769\) 1.59678e62 1.43162 0.715810 0.698296i \(-0.246058\pi\)
0.715810 + 0.698296i \(0.246058\pi\)
\(770\) −2.79499e62 −2.43685
\(771\) 2.96754e59 0.00251610
\(772\) 4.71787e61 0.389022
\(773\) 5.71876e61 0.458609 0.229304 0.973355i \(-0.426355\pi\)
0.229304 + 0.973355i \(0.426355\pi\)
\(774\) 2.48251e61 0.193625
\(775\) 1.52230e62 1.15482
\(776\) 5.26261e61 0.388306
\(777\) 6.49025e59 0.00465811
\(778\) 8.29708e61 0.579247
\(779\) 1.00336e62 0.681396
\(780\) 4.22542e59 0.00279149
\(781\) −1.04166e62 −0.669464
\(782\) 4.10531e58 0.000256685 0
\(783\) −2.10605e60 −0.0128112
\(784\) 2.36560e61 0.140006
\(785\) 4.97091e61 0.286246
\(786\) 1.08042e60 0.00605351
\(787\) −2.96283e62 −1.61529 −0.807643 0.589671i \(-0.799257\pi\)
−0.807643 + 0.589671i \(0.799257\pi\)
\(788\) −9.60420e61 −0.509504
\(789\) 6.80976e59 0.00351541
\(790\) −1.70371e62 −0.855882
\(791\) 3.31418e62 1.62025
\(792\) −1.05624e62 −0.502540
\(793\) 6.41602e61 0.297093
\(794\) −2.12571e62 −0.957994
\(795\) 3.07764e59 0.00134997
\(796\) 1.54833e62 0.661047
\(797\) −1.51741e62 −0.630594 −0.315297 0.948993i \(-0.602104\pi\)
−0.315297 + 0.948993i \(0.602104\pi\)
\(798\) −9.88975e59 −0.00400058
\(799\) 6.40793e60 0.0252326
\(800\) −1.27646e62 −0.489297
\(801\) −2.82169e62 −1.05296
\(802\) 1.34413e61 0.0488305
\(803\) −1.31521e61 −0.0465171
\(804\) −1.16890e60 −0.00402506
\(805\) −1.49302e61 −0.0500558
\(806\) 4.42034e61 0.144295
\(807\) 2.43216e60 0.00773057
\(808\) 9.77672e60 0.0302586
\(809\) −2.93763e62 −0.885327 −0.442663 0.896688i \(-0.645966\pi\)
−0.442663 + 0.896688i \(0.645966\pi\)
\(810\) 4.67645e62 1.37242
\(811\) 3.67101e62 1.04915 0.524575 0.851364i \(-0.324224\pi\)
0.524575 + 0.851364i \(0.324224\pi\)
\(812\) 2.44424e62 0.680281
\(813\) 2.00613e60 0.00543767
\(814\) 2.41473e62 0.637447
\(815\) 8.47574e62 2.17916
\(816\) −1.03221e58 −2.58483e−5 0
\(817\) 8.64812e61 0.210935
\(818\) 3.11619e61 0.0740334
\(819\) 2.63971e62 0.610875
\(820\) −3.80854e62 −0.858541
\(821\) −7.97990e62 −1.75235 −0.876173 0.481997i \(-0.839912\pi\)
−0.876173 + 0.481997i \(0.839912\pi\)
\(822\) −3.47786e60 −0.00743992
\(823\) −6.36565e62 −1.32662 −0.663309 0.748345i \(-0.730849\pi\)
−0.663309 + 0.748345i \(0.730849\pi\)
\(824\) −5.95905e61 −0.120988
\(825\) −1.16964e61 −0.0231363
\(826\) −4.92551e62 −0.949248
\(827\) −3.36234e62 −0.631355 −0.315677 0.948867i \(-0.602232\pi\)
−0.315677 + 0.948867i \(0.602232\pi\)
\(828\) −5.64219e60 −0.0103227
\(829\) 5.67452e62 1.01159 0.505797 0.862652i \(-0.331198\pi\)
0.505797 + 0.862652i \(0.331198\pi\)
\(830\) 1.33488e63 2.31879
\(831\) 4.91993e60 0.00832793
\(832\) −3.70649e61 −0.0611380
\(833\) −6.12562e60 −0.00984651
\(834\) 1.33212e59 0.000208677 0
\(835\) −1.85587e63 −2.83327
\(836\) −3.67953e62 −0.547466
\(837\) −3.38377e60 −0.00490687
\(838\) −7.31618e62 −1.03404
\(839\) 8.37436e62 1.15364 0.576819 0.816872i \(-0.304294\pi\)
0.576819 + 0.816872i \(0.304294\pi\)
\(840\) 3.75396e60 0.00504063
\(841\) 1.42571e62 0.186603
\(842\) −6.95727e62 −0.887624
\(843\) 5.88650e60 0.00732090
\(844\) 6.75165e62 0.818554
\(845\) 1.24947e63 1.47675
\(846\) −8.80681e62 −1.01474
\(847\) 1.13469e63 1.27462
\(848\) −2.69967e61 −0.0295665
\(849\) 4.81436e59 0.000514071 0
\(850\) 3.30533e61 0.0344119
\(851\) 1.28989e61 0.0130939
\(852\) 1.39905e60 0.00138479
\(853\) −1.18819e63 −1.14678 −0.573392 0.819281i \(-0.694373\pi\)
−0.573392 + 0.819281i \(0.694373\pi\)
\(854\) 5.70014e62 0.536465
\(855\) 1.62915e63 1.49517
\(856\) 2.06500e62 0.184814
\(857\) 2.67982e62 0.233894 0.116947 0.993138i \(-0.462689\pi\)
0.116947 + 0.993138i \(0.462689\pi\)
\(858\) −3.39632e60 −0.00289090
\(859\) −3.65813e62 −0.303673 −0.151837 0.988406i \(-0.548519\pi\)
−0.151837 + 0.988406i \(0.548519\pi\)
\(860\) −3.28266e62 −0.265772
\(861\) 8.22795e60 0.00649716
\(862\) −7.34365e62 −0.565595
\(863\) −9.90631e61 −0.0744183 −0.0372091 0.999307i \(-0.511847\pi\)
−0.0372091 + 0.999307i \(0.511847\pi\)
\(864\) 2.83732e60 0.00207904
\(865\) −1.68389e63 −1.20356
\(866\) 1.29903e63 0.905698
\(867\) −8.64354e60 −0.00587870
\(868\) 3.92714e62 0.260556
\(869\) 1.36942e63 0.886361
\(870\) 1.39241e61 0.00879229
\(871\) 1.08687e63 0.669559
\(872\) 3.17679e62 0.190935
\(873\) 1.87288e63 1.09826
\(874\) −1.96552e61 −0.0112456
\(875\) −7.67786e63 −4.28615
\(876\) 1.76647e59 9.62205e−5 0
\(877\) 1.85432e63 0.985585 0.492793 0.870147i \(-0.335976\pi\)
0.492793 + 0.870147i \(0.335976\pi\)
\(878\) −2.06908e63 −1.07311
\(879\) 2.27448e60 0.00115112
\(880\) 1.39668e63 0.689793
\(881\) −8.58814e62 −0.413920 −0.206960 0.978349i \(-0.566357\pi\)
−0.206960 + 0.978349i \(0.566357\pi\)
\(882\) 8.41882e62 0.395983
\(883\) −2.94353e63 −1.35118 −0.675589 0.737278i \(-0.736111\pi\)
−0.675589 + 0.737278i \(0.736111\pi\)
\(884\) 9.59778e60 0.00429979
\(885\) −2.80591e61 −0.0122686
\(886\) −8.55947e62 −0.365277
\(887\) −2.64455e62 −0.110152 −0.0550762 0.998482i \(-0.517540\pi\)
−0.0550762 + 0.998482i \(0.517540\pi\)
\(888\) −3.24323e60 −0.00131856
\(889\) 3.69271e63 1.46540
\(890\) 3.73117e63 1.44530
\(891\) −3.75886e63 −1.42130
\(892\) 2.72702e62 0.100657
\(893\) −3.06796e63 −1.10546
\(894\) −5.67399e60 −0.00199587
\(895\) 9.12135e63 3.13230
\(896\) −3.29293e62 −0.110398
\(897\) −1.81424e59 −5.93823e−5 0
\(898\) −1.52180e63 −0.486315
\(899\) 1.45664e63 0.454484
\(900\) −4.54272e63 −1.38389
\(901\) 6.99067e60 0.00207939
\(902\) 3.06125e63 0.889115
\(903\) 7.09183e60 0.00201128
\(904\) −1.65612e63 −0.458639
\(905\) 8.28283e63 2.23993
\(906\) −1.48608e61 −0.00392451
\(907\) 3.70525e63 0.955566 0.477783 0.878478i \(-0.341441\pi\)
0.477783 + 0.878478i \(0.341441\pi\)
\(908\) 1.81850e63 0.458003
\(909\) 3.47938e62 0.0855813
\(910\) −3.49052e63 −0.838496
\(911\) −3.20223e63 −0.751289 −0.375644 0.926764i \(-0.622579\pi\)
−0.375644 + 0.926764i \(0.622579\pi\)
\(912\) 4.94198e60 0.00113243
\(913\) −1.07295e64 −2.40137
\(914\) −1.05633e63 −0.230916
\(915\) 3.24719e61 0.00693353
\(916\) 4.91229e62 0.102455
\(917\) −8.92510e63 −1.81833
\(918\) −7.34711e59 −0.000146217 0
\(919\) 2.79540e63 0.543452 0.271726 0.962375i \(-0.412406\pi\)
0.271726 + 0.962375i \(0.412406\pi\)
\(920\) 7.46074e61 0.0141692
\(921\) 3.49380e60 0.000648211 0
\(922\) −1.58754e63 −0.287747
\(923\) −1.30087e63 −0.230356
\(924\) −3.01737e61 −0.00522013
\(925\) 1.03854e64 1.75540
\(926\) −1.45634e63 −0.240506
\(927\) −2.12073e63 −0.342194
\(928\) −1.22140e63 −0.192565
\(929\) −4.76577e62 −0.0734168 −0.0367084 0.999326i \(-0.511687\pi\)
−0.0367084 + 0.999326i \(0.511687\pi\)
\(930\) 2.23717e61 0.00336756
\(931\) 2.93279e63 0.431384
\(932\) −3.82213e63 −0.549368
\(933\) −1.96525e61 −0.00276034
\(934\) 7.07824e63 0.971556
\(935\) −3.61663e62 −0.0485126
\(936\) −1.31908e63 −0.172919
\(937\) −8.61288e63 −1.10344 −0.551718 0.834031i \(-0.686028\pi\)
−0.551718 + 0.834031i \(0.686028\pi\)
\(938\) 9.65603e63 1.20903
\(939\) −3.47264e60 −0.000424962 0
\(940\) 1.16454e64 1.39285
\(941\) 3.45409e63 0.403791 0.201895 0.979407i \(-0.435290\pi\)
0.201895 + 0.979407i \(0.435290\pi\)
\(942\) 5.36642e60 0.000613184 0
\(943\) 1.63525e62 0.0182635
\(944\) 2.46131e63 0.268701
\(945\) 2.67200e62 0.0285136
\(946\) 2.63855e63 0.275237
\(947\) 3.46532e63 0.353361 0.176680 0.984268i \(-0.443464\pi\)
0.176680 + 0.984268i \(0.443464\pi\)
\(948\) −1.83927e61 −0.00183344
\(949\) −1.64251e62 −0.0160060
\(950\) −1.58251e64 −1.50761
\(951\) 2.78066e61 0.00258981
\(952\) 8.52689e61 0.00776419
\(953\) −7.53482e63 −0.670773 −0.335387 0.942081i \(-0.608867\pi\)
−0.335387 + 0.942081i \(0.608867\pi\)
\(954\) −9.60772e62 −0.0836239
\(955\) −1.14372e64 −0.973303
\(956\) −1.39875e63 −0.116384
\(957\) −1.11919e62 −0.00910539
\(958\) −6.24101e63 −0.496474
\(959\) 2.87298e64 2.23477
\(960\) −1.87588e61 −0.00142684
\(961\) −1.11044e64 −0.825927
\(962\) 3.01564e63 0.219339
\(963\) 7.34903e63 0.522715
\(964\) 9.97919e63 0.694127
\(965\) −2.22019e64 −1.51026
\(966\) −1.61181e60 −0.000107228 0
\(967\) 9.70611e63 0.631504 0.315752 0.948842i \(-0.397743\pi\)
0.315752 + 0.948842i \(0.397743\pi\)
\(968\) −5.67011e63 −0.360804
\(969\) −1.27970e60 −7.96431e−5 0
\(970\) −2.47654e64 −1.50748
\(971\) −6.64214e63 −0.395453 −0.197726 0.980257i \(-0.563356\pi\)
−0.197726 + 0.980257i \(0.563356\pi\)
\(972\) 1.51465e62 0.00882037
\(973\) −1.10044e63 −0.0626815
\(974\) 1.31815e64 0.734423
\(975\) −1.46071e62 −0.00796094
\(976\) −2.84840e63 −0.151855
\(977\) 1.54974e64 0.808213 0.404107 0.914712i \(-0.367582\pi\)
0.404107 + 0.914712i \(0.367582\pi\)
\(978\) 9.15011e61 0.00466811
\(979\) −2.99905e64 −1.49677
\(980\) −1.11323e64 −0.543532
\(981\) 1.13057e64 0.540026
\(982\) −1.19585e64 −0.558830
\(983\) 3.96381e64 1.81222 0.906112 0.423037i \(-0.139036\pi\)
0.906112 + 0.423037i \(0.139036\pi\)
\(984\) −4.11157e61 −0.00183913
\(985\) 4.51965e64 1.97800
\(986\) 3.16277e62 0.0135430
\(987\) −2.51586e62 −0.0105406
\(988\) −4.59518e63 −0.188377
\(989\) 1.40946e62 0.00565368
\(990\) 4.97056e64 1.95096
\(991\) −2.80505e63 −0.107735 −0.0538676 0.998548i \(-0.517155\pi\)
−0.0538676 + 0.998548i \(0.517155\pi\)
\(992\) −1.96242e63 −0.0737549
\(993\) −2.05732e61 −0.000756646 0
\(994\) −1.15573e64 −0.415956
\(995\) −7.28631e64 −2.56632
\(996\) 1.44109e62 0.00496723
\(997\) −1.59618e64 −0.538437 −0.269219 0.963079i \(-0.586765\pi\)
−0.269219 + 0.963079i \(0.586765\pi\)
\(998\) 1.58402e64 0.522942
\(999\) −2.30847e62 −0.00745876
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))