Properties

Label 2.44.a.a.1.1
Level 2
Weight 44
Character 2.1
Self dual Yes
Analytic conductor 23.422
Analytic rank 0
Dimension 2
CM No
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 2 \)
Weight: \( k \) = \( 44 \)
Character orbit: \([\chi]\) = 2.a (trivial)

Newform invariants

Self dual: Yes
Analytic conductor: \(23.4220790691\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\mathbb{Q}[x]/(x^{2} - \cdots)\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{8}\cdot 3\cdot 5\cdot 11 \)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(156188.\)
Character \(\chi\) = 2.1

$q$-expansion

\(f(q)\) \(=\) \(q-2.09715e6 q^{2} -1.30882e10 q^{3} +4.39805e12 q^{4} +1.67102e15 q^{5} +2.74479e16 q^{6} -6.70883e17 q^{7} -9.22337e18 q^{8} -1.56957e20 q^{9} +O(q^{10})\) \(q-2.09715e6 q^{2} -1.30882e10 q^{3} +4.39805e12 q^{4} +1.67102e15 q^{5} +2.74479e16 q^{6} -6.70883e17 q^{7} -9.22337e18 q^{8} -1.56957e20 q^{9} -3.50438e21 q^{10} +2.32700e22 q^{11} -5.75624e22 q^{12} -1.22318e24 q^{13} +1.40694e24 q^{14} -2.18706e25 q^{15} +1.93428e25 q^{16} +3.48170e26 q^{17} +3.29162e26 q^{18} -2.92459e27 q^{19} +7.34922e27 q^{20} +8.78063e27 q^{21} -4.88006e28 q^{22} +2.25548e29 q^{23} +1.20717e29 q^{24} +1.65544e30 q^{25} +2.56520e30 q^{26} +6.35056e30 q^{27} -2.95057e30 q^{28} +4.02623e30 q^{29} +4.58660e31 q^{30} +1.13932e32 q^{31} -4.05648e31 q^{32} -3.04561e32 q^{33} -7.30166e32 q^{34} -1.12106e33 q^{35} -6.90303e32 q^{36} -7.69200e33 q^{37} +6.13331e33 q^{38} +1.60092e34 q^{39} -1.54124e34 q^{40} +3.14341e34 q^{41} -1.84143e34 q^{42} +1.98374e35 q^{43} +1.02342e35 q^{44} -2.62278e35 q^{45} -4.73008e35 q^{46} +1.24024e36 q^{47} -2.53162e35 q^{48} -1.73373e36 q^{49} -3.47171e36 q^{50} -4.55691e36 q^{51} -5.37962e36 q^{52} +2.28375e37 q^{53} -1.33181e37 q^{54} +3.88845e37 q^{55} +6.18780e36 q^{56} +3.82776e37 q^{57} -8.44361e36 q^{58} -5.92652e37 q^{59} -9.61879e37 q^{60} +1.57810e38 q^{61} -2.38934e38 q^{62} +1.05300e38 q^{63} +8.50706e37 q^{64} -2.04396e39 q^{65} +6.38711e38 q^{66} +1.19856e39 q^{67} +1.53127e39 q^{68} -2.95201e39 q^{69} +2.35103e39 q^{70} +7.59260e39 q^{71} +1.44767e39 q^{72} -1.46070e39 q^{73} +1.61313e40 q^{74} -2.16667e40 q^{75} -1.28625e40 q^{76} -1.56114e40 q^{77} -3.35738e40 q^{78} -2.75306e40 q^{79} +3.23222e40 q^{80} -3.15951e40 q^{81} -6.59221e40 q^{82} +2.42104e41 q^{83} +3.86176e40 q^{84} +5.81799e41 q^{85} -4.16019e41 q^{86} -5.26959e40 q^{87} -2.14627e41 q^{88} -5.61520e41 q^{89} +5.50036e41 q^{90} +8.20612e41 q^{91} +9.91969e41 q^{92} -1.49117e42 q^{93} -2.60097e42 q^{94} -4.88705e42 q^{95} +5.30919e41 q^{96} +3.43039e42 q^{97} +3.63590e42 q^{98} -3.65237e42 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 4194304q^{2} - 12981630984q^{3} + 8796093022208q^{4} - 398662711282500q^{5} + 27224453381357568q^{6} + 1174870033543241008q^{7} - 18446744073709551616q^{8} - 485202301172100019926q^{9} + O(q^{10}) \) \( 2q - 4194304q^{2} - 12981630984q^{3} + 8796093022208q^{4} - 398662711282500q^{5} + 27224453381357568q^{6} + 1174870033543241008q^{7} - 18446744073709551616q^{8} - \)\(48\!\cdots\!26\)\(q^{9} + \)\(83\!\cdots\!00\)\(q^{10} - \)\(11\!\cdots\!76\)\(q^{11} - \)\(57\!\cdots\!36\)\(q^{12} - \)\(16\!\cdots\!84\)\(q^{13} - \)\(24\!\cdots\!16\)\(q^{14} - \)\(22\!\cdots\!00\)\(q^{15} + \)\(38\!\cdots\!32\)\(q^{16} + \)\(34\!\cdots\!68\)\(q^{17} + \)\(10\!\cdots\!52\)\(q^{18} - \)\(52\!\cdots\!00\)\(q^{19} - \)\(17\!\cdots\!00\)\(q^{20} + \)\(89\!\cdots\!64\)\(q^{21} + \)\(24\!\cdots\!52\)\(q^{22} + \)\(22\!\cdots\!36\)\(q^{23} + \)\(11\!\cdots\!72\)\(q^{24} + \)\(48\!\cdots\!50\)\(q^{25} + \)\(34\!\cdots\!68\)\(q^{26} + \)\(62\!\cdots\!60\)\(q^{27} + \)\(51\!\cdots\!32\)\(q^{28} + \)\(34\!\cdots\!20\)\(q^{29} + \)\(46\!\cdots\!00\)\(q^{30} + \)\(16\!\cdots\!04\)\(q^{31} - \)\(81\!\cdots\!64\)\(q^{32} - \)\(30\!\cdots\!08\)\(q^{33} - \)\(71\!\cdots\!36\)\(q^{34} - \)\(49\!\cdots\!00\)\(q^{35} - \)\(21\!\cdots\!04\)\(q^{36} - \)\(43\!\cdots\!32\)\(q^{37} + \)\(11\!\cdots\!00\)\(q^{38} + \)\(15\!\cdots\!28\)\(q^{39} + \)\(36\!\cdots\!00\)\(q^{40} + \)\(73\!\cdots\!24\)\(q^{41} - \)\(18\!\cdots\!28\)\(q^{42} + \)\(23\!\cdots\!36\)\(q^{43} - \)\(51\!\cdots\!04\)\(q^{44} + \)\(41\!\cdots\!00\)\(q^{45} - \)\(48\!\cdots\!72\)\(q^{46} - \)\(39\!\cdots\!92\)\(q^{47} - \)\(25\!\cdots\!44\)\(q^{48} - \)\(51\!\cdots\!54\)\(q^{49} - \)\(10\!\cdots\!00\)\(q^{50} - \)\(45\!\cdots\!56\)\(q^{51} - \)\(72\!\cdots\!36\)\(q^{52} + \)\(21\!\cdots\!56\)\(q^{53} - \)\(13\!\cdots\!20\)\(q^{54} + \)\(11\!\cdots\!00\)\(q^{55} - \)\(10\!\cdots\!64\)\(q^{56} + \)\(38\!\cdots\!00\)\(q^{57} - \)\(71\!\cdots\!40\)\(q^{58} + \)\(67\!\cdots\!40\)\(q^{59} - \)\(97\!\cdots\!00\)\(q^{60} + \)\(10\!\cdots\!04\)\(q^{61} - \)\(34\!\cdots\!08\)\(q^{62} - \)\(50\!\cdots\!04\)\(q^{63} + \)\(17\!\cdots\!28\)\(q^{64} - \)\(11\!\cdots\!00\)\(q^{65} + \)\(64\!\cdots\!16\)\(q^{66} - \)\(12\!\cdots\!52\)\(q^{67} + \)\(15\!\cdots\!72\)\(q^{68} - \)\(29\!\cdots\!12\)\(q^{69} + \)\(10\!\cdots\!00\)\(q^{70} + \)\(10\!\cdots\!64\)\(q^{71} + \)\(44\!\cdots\!08\)\(q^{72} - \)\(10\!\cdots\!24\)\(q^{73} + \)\(92\!\cdots\!64\)\(q^{74} - \)\(21\!\cdots\!00\)\(q^{75} - \)\(23\!\cdots\!00\)\(q^{76} - \)\(80\!\cdots\!04\)\(q^{77} - \)\(33\!\cdots\!56\)\(q^{78} - \)\(66\!\cdots\!20\)\(q^{79} - \)\(77\!\cdots\!00\)\(q^{80} + \)\(76\!\cdots\!82\)\(q^{81} - \)\(15\!\cdots\!48\)\(q^{82} + \)\(54\!\cdots\!56\)\(q^{83} + \)\(39\!\cdots\!56\)\(q^{84} + \)\(59\!\cdots\!00\)\(q^{85} - \)\(49\!\cdots\!72\)\(q^{86} - \)\(49\!\cdots\!40\)\(q^{87} + \)\(10\!\cdots\!08\)\(q^{88} + \)\(29\!\cdots\!20\)\(q^{89} - \)\(87\!\cdots\!00\)\(q^{90} + \)\(16\!\cdots\!64\)\(q^{91} + \)\(10\!\cdots\!44\)\(q^{92} - \)\(14\!\cdots\!68\)\(q^{93} + \)\(82\!\cdots\!84\)\(q^{94} - \)\(98\!\cdots\!00\)\(q^{95} + \)\(52\!\cdots\!88\)\(q^{96} - \)\(22\!\cdots\!12\)\(q^{97} + \)\(10\!\cdots\!08\)\(q^{98} + \)\(77\!\cdots\!88\)\(q^{99} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.09715e6 −0.707107
\(3\) −1.30882e10 −0.722391 −0.361195 0.932490i \(-0.617631\pi\)
−0.361195 + 0.932490i \(0.617631\pi\)
\(4\) 4.39805e12 0.500000
\(5\) 1.67102e15 1.56721 0.783604 0.621261i \(-0.213379\pi\)
0.783604 + 0.621261i \(0.213379\pi\)
\(6\) 2.74479e16 0.510807
\(7\) −6.70883e17 −0.453982 −0.226991 0.973897i \(-0.572889\pi\)
−0.226991 + 0.973897i \(0.572889\pi\)
\(8\) −9.22337e18 −0.353553
\(9\) −1.56957e20 −0.478152
\(10\) −3.50438e21 −1.10818
\(11\) 2.32700e22 0.948097 0.474048 0.880499i \(-0.342792\pi\)
0.474048 + 0.880499i \(0.342792\pi\)
\(12\) −5.75624e22 −0.361195
\(13\) −1.22318e24 −1.37312 −0.686561 0.727072i \(-0.740881\pi\)
−0.686561 + 0.727072i \(0.740881\pi\)
\(14\) 1.40694e24 0.321014
\(15\) −2.18706e25 −1.13214
\(16\) 1.93428e25 0.250000
\(17\) 3.48170e26 1.22219 0.611096 0.791556i \(-0.290729\pi\)
0.611096 + 0.791556i \(0.290729\pi\)
\(18\) 3.29162e26 0.338104
\(19\) −2.92459e27 −0.939427 −0.469713 0.882819i \(-0.655643\pi\)
−0.469713 + 0.882819i \(0.655643\pi\)
\(20\) 7.34922e27 0.783604
\(21\) 8.78063e27 0.327952
\(22\) −4.88006e28 −0.670406
\(23\) 2.25548e29 1.19149 0.595744 0.803174i \(-0.296857\pi\)
0.595744 + 0.803174i \(0.296857\pi\)
\(24\) 1.20717e29 0.255404
\(25\) 1.65544e30 1.45614
\(26\) 2.56520e30 0.970944
\(27\) 6.35056e30 1.06780
\(28\) −2.95057e30 −0.226991
\(29\) 4.02623e30 0.145660 0.0728301 0.997344i \(-0.476797\pi\)
0.0728301 + 0.997344i \(0.476797\pi\)
\(30\) 4.58660e31 0.800541
\(31\) 1.13932e32 0.982587 0.491294 0.870994i \(-0.336524\pi\)
0.491294 + 0.870994i \(0.336524\pi\)
\(32\) −4.05648e31 −0.176777
\(33\) −3.04561e32 −0.684896
\(34\) −7.30166e32 −0.864221
\(35\) −1.12106e33 −0.711484
\(36\) −6.90303e32 −0.239076
\(37\) −7.69200e33 −1.47809 −0.739047 0.673654i \(-0.764724\pi\)
−0.739047 + 0.673654i \(0.764724\pi\)
\(38\) 6.13331e33 0.664275
\(39\) 1.60092e34 0.991931
\(40\) −1.54124e34 −0.554091
\(41\) 3.14341e34 0.664581 0.332291 0.943177i \(-0.392179\pi\)
0.332291 + 0.943177i \(0.392179\pi\)
\(42\) −1.84143e34 −0.231897
\(43\) 1.98374e35 1.50630 0.753151 0.657848i \(-0.228533\pi\)
0.753151 + 0.657848i \(0.228533\pi\)
\(44\) 1.02342e35 0.474048
\(45\) −2.62278e35 −0.749363
\(46\) −4.73008e35 −0.842510
\(47\) 1.24024e36 1.39124 0.695618 0.718412i \(-0.255131\pi\)
0.695618 + 0.718412i \(0.255131\pi\)
\(48\) −2.53162e35 −0.180598
\(49\) −1.73373e36 −0.793900
\(50\) −3.47171e36 −1.02965
\(51\) −4.55691e36 −0.882901
\(52\) −5.37962e36 −0.686561
\(53\) 2.28375e37 1.93516 0.967581 0.252561i \(-0.0812728\pi\)
0.967581 + 0.252561i \(0.0812728\pi\)
\(54\) −1.33181e37 −0.755051
\(55\) 3.88845e37 1.48586
\(56\) 6.18780e36 0.160507
\(57\) 3.82776e37 0.678633
\(58\) −8.44361e36 −0.102997
\(59\) −5.92652e37 −0.500589 −0.250295 0.968170i \(-0.580527\pi\)
−0.250295 + 0.968170i \(0.580527\pi\)
\(60\) −9.61879e37 −0.566068
\(61\) 1.57810e38 0.650943 0.325471 0.945552i \(-0.394477\pi\)
0.325471 + 0.945552i \(0.394477\pi\)
\(62\) −2.38934e38 −0.694794
\(63\) 1.05300e38 0.217072
\(64\) 8.50706e37 0.125000
\(65\) −2.04396e39 −2.15197
\(66\) 6.38711e38 0.484295
\(67\) 1.19856e39 0.657736 0.328868 0.944376i \(-0.393333\pi\)
0.328868 + 0.944376i \(0.393333\pi\)
\(68\) 1.53127e39 0.611096
\(69\) −2.95201e39 −0.860720
\(70\) 2.35103e39 0.503095
\(71\) 7.59260e39 1.19767 0.598833 0.800874i \(-0.295631\pi\)
0.598833 + 0.800874i \(0.295631\pi\)
\(72\) 1.44767e39 0.169052
\(73\) −1.46070e39 −0.126800 −0.0634000 0.997988i \(-0.520194\pi\)
−0.0634000 + 0.997988i \(0.520194\pi\)
\(74\) 1.61313e40 1.04517
\(75\) −2.16667e40 −1.05190
\(76\) −1.28625e40 −0.469713
\(77\) −1.56114e40 −0.430419
\(78\) −3.35738e40 −0.701401
\(79\) −2.75306e40 −0.437354 −0.218677 0.975797i \(-0.570174\pi\)
−0.218677 + 0.975797i \(0.570174\pi\)
\(80\) 3.23222e40 0.391802
\(81\) −3.15951e40 −0.293219
\(82\) −6.59221e40 −0.469930
\(83\) 2.42104e41 1.32991 0.664956 0.746883i \(-0.268450\pi\)
0.664956 + 0.746883i \(0.268450\pi\)
\(84\) 3.86176e40 0.163976
\(85\) 5.81799e41 1.91543
\(86\) −4.16019e41 −1.06512
\(87\) −5.26959e40 −0.105224
\(88\) −2.14627e41 −0.335203
\(89\) −5.61520e41 −0.687829 −0.343914 0.939001i \(-0.611753\pi\)
−0.343914 + 0.939001i \(0.611753\pi\)
\(90\) 5.50036e41 0.529880
\(91\) 8.20612e41 0.623373
\(92\) 9.91969e41 0.595744
\(93\) −1.49117e42 −0.709812
\(94\) −2.60097e42 −0.983752
\(95\) −4.88705e42 −1.47228
\(96\) 5.30919e41 0.127702
\(97\) 3.43039e42 0.660314 0.330157 0.943926i \(-0.392898\pi\)
0.330157 + 0.943926i \(0.392898\pi\)
\(98\) 3.63590e42 0.561372
\(99\) −3.65237e42 −0.453334
\(100\) 7.28069e42 0.728069
\(101\) 2.99504e42 0.241821 0.120910 0.992663i \(-0.461419\pi\)
0.120910 + 0.992663i \(0.461419\pi\)
\(102\) 9.55654e42 0.624305
\(103\) 5.24275e42 0.277689 0.138845 0.990314i \(-0.455661\pi\)
0.138845 + 0.990314i \(0.455661\pi\)
\(104\) 1.12819e43 0.485472
\(105\) 1.46726e43 0.513969
\(106\) −4.78937e43 −1.36837
\(107\) −3.68881e43 −0.861261 −0.430631 0.902528i \(-0.641709\pi\)
−0.430631 + 0.902528i \(0.641709\pi\)
\(108\) 2.79301e43 0.533901
\(109\) −4.02750e43 −0.631490 −0.315745 0.948844i \(-0.602254\pi\)
−0.315745 + 0.948844i \(0.602254\pi\)
\(110\) −8.15468e43 −1.05066
\(111\) 1.00674e44 1.06776
\(112\) −1.29768e43 −0.113496
\(113\) −1.40596e44 −1.01575 −0.507875 0.861431i \(-0.669569\pi\)
−0.507875 + 0.861431i \(0.669569\pi\)
\(114\) −8.02739e43 −0.479866
\(115\) 3.76895e44 1.86731
\(116\) 1.77075e43 0.0728301
\(117\) 1.91987e44 0.656561
\(118\) 1.24288e44 0.353970
\(119\) −2.33581e44 −0.554854
\(120\) 2.01721e44 0.400270
\(121\) −6.09100e43 −0.101112
\(122\) −3.30951e44 −0.460286
\(123\) −4.11415e44 −0.480087
\(124\) 5.01080e44 0.491294
\(125\) 8.66540e44 0.714864
\(126\) −2.20829e44 −0.153493
\(127\) −2.29690e45 −1.34698 −0.673490 0.739196i \(-0.735206\pi\)
−0.673490 + 0.739196i \(0.735206\pi\)
\(128\) −1.78406e44 −0.0883883
\(129\) −2.59635e45 −1.08814
\(130\) 4.28650e45 1.52167
\(131\) −2.63581e45 −0.793564 −0.396782 0.917913i \(-0.629873\pi\)
−0.396782 + 0.917913i \(0.629873\pi\)
\(132\) −1.33947e45 −0.342448
\(133\) 1.96206e45 0.426483
\(134\) −2.51356e45 −0.465089
\(135\) 1.06119e46 1.67347
\(136\) −3.21130e45 −0.432110
\(137\) 8.12716e45 0.934215 0.467107 0.884201i \(-0.345296\pi\)
0.467107 + 0.884201i \(0.345296\pi\)
\(138\) 6.19081e45 0.608621
\(139\) 1.14324e46 0.962320 0.481160 0.876633i \(-0.340216\pi\)
0.481160 + 0.876633i \(0.340216\pi\)
\(140\) −4.93047e45 −0.355742
\(141\) −1.62324e46 −1.00502
\(142\) −1.59228e46 −0.846878
\(143\) −2.84634e46 −1.30185
\(144\) −3.03598e45 −0.119538
\(145\) 6.72790e45 0.228280
\(146\) 3.06331e45 0.0896612
\(147\) 2.26914e46 0.573506
\(148\) −3.38298e46 −0.739047
\(149\) 1.68142e46 0.317812 0.158906 0.987294i \(-0.449203\pi\)
0.158906 + 0.987294i \(0.449203\pi\)
\(150\) 4.54383e46 0.743806
\(151\) −4.11201e46 −0.583512 −0.291756 0.956493i \(-0.594240\pi\)
−0.291756 + 0.956493i \(0.594240\pi\)
\(152\) 2.69746e46 0.332137
\(153\) −5.46476e46 −0.584394
\(154\) 3.27395e46 0.304352
\(155\) 1.90383e47 1.53992
\(156\) 7.04093e46 0.495965
\(157\) −2.41691e46 −0.148395 −0.0741973 0.997244i \(-0.523639\pi\)
−0.0741973 + 0.997244i \(0.523639\pi\)
\(158\) 5.77359e46 0.309256
\(159\) −2.98901e47 −1.39794
\(160\) −6.77846e46 −0.277046
\(161\) −1.51316e47 −0.540914
\(162\) 6.62597e46 0.207337
\(163\) 3.22717e47 0.884684 0.442342 0.896846i \(-0.354148\pi\)
0.442342 + 0.896846i \(0.354148\pi\)
\(164\) 1.38249e47 0.332291
\(165\) −5.08928e47 −1.07337
\(166\) −5.07729e47 −0.940390
\(167\) 2.83162e46 0.0460926 0.0230463 0.999734i \(-0.492663\pi\)
0.0230463 + 0.999734i \(0.492663\pi\)
\(168\) −8.09870e46 −0.115949
\(169\) 7.02645e47 0.885466
\(170\) −1.22012e48 −1.35441
\(171\) 4.59034e47 0.449189
\(172\) 8.72456e47 0.753151
\(173\) 1.51127e48 1.15173 0.575864 0.817545i \(-0.304666\pi\)
0.575864 + 0.817545i \(0.304666\pi\)
\(174\) 1.10511e47 0.0744043
\(175\) −1.11060e48 −0.661061
\(176\) 4.50106e47 0.237024
\(177\) 7.75673e47 0.361621
\(178\) 1.17759e48 0.486368
\(179\) 3.10473e48 1.13680 0.568400 0.822753i \(-0.307563\pi\)
0.568400 + 0.822753i \(0.307563\pi\)
\(180\) −1.15351e48 −0.374682
\(181\) −3.99228e48 −1.15115 −0.575574 0.817750i \(-0.695221\pi\)
−0.575574 + 0.817750i \(0.695221\pi\)
\(182\) −1.72095e48 −0.440791
\(183\) −2.06544e48 −0.470235
\(184\) −2.08031e48 −0.421255
\(185\) −1.28535e49 −2.31648
\(186\) 3.12721e48 0.501913
\(187\) 8.10190e48 1.15876
\(188\) 5.45462e48 0.695618
\(189\) −4.26048e48 −0.484763
\(190\) 1.02489e49 1.04106
\(191\) −1.50160e48 −0.136251 −0.0681253 0.997677i \(-0.521702\pi\)
−0.0681253 + 0.997677i \(0.521702\pi\)
\(192\) −1.11342e48 −0.0902988
\(193\) 7.85184e48 0.569494 0.284747 0.958603i \(-0.408090\pi\)
0.284747 + 0.958603i \(0.408090\pi\)
\(194\) −7.19404e48 −0.466913
\(195\) 2.67517e49 1.55456
\(196\) −7.62503e48 −0.396950
\(197\) −2.31488e49 −1.08020 −0.540101 0.841600i \(-0.681614\pi\)
−0.540101 + 0.841600i \(0.681614\pi\)
\(198\) 7.65958e48 0.320556
\(199\) 2.35127e49 0.883001 0.441500 0.897261i \(-0.354446\pi\)
0.441500 + 0.897261i \(0.354446\pi\)
\(200\) −1.52687e49 −0.514823
\(201\) −1.56870e49 −0.475142
\(202\) −6.28106e48 −0.170993
\(203\) −2.70112e48 −0.0661272
\(204\) −2.00415e49 −0.441450
\(205\) 5.25270e49 1.04154
\(206\) −1.09948e49 −0.196356
\(207\) −3.54012e49 −0.569712
\(208\) −2.36598e49 −0.343281
\(209\) −6.80551e49 −0.890667
\(210\) −3.07707e49 −0.363431
\(211\) 9.59361e48 0.102308 0.0511540 0.998691i \(-0.483710\pi\)
0.0511540 + 0.998691i \(0.483710\pi\)
\(212\) 1.00440e50 0.967581
\(213\) −9.93733e49 −0.865183
\(214\) 7.73599e49 0.609004
\(215\) 3.31486e50 2.36069
\(216\) −5.85736e49 −0.377525
\(217\) −7.64353e49 −0.446077
\(218\) 8.44629e49 0.446531
\(219\) 1.91179e49 0.0915992
\(220\) 1.71016e50 0.742932
\(221\) −4.25876e50 −1.67822
\(222\) −2.11129e50 −0.755021
\(223\) 5.16000e50 1.67531 0.837655 0.546200i \(-0.183926\pi\)
0.837655 + 0.546200i \(0.183926\pi\)
\(224\) 2.72142e49 0.0802534
\(225\) −2.59832e50 −0.696255
\(226\) 2.94852e50 0.718244
\(227\) −6.91910e50 −1.53283 −0.766415 0.642346i \(-0.777961\pi\)
−0.766415 + 0.642346i \(0.777961\pi\)
\(228\) 1.68347e50 0.339316
\(229\) −6.27472e50 −1.15115 −0.575574 0.817749i \(-0.695221\pi\)
−0.575574 + 0.817749i \(0.695221\pi\)
\(230\) −7.90405e50 −1.32039
\(231\) 2.04325e50 0.310931
\(232\) −3.71354e49 −0.0514987
\(233\) 8.02437e50 1.01452 0.507258 0.861794i \(-0.330659\pi\)
0.507258 + 0.861794i \(0.330659\pi\)
\(234\) −4.02625e50 −0.464259
\(235\) 2.07246e51 2.18035
\(236\) −2.60651e50 −0.250295
\(237\) 3.60325e50 0.315941
\(238\) 4.89855e50 0.392341
\(239\) 5.37577e50 0.393446 0.196723 0.980459i \(-0.436970\pi\)
0.196723 + 0.980459i \(0.436970\pi\)
\(240\) −4.23039e50 −0.283034
\(241\) 1.25831e50 0.0769880 0.0384940 0.999259i \(-0.487744\pi\)
0.0384940 + 0.999259i \(0.487744\pi\)
\(242\) 1.27738e50 0.0714971
\(243\) −1.67109e51 −0.855984
\(244\) 6.94055e50 0.325471
\(245\) −2.89710e51 −1.24421
\(246\) 8.62800e50 0.339473
\(247\) 3.57731e51 1.28995
\(248\) −1.05084e51 −0.347397
\(249\) −3.16870e51 −0.960716
\(250\) −1.81727e51 −0.505485
\(251\) −3.18975e51 −0.814277 −0.407138 0.913366i \(-0.633473\pi\)
−0.407138 + 0.913366i \(0.633473\pi\)
\(252\) 4.63112e50 0.108536
\(253\) 5.24848e51 1.12965
\(254\) 4.81694e51 0.952459
\(255\) −7.61469e51 −1.38369
\(256\) 3.74144e50 0.0625000
\(257\) −3.39629e51 −0.521727 −0.260863 0.965376i \(-0.584007\pi\)
−0.260863 + 0.965376i \(0.584007\pi\)
\(258\) 5.44493e51 0.769430
\(259\) 5.16043e51 0.671028
\(260\) −8.98944e51 −1.07598
\(261\) −6.31943e50 −0.0696477
\(262\) 5.52770e51 0.561134
\(263\) −8.01231e51 −0.749393 −0.374696 0.927148i \(-0.622253\pi\)
−0.374696 + 0.927148i \(0.622253\pi\)
\(264\) 2.80908e51 0.242147
\(265\) 3.81619e52 3.03280
\(266\) −4.11473e51 −0.301569
\(267\) 7.34927e51 0.496881
\(268\) 5.27132e51 0.328868
\(269\) −1.58737e52 −0.914120 −0.457060 0.889436i \(-0.651098\pi\)
−0.457060 + 0.889436i \(0.651098\pi\)
\(270\) −2.22548e52 −1.18332
\(271\) −2.28657e52 −1.12291 −0.561455 0.827507i \(-0.689758\pi\)
−0.561455 + 0.827507i \(0.689758\pi\)
\(272\) 6.73459e51 0.305548
\(273\) −1.07403e52 −0.450319
\(274\) −1.70439e52 −0.660590
\(275\) 3.85220e52 1.38056
\(276\) −1.29831e52 −0.430360
\(277\) −2.03762e52 −0.624898 −0.312449 0.949935i \(-0.601149\pi\)
−0.312449 + 0.949935i \(0.601149\pi\)
\(278\) −2.39755e52 −0.680463
\(279\) −1.78825e52 −0.469826
\(280\) 1.03399e52 0.251548
\(281\) 5.54569e52 1.24960 0.624798 0.780786i \(-0.285181\pi\)
0.624798 + 0.780786i \(0.285181\pi\)
\(282\) 3.40419e52 0.710653
\(283\) −7.28849e52 −1.41003 −0.705016 0.709191i \(-0.749060\pi\)
−0.705016 + 0.709191i \(0.749060\pi\)
\(284\) 3.33926e52 0.598833
\(285\) 6.39626e52 1.06356
\(286\) 5.96921e52 0.920549
\(287\) −2.10886e52 −0.301708
\(288\) 6.36692e51 0.0845261
\(289\) 4.00696e52 0.493755
\(290\) −1.41094e52 −0.161418
\(291\) −4.48975e52 −0.477005
\(292\) −6.42422e51 −0.0634000
\(293\) −1.02109e51 −0.00936293 −0.00468146 0.999989i \(-0.501490\pi\)
−0.00468146 + 0.999989i \(0.501490\pi\)
\(294\) −4.75873e52 −0.405530
\(295\) −9.90333e52 −0.784527
\(296\) 7.09462e52 0.522585
\(297\) 1.47777e53 1.01238
\(298\) −3.52619e52 −0.224727
\(299\) −2.75886e53 −1.63606
\(300\) −9.52910e52 −0.525950
\(301\) −1.33085e53 −0.683834
\(302\) 8.62351e52 0.412606
\(303\) −3.91996e52 −0.174689
\(304\) −5.65698e52 −0.234857
\(305\) 2.63703e53 1.02016
\(306\) 1.14604e53 0.413229
\(307\) 3.90717e53 1.31337 0.656685 0.754165i \(-0.271958\pi\)
0.656685 + 0.754165i \(0.271958\pi\)
\(308\) −6.86597e52 −0.215209
\(309\) −6.86181e52 −0.200600
\(310\) −3.99263e53 −1.08889
\(311\) 6.19128e53 1.57555 0.787775 0.615964i \(-0.211233\pi\)
0.787775 + 0.615964i \(0.211233\pi\)
\(312\) −1.47659e53 −0.350701
\(313\) −4.24265e53 −0.940663 −0.470331 0.882490i \(-0.655866\pi\)
−0.470331 + 0.882490i \(0.655866\pi\)
\(314\) 5.06863e52 0.104931
\(315\) 1.75958e53 0.340197
\(316\) −1.21081e53 −0.218677
\(317\) 8.62450e52 0.145532 0.0727662 0.997349i \(-0.476817\pi\)
0.0727662 + 0.997349i \(0.476817\pi\)
\(318\) 6.26841e53 0.988495
\(319\) 9.36901e52 0.138100
\(320\) 1.42155e53 0.195901
\(321\) 4.82798e53 0.622167
\(322\) 3.17333e53 0.382484
\(323\) −1.01826e54 −1.14816
\(324\) −1.38957e53 −0.146609
\(325\) −2.02490e54 −1.99946
\(326\) −6.76786e53 −0.625566
\(327\) 5.27127e53 0.456182
\(328\) −2.89928e53 −0.234965
\(329\) −8.32053e53 −0.631596
\(330\) 1.06730e54 0.758990
\(331\) −1.53215e54 −1.02094 −0.510471 0.859895i \(-0.670529\pi\)
−0.510471 + 0.859895i \(0.670529\pi\)
\(332\) 1.06478e54 0.664956
\(333\) 1.20731e54 0.706754
\(334\) −5.93834e52 −0.0325924
\(335\) 2.00282e54 1.03081
\(336\) 1.69842e53 0.0819881
\(337\) −2.50480e53 −0.113431 −0.0567153 0.998390i \(-0.518063\pi\)
−0.0567153 + 0.998390i \(0.518063\pi\)
\(338\) −1.47355e54 −0.626119
\(339\) 1.84015e54 0.733769
\(340\) 2.55878e54 0.957715
\(341\) 2.65120e54 0.931588
\(342\) −9.62665e53 −0.317624
\(343\) 2.62821e54 0.814399
\(344\) −1.82967e54 −0.532558
\(345\) −4.93286e54 −1.34893
\(346\) −3.16936e54 −0.814395
\(347\) 5.16597e54 1.24758 0.623789 0.781593i \(-0.285592\pi\)
0.623789 + 0.781593i \(0.285592\pi\)
\(348\) −2.31759e53 −0.0526118
\(349\) −7.76485e54 −1.65724 −0.828622 0.559809i \(-0.810874\pi\)
−0.828622 + 0.559809i \(0.810874\pi\)
\(350\) 2.32911e54 0.467441
\(351\) −7.76790e54 −1.46622
\(352\) −9.43941e53 −0.167601
\(353\) 2.07986e54 0.347439 0.173719 0.984795i \(-0.444421\pi\)
0.173719 + 0.984795i \(0.444421\pi\)
\(354\) −1.62670e54 −0.255705
\(355\) 1.26874e55 1.87699
\(356\) −2.46959e54 −0.343914
\(357\) 3.05715e54 0.400821
\(358\) −6.51109e54 −0.803838
\(359\) −6.95386e54 −0.808528 −0.404264 0.914642i \(-0.632472\pi\)
−0.404264 + 0.914642i \(0.632472\pi\)
\(360\) 2.41908e54 0.264940
\(361\) −1.13857e54 −0.117478
\(362\) 8.37241e54 0.813985
\(363\) 7.97201e53 0.0730425
\(364\) 3.60909e54 0.311687
\(365\) −2.44086e54 −0.198722
\(366\) 4.33155e54 0.332506
\(367\) 6.70860e54 0.485637 0.242818 0.970072i \(-0.421928\pi\)
0.242818 + 0.970072i \(0.421928\pi\)
\(368\) 4.36273e54 0.297872
\(369\) −4.93379e54 −0.317771
\(370\) 2.69557e55 1.63800
\(371\) −1.53213e55 −0.878529
\(372\) −6.55822e54 −0.354906
\(373\) 8.81171e54 0.450112 0.225056 0.974346i \(-0.427744\pi\)
0.225056 + 0.974346i \(0.427744\pi\)
\(374\) −1.69909e55 −0.819365
\(375\) −1.13414e55 −0.516411
\(376\) −1.14392e55 −0.491876
\(377\) −4.92481e54 −0.200009
\(378\) 8.93488e54 0.342779
\(379\) 1.20095e55 0.435293 0.217647 0.976028i \(-0.430162\pi\)
0.217647 + 0.976028i \(0.430162\pi\)
\(380\) −2.14935e55 −0.736138
\(381\) 3.00622e55 0.973046
\(382\) 3.14909e54 0.0963437
\(383\) −3.24831e55 −0.939471 −0.469736 0.882807i \(-0.655651\pi\)
−0.469736 + 0.882807i \(0.655651\pi\)
\(384\) 2.33501e54 0.0638509
\(385\) −2.60870e55 −0.674556
\(386\) −1.64665e55 −0.402693
\(387\) −3.11361e55 −0.720241
\(388\) 1.50870e55 0.330157
\(389\) 3.93519e55 0.814797 0.407398 0.913251i \(-0.366436\pi\)
0.407398 + 0.913251i \(0.366436\pi\)
\(390\) −5.61025e55 −1.09924
\(391\) 7.85290e55 1.45623
\(392\) 1.59908e55 0.280686
\(393\) 3.44980e55 0.573263
\(394\) 4.85466e55 0.763819
\(395\) −4.60042e55 −0.685425
\(396\) −1.60633e55 −0.226667
\(397\) 1.07339e56 1.43470 0.717352 0.696711i \(-0.245354\pi\)
0.717352 + 0.696711i \(0.245354\pi\)
\(398\) −4.93097e55 −0.624376
\(399\) −2.56798e55 −0.308087
\(400\) 3.20208e55 0.364035
\(401\) 1.40659e56 1.51552 0.757761 0.652532i \(-0.226293\pi\)
0.757761 + 0.652532i \(0.226293\pi\)
\(402\) 3.28979e55 0.335976
\(403\) −1.39360e56 −1.34921
\(404\) 1.31723e55 0.120910
\(405\) −5.27960e55 −0.459535
\(406\) 5.66467e54 0.0467590
\(407\) −1.78992e56 −1.40138
\(408\) 4.20301e55 0.312152
\(409\) −2.32188e56 −1.63602 −0.818008 0.575206i \(-0.804922\pi\)
−0.818008 + 0.575206i \(0.804922\pi\)
\(410\) −1.10157e56 −0.736478
\(411\) −1.06370e56 −0.674868
\(412\) 2.30579e55 0.138845
\(413\) 3.97600e55 0.227259
\(414\) 7.42417e55 0.402848
\(415\) 4.04560e56 2.08425
\(416\) 4.96182e55 0.242736
\(417\) −1.49629e56 −0.695171
\(418\) 1.42722e56 0.629797
\(419\) 2.81206e56 1.17875 0.589376 0.807859i \(-0.299374\pi\)
0.589376 + 0.807859i \(0.299374\pi\)
\(420\) 6.45308e55 0.256985
\(421\) −3.32075e56 −1.25652 −0.628262 0.778002i \(-0.716233\pi\)
−0.628262 + 0.778002i \(0.716233\pi\)
\(422\) −2.01193e55 −0.0723427
\(423\) −1.94663e56 −0.665222
\(424\) −2.10639e56 −0.684183
\(425\) 5.76374e56 1.77968
\(426\) 2.08401e56 0.611777
\(427\) −1.05872e56 −0.295516
\(428\) −1.62236e56 −0.430631
\(429\) 3.72534e56 0.940447
\(430\) −6.95177e56 −1.66926
\(431\) 4.47425e56 1.02202 0.511009 0.859575i \(-0.329272\pi\)
0.511009 + 0.859575i \(0.329272\pi\)
\(432\) 1.22838e56 0.266951
\(433\) 3.38743e55 0.0700455 0.0350228 0.999387i \(-0.488850\pi\)
0.0350228 + 0.999387i \(0.488850\pi\)
\(434\) 1.60296e56 0.315424
\(435\) −8.80560e55 −0.164907
\(436\) −1.77132e56 −0.315745
\(437\) −6.59635e56 −1.11932
\(438\) −4.00931e55 −0.0647704
\(439\) −8.47461e56 −1.30356 −0.651782 0.758406i \(-0.725978\pi\)
−0.651782 + 0.758406i \(0.725978\pi\)
\(440\) −3.58647e56 −0.525332
\(441\) 2.72121e56 0.379605
\(442\) 8.93126e56 1.18668
\(443\) 7.14165e56 0.903896 0.451948 0.892044i \(-0.350729\pi\)
0.451948 + 0.892044i \(0.350729\pi\)
\(444\) 4.42770e56 0.533881
\(445\) −9.38311e56 −1.07797
\(446\) −1.08213e57 −1.18462
\(447\) −2.20067e56 −0.229585
\(448\) −5.70724e55 −0.0567478
\(449\) −5.19514e55 −0.0492380 −0.0246190 0.999697i \(-0.507837\pi\)
−0.0246190 + 0.999697i \(0.507837\pi\)
\(450\) 5.44907e56 0.492327
\(451\) 7.31470e56 0.630087
\(452\) −6.18349e56 −0.507875
\(453\) 5.38187e56 0.421524
\(454\) 1.45104e57 1.08387
\(455\) 1.37126e57 0.976955
\(456\) −3.53048e56 −0.239933
\(457\) −2.34455e57 −1.52006 −0.760030 0.649888i \(-0.774816\pi\)
−0.760030 + 0.649888i \(0.774816\pi\)
\(458\) 1.31590e57 0.813985
\(459\) 2.21108e57 1.30506
\(460\) 1.65760e57 0.933655
\(461\) −1.16136e57 −0.624306 −0.312153 0.950032i \(-0.601050\pi\)
−0.312153 + 0.950032i \(0.601050\pi\)
\(462\) −4.28500e56 −0.219861
\(463\) −1.42613e57 −0.698504 −0.349252 0.937029i \(-0.613564\pi\)
−0.349252 + 0.937029i \(0.613564\pi\)
\(464\) 7.78785e55 0.0364151
\(465\) −2.49177e57 −1.11242
\(466\) −1.68283e57 −0.717371
\(467\) 1.93948e57 0.789535 0.394768 0.918781i \(-0.370825\pi\)
0.394768 + 0.918781i \(0.370825\pi\)
\(468\) 8.44367e56 0.328281
\(469\) −8.04093e56 −0.298600
\(470\) −4.34626e57 −1.54174
\(471\) 3.16330e56 0.107199
\(472\) 5.46625e56 0.176985
\(473\) 4.61614e57 1.42812
\(474\) −7.55657e56 −0.223404
\(475\) −4.84148e57 −1.36794
\(476\) −1.02730e57 −0.277427
\(477\) −3.58450e57 −0.925301
\(478\) −1.12738e57 −0.278209
\(479\) 6.92746e56 0.163441 0.0817204 0.996655i \(-0.473959\pi\)
0.0817204 + 0.996655i \(0.473959\pi\)
\(480\) 8.87177e56 0.200135
\(481\) 9.40872e57 2.02961
\(482\) −2.63888e56 −0.0544387
\(483\) 1.98045e57 0.390751
\(484\) −2.67885e56 −0.0505561
\(485\) 5.73224e57 1.03485
\(486\) 3.50454e57 0.605272
\(487\) 4.52567e57 0.747843 0.373922 0.927460i \(-0.378013\pi\)
0.373922 + 0.927460i \(0.378013\pi\)
\(488\) −1.45554e57 −0.230143
\(489\) −4.22377e57 −0.639087
\(490\) 6.07566e57 0.879787
\(491\) −7.11420e57 −0.985993 −0.492997 0.870031i \(-0.664098\pi\)
−0.492997 + 0.870031i \(0.664098\pi\)
\(492\) −1.80942e57 −0.240044
\(493\) 1.40181e57 0.178025
\(494\) −7.50216e57 −0.912131
\(495\) −6.10319e57 −0.710469
\(496\) 2.20377e57 0.245647
\(497\) −5.09374e57 −0.543719
\(498\) 6.64524e57 0.679329
\(499\) −1.31361e58 −1.28619 −0.643093 0.765788i \(-0.722349\pi\)
−0.643093 + 0.765788i \(0.722349\pi\)
\(500\) 3.81108e57 0.357432
\(501\) −3.70607e56 −0.0332968
\(502\) 6.68940e57 0.575781
\(503\) 3.98333e57 0.328500 0.164250 0.986419i \(-0.447480\pi\)
0.164250 + 0.986419i \(0.447480\pi\)
\(504\) −9.71217e56 −0.0767467
\(505\) 5.00477e57 0.378983
\(506\) −1.10069e58 −0.798781
\(507\) −9.19634e57 −0.639652
\(508\) −1.01019e58 −0.673490
\(509\) 9.54927e57 0.610292 0.305146 0.952306i \(-0.401295\pi\)
0.305146 + 0.952306i \(0.401295\pi\)
\(510\) 1.59692e58 0.978415
\(511\) 9.79958e56 0.0575649
\(512\) −7.84638e56 −0.0441942
\(513\) −1.85728e58 −1.00312
\(514\) 7.12254e57 0.368916
\(515\) 8.76074e57 0.435197
\(516\) −1.14189e58 −0.544069
\(517\) 2.88603e58 1.31903
\(518\) −1.08222e58 −0.474489
\(519\) −1.97797e58 −0.831998
\(520\) 1.88522e58 0.760836
\(521\) 2.55219e58 0.988331 0.494165 0.869368i \(-0.335474\pi\)
0.494165 + 0.869368i \(0.335474\pi\)
\(522\) 1.32528e57 0.0492484
\(523\) −2.20883e57 −0.0787726 −0.0393863 0.999224i \(-0.512540\pi\)
−0.0393863 + 0.999224i \(0.512540\pi\)
\(524\) −1.15924e58 −0.396782
\(525\) 1.45358e58 0.477544
\(526\) 1.68030e58 0.529901
\(527\) 3.96679e58 1.20091
\(528\) −5.89107e57 −0.171224
\(529\) 1.50376e58 0.419645
\(530\) −8.00313e58 −2.14451
\(531\) 9.30207e57 0.239358
\(532\) 8.62922e57 0.213241
\(533\) −3.84497e58 −0.912552
\(534\) −1.54125e58 −0.351348
\(535\) −6.16407e58 −1.34978
\(536\) −1.10548e58 −0.232545
\(537\) −4.06353e58 −0.821213
\(538\) 3.32895e58 0.646381
\(539\) −4.03438e58 −0.752694
\(540\) 4.66717e58 0.836734
\(541\) 5.96044e57 0.102692 0.0513460 0.998681i \(-0.483649\pi\)
0.0513460 + 0.998681i \(0.483649\pi\)
\(542\) 4.79529e58 0.794017
\(543\) 5.22516e58 0.831579
\(544\) −1.41235e58 −0.216055
\(545\) −6.73004e58 −0.989675
\(546\) 2.25241e58 0.318423
\(547\) 6.80993e58 0.925583 0.462792 0.886467i \(-0.346848\pi\)
0.462792 + 0.886467i \(0.346848\pi\)
\(548\) 3.57436e58 0.467107
\(549\) −2.47693e58 −0.311249
\(550\) −8.07864e58 −0.976204
\(551\) −1.17751e58 −0.136837
\(552\) 2.72275e58 0.304311
\(553\) 1.84698e58 0.198551
\(554\) 4.27321e58 0.441870
\(555\) 1.68229e59 1.67340
\(556\) 5.02802e58 0.481160
\(557\) 1.69579e59 1.56130 0.780649 0.624970i \(-0.214889\pi\)
0.780649 + 0.624970i \(0.214889\pi\)
\(558\) 3.75022e58 0.332217
\(559\) −2.42647e59 −2.06834
\(560\) −2.16844e58 −0.177871
\(561\) −1.06039e59 −0.837075
\(562\) −1.16302e59 −0.883598
\(563\) 6.74574e58 0.493286 0.246643 0.969106i \(-0.420672\pi\)
0.246643 + 0.969106i \(0.420672\pi\)
\(564\) −7.13910e58 −0.502508
\(565\) −2.34939e59 −1.59189
\(566\) 1.52851e59 0.997044
\(567\) 2.11966e58 0.133116
\(568\) −7.00294e58 −0.423439
\(569\) 4.53105e58 0.263806 0.131903 0.991263i \(-0.457891\pi\)
0.131903 + 0.991263i \(0.457891\pi\)
\(570\) −1.34139e59 −0.752049
\(571\) 3.40361e58 0.183765 0.0918826 0.995770i \(-0.470712\pi\)
0.0918826 + 0.995770i \(0.470712\pi\)
\(572\) −1.25183e59 −0.650927
\(573\) 1.96533e58 0.0984261
\(574\) 4.42260e58 0.213340
\(575\) 3.73380e59 1.73497
\(576\) −1.33524e58 −0.0597690
\(577\) −1.63805e59 −0.706393 −0.353197 0.935549i \(-0.614905\pi\)
−0.353197 + 0.935549i \(0.614905\pi\)
\(578\) −8.40321e58 −0.349138
\(579\) −1.02766e59 −0.411397
\(580\) 2.95896e58 0.114140
\(581\) −1.62423e59 −0.603756
\(582\) 9.41569e58 0.337293
\(583\) 5.31427e59 1.83472
\(584\) 1.34726e58 0.0448306
\(585\) 3.20814e59 1.02897
\(586\) 2.14139e57 0.00662059
\(587\) −2.59001e59 −0.771937 −0.385968 0.922512i \(-0.626133\pi\)
−0.385968 + 0.922512i \(0.626133\pi\)
\(588\) 9.97977e58 0.286753
\(589\) −3.33206e59 −0.923068
\(590\) 2.07688e59 0.554744
\(591\) 3.02976e59 0.780328
\(592\) −1.48785e59 −0.369524
\(593\) 1.64400e59 0.393755 0.196877 0.980428i \(-0.436920\pi\)
0.196877 + 0.980428i \(0.436920\pi\)
\(594\) −3.09911e59 −0.715861
\(595\) −3.90319e59 −0.869571
\(596\) 7.39495e58 0.158906
\(597\) −3.07738e59 −0.637871
\(598\) 5.78575e59 1.15687
\(599\) −3.26024e59 −0.628887 −0.314443 0.949276i \(-0.601818\pi\)
−0.314443 + 0.949276i \(0.601818\pi\)
\(600\) 1.99840e59 0.371903
\(601\) 2.19604e59 0.394312 0.197156 0.980372i \(-0.436829\pi\)
0.197156 + 0.980372i \(0.436829\pi\)
\(602\) 2.79100e59 0.483544
\(603\) −1.88122e59 −0.314498
\(604\) −1.80848e59 −0.291756
\(605\) −1.01782e59 −0.158464
\(606\) 8.22075e58 0.123524
\(607\) −6.75055e59 −0.978999 −0.489500 0.872003i \(-0.662821\pi\)
−0.489500 + 0.872003i \(0.662821\pi\)
\(608\) 1.18636e59 0.166069
\(609\) 3.53528e58 0.0477696
\(610\) −5.53026e59 −0.721364
\(611\) −1.51704e60 −1.91034
\(612\) −2.40343e59 −0.292197
\(613\) 1.52637e60 1.79168 0.895838 0.444380i \(-0.146576\pi\)
0.895838 + 0.444380i \(0.146576\pi\)
\(614\) −8.19392e59 −0.928692
\(615\) −6.87482e59 −0.752396
\(616\) 1.43990e59 0.152176
\(617\) 1.10660e60 1.12943 0.564717 0.825285i \(-0.308985\pi\)
0.564717 + 0.825285i \(0.308985\pi\)
\(618\) 1.43902e59 0.141846
\(619\) 1.89230e60 1.80153 0.900763 0.434310i \(-0.143008\pi\)
0.900763 + 0.434310i \(0.143008\pi\)
\(620\) 8.37315e59 0.769959
\(621\) 1.43235e60 1.27228
\(622\) −1.29841e60 −1.11408
\(623\) 3.76714e59 0.312262
\(624\) 3.09664e59 0.247983
\(625\) −4.34010e59 −0.335799
\(626\) 8.89748e59 0.665149
\(627\) 8.90717e59 0.643410
\(628\) −1.06297e59 −0.0741973
\(629\) −2.67812e60 −1.80652
\(630\) −3.69010e59 −0.240556
\(631\) 1.45280e60 0.915321 0.457660 0.889127i \(-0.348688\pi\)
0.457660 + 0.889127i \(0.348688\pi\)
\(632\) 2.53925e59 0.154628
\(633\) −1.25563e59 −0.0739063
\(634\) −1.80869e59 −0.102907
\(635\) −3.83816e60 −2.11100
\(636\) −1.31458e60 −0.698971
\(637\) 2.12067e60 1.09012
\(638\) −1.96482e59 −0.0976515
\(639\) −1.19171e60 −0.572667
\(640\) −2.98120e59 −0.138523
\(641\) 5.68468e59 0.255422 0.127711 0.991811i \(-0.459237\pi\)
0.127711 + 0.991811i \(0.459237\pi\)
\(642\) −1.01250e60 −0.439939
\(643\) 2.49248e60 1.04736 0.523681 0.851915i \(-0.324559\pi\)
0.523681 + 0.851915i \(0.324559\pi\)
\(644\) −6.65495e59 −0.270457
\(645\) −4.33855e60 −1.70534
\(646\) 2.13544e60 0.811872
\(647\) −1.39608e60 −0.513414 −0.256707 0.966489i \(-0.582638\pi\)
−0.256707 + 0.966489i \(0.582638\pi\)
\(648\) 2.91413e59 0.103669
\(649\) −1.37910e60 −0.474607
\(650\) 4.24653e60 1.41383
\(651\) 1.00040e60 0.322242
\(652\) 1.41932e60 0.442342
\(653\) 5.68894e60 1.71553 0.857764 0.514044i \(-0.171853\pi\)
0.857764 + 0.514044i \(0.171853\pi\)
\(654\) −1.10547e60 −0.322570
\(655\) −4.40450e60 −1.24368
\(656\) 6.08024e59 0.166145
\(657\) 2.29267e59 0.0606297
\(658\) 1.74494e60 0.446606
\(659\) −4.23342e60 −1.04871 −0.524354 0.851500i \(-0.675693\pi\)
−0.524354 + 0.851500i \(0.675693\pi\)
\(660\) −2.23829e60 −0.536687
\(661\) 3.85976e60 0.895837 0.447919 0.894074i \(-0.352165\pi\)
0.447919 + 0.894074i \(0.352165\pi\)
\(662\) 3.21316e60 0.721914
\(663\) 5.57394e60 1.21233
\(664\) −2.23301e60 −0.470195
\(665\) 3.27864e60 0.668387
\(666\) −2.53191e60 −0.499750
\(667\) 9.08106e59 0.173553
\(668\) 1.24536e59 0.0230463
\(669\) −6.75350e60 −1.21023
\(670\) −4.20021e60 −0.728891
\(671\) 3.67223e60 0.617157
\(672\) −3.56185e59 −0.0579743
\(673\) −1.01477e61 −1.59972 −0.799859 0.600188i \(-0.795093\pi\)
−0.799859 + 0.600188i \(0.795093\pi\)
\(674\) 5.25295e59 0.0802075
\(675\) 1.05130e61 1.55487
\(676\) 3.09027e60 0.442733
\(677\) −1.06619e61 −1.47971 −0.739856 0.672765i \(-0.765107\pi\)
−0.739856 + 0.672765i \(0.765107\pi\)
\(678\) −3.85907e60 −0.518853
\(679\) −2.30139e60 −0.299771
\(680\) −5.36615e60 −0.677207
\(681\) 9.05584e60 1.10730
\(682\) −5.55997e60 −0.658732
\(683\) 3.19343e60 0.366617 0.183308 0.983055i \(-0.441319\pi\)
0.183308 + 0.983055i \(0.441319\pi\)
\(684\) 2.01885e60 0.224594
\(685\) 1.35807e61 1.46411
\(686\) −5.51176e60 −0.575867
\(687\) 8.21246e60 0.831579
\(688\) 3.83710e60 0.376575
\(689\) −2.79344e61 −2.65722
\(690\) 1.03450e61 0.953835
\(691\) −1.60049e61 −1.43045 −0.715227 0.698892i \(-0.753677\pi\)
−0.715227 + 0.698892i \(0.753677\pi\)
\(692\) 6.64663e60 0.575864
\(693\) 2.45031e60 0.205806
\(694\) −1.08338e61 −0.882171
\(695\) 1.91038e61 1.50815
\(696\) 4.86034e59 0.0372022
\(697\) 1.09444e61 0.812246
\(698\) 1.62841e61 1.17185
\(699\) −1.05024e61 −0.732876
\(700\) −4.88449e60 −0.330530
\(701\) 1.23383e61 0.809686 0.404843 0.914386i \(-0.367326\pi\)
0.404843 + 0.914386i \(0.367326\pi\)
\(702\) 1.62905e61 1.03678
\(703\) 2.24960e61 1.38856
\(704\) 1.97959e60 0.118512
\(705\) −2.71247e61 −1.57507
\(706\) −4.36178e60 −0.245676
\(707\) −2.00932e60 −0.109782
\(708\) 3.41145e60 0.180810
\(709\) −2.92969e61 −1.50635 −0.753177 0.657818i \(-0.771480\pi\)
−0.753177 + 0.657818i \(0.771480\pi\)
\(710\) −2.66074e61 −1.32723
\(711\) 4.32111e60 0.209122
\(712\) 5.17911e60 0.243184
\(713\) 2.56972e61 1.17074
\(714\) −6.41131e60 −0.283423
\(715\) −4.75629e61 −2.04027
\(716\) 1.36547e61 0.568400
\(717\) −7.03590e60 −0.284222
\(718\) 1.45833e61 0.571716
\(719\) −1.74774e61 −0.664976 −0.332488 0.943108i \(-0.607888\pi\)
−0.332488 + 0.943108i \(0.607888\pi\)
\(720\) −5.07319e60 −0.187341
\(721\) −3.51727e60 −0.126066
\(722\) 2.38776e60 0.0830693
\(723\) −1.64690e60 −0.0556154
\(724\) −1.75582e61 −0.575574
\(725\) 6.66517e60 0.212102
\(726\) −1.67185e60 −0.0516488
\(727\) 1.29440e61 0.388220 0.194110 0.980980i \(-0.437818\pi\)
0.194110 + 0.980980i \(0.437818\pi\)
\(728\) −7.56881e60 −0.220396
\(729\) 3.22429e61 0.911574
\(730\) 5.11885e60 0.140518
\(731\) 6.90677e61 1.84099
\(732\) −9.08391e60 −0.235117
\(733\) 6.07862e61 1.52781 0.763905 0.645329i \(-0.223280\pi\)
0.763905 + 0.645329i \(0.223280\pi\)
\(734\) −1.40690e61 −0.343397
\(735\) 3.79177e61 0.898803
\(736\) −9.14930e60 −0.210627
\(737\) 2.78904e61 0.623597
\(738\) 1.03469e61 0.224698
\(739\) −8.38473e61 −1.76862 −0.884308 0.466904i \(-0.845369\pi\)
−0.884308 + 0.466904i \(0.845369\pi\)
\(740\) −5.65302e61 −1.15824
\(741\) −4.68205e61 −0.931846
\(742\) 3.21311e61 0.621214
\(743\) −4.40042e61 −0.826485 −0.413243 0.910621i \(-0.635604\pi\)
−0.413243 + 0.910621i \(0.635604\pi\)
\(744\) 1.37536e61 0.250956
\(745\) 2.80968e61 0.498078
\(746\) −1.84795e61 −0.318277
\(747\) −3.79998e61 −0.635900
\(748\) 3.56325e61 0.579379
\(749\) 2.47476e61 0.390997
\(750\) 2.37847e61 0.365158
\(751\) −3.97940e61 −0.593689 −0.296845 0.954926i \(-0.595934\pi\)
−0.296845 + 0.954926i \(0.595934\pi\)
\(752\) 2.39897e61 0.347809
\(753\) 4.17480e61 0.588226
\(754\) 1.03281e61 0.141428
\(755\) −6.87125e61 −0.914485
\(756\) −1.87378e61 −0.242382
\(757\) −3.21616e61 −0.404368 −0.202184 0.979348i \(-0.564804\pi\)
−0.202184 + 0.979348i \(0.564804\pi\)
\(758\) −2.51858e61 −0.307799
\(759\) −6.86931e61 −0.816046
\(760\) 4.50751e61 0.520528
\(761\) 2.87614e61 0.322879 0.161439 0.986883i \(-0.448386\pi\)
0.161439 + 0.986883i \(0.448386\pi\)
\(762\) −6.30450e61 −0.688048
\(763\) 2.70198e61 0.286685
\(764\) −6.60413e60 −0.0681253
\(765\) −9.13173e61 −0.915866
\(766\) 6.81219e61 0.664306
\(767\) 7.24922e61 0.687370
\(768\) −4.89687e60 −0.0451494
\(769\) 1.35777e61 0.121734 0.0608669 0.998146i \(-0.480613\pi\)
0.0608669 + 0.998146i \(0.480613\pi\)
\(770\) 5.47083e61 0.476983
\(771\) 4.44513e61 0.376890
\(772\) 3.45327e61 0.284747
\(773\) −3.10392e61 −0.248915 −0.124458 0.992225i \(-0.539719\pi\)
−0.124458 + 0.992225i \(0.539719\pi\)
\(774\) 6.52970e61 0.509287
\(775\) 1.88608e62 1.43078
\(776\) −3.16397e61 −0.233456
\(777\) −6.75406e61 −0.484744
\(778\) −8.25269e61 −0.576148
\(779\) −9.19319e61 −0.624325
\(780\) 1.17655e62 0.777281
\(781\) 1.76679e62 1.13550
\(782\) −1.64687e62 −1.02971
\(783\) 2.55688e61 0.155536
\(784\) −3.35352e61 −0.198475
\(785\) −4.03871e61 −0.232565
\(786\) −7.23475e61 −0.405358
\(787\) 8.37357e61 0.456514 0.228257 0.973601i \(-0.426697\pi\)
0.228257 + 0.973601i \(0.426697\pi\)
\(788\) −1.01810e62 −0.540101
\(789\) 1.04867e62 0.541354
\(790\) 9.64778e61 0.484669
\(791\) 9.43236e61 0.461133
\(792\) 3.36872e61 0.160278
\(793\) −1.93030e62 −0.893824
\(794\) −2.25106e62 −1.01449
\(795\) −4.99470e62 −2.19087
\(796\) 1.03410e62 0.441500
\(797\) −1.76667e62 −0.734180 −0.367090 0.930185i \(-0.619646\pi\)
−0.367090 + 0.930185i \(0.619646\pi\)
\(798\) 5.38543e61 0.217850
\(799\) 4.31813e62 1.70036
\(800\) −6.71525e61 −0.257411
\(801\) 8.81344e61 0.328887
\(802\) −2.94983e62 −1.07164
\(803\) −3.39904e61 −0.120219
\(804\) −6.89920e61 −0.237571
\(805\) −2.52852e62 −0.847725
\(806\) 2.92260e62 0.954037
\(807\) 2.07757e62 0.660352
\(808\) −2.76244e61 −0.0854965
\(809\) 4.77106e62 1.43788 0.718938 0.695074i \(-0.244628\pi\)
0.718938 + 0.695074i \(0.244628\pi\)
\(810\) 1.10721e62 0.324940
\(811\) −5.23958e62 −1.49743 −0.748717 0.662890i \(-0.769330\pi\)
−0.748717 + 0.662890i \(0.769330\pi\)
\(812\) −1.18797e61 −0.0330636
\(813\) 2.99270e62 0.811179
\(814\) 3.75374e62 0.990923
\(815\) 5.39266e62 1.38648
\(816\) −8.81435e61 −0.220725
\(817\) −5.80162e62 −1.41506
\(818\) 4.86933e62 1.15684
\(819\) −1.28801e62 −0.298067
\(820\) 2.31016e62 0.520768
\(821\) −1.29314e62 −0.283968 −0.141984 0.989869i \(-0.545348\pi\)
−0.141984 + 0.989869i \(0.545348\pi\)
\(822\) 2.23073e62 0.477204
\(823\) 4.99113e62 1.04016 0.520082 0.854116i \(-0.325901\pi\)
0.520082 + 0.854116i \(0.325901\pi\)
\(824\) −4.83559e61 −0.0981780
\(825\) −5.04182e62 −0.997304
\(826\) −8.33827e61 −0.160696
\(827\) −9.44817e61 −0.177410 −0.0887052 0.996058i \(-0.528273\pi\)
−0.0887052 + 0.996058i \(0.528273\pi\)
\(828\) −1.55696e62 −0.284856
\(829\) −8.58776e62 −1.53094 −0.765469 0.643473i \(-0.777493\pi\)
−0.765469 + 0.643473i \(0.777493\pi\)
\(830\) −8.48425e62 −1.47379
\(831\) 2.66688e62 0.451420
\(832\) −1.04057e62 −0.171640
\(833\) −6.03633e62 −0.970299
\(834\) 3.13795e62 0.491560
\(835\) 4.73169e61 0.0722366
\(836\) −2.99310e62 −0.445334
\(837\) 7.23535e62 1.04921
\(838\) −5.89731e62 −0.833504
\(839\) 1.14529e63 1.57773 0.788863 0.614569i \(-0.210670\pi\)
0.788863 + 0.614569i \(0.210670\pi\)
\(840\) −1.35331e62 −0.181716
\(841\) −7.47826e62 −0.978783
\(842\) 6.96411e62 0.888496
\(843\) −7.25830e62 −0.902697
\(844\) 4.21932e61 0.0511540
\(845\) 1.17413e63 1.38771
\(846\) 4.08239e62 0.470383
\(847\) 4.08635e61 0.0459031
\(848\) 4.41741e62 0.483790
\(849\) 9.53930e62 1.01859
\(850\) −1.20874e63 −1.25843
\(851\) −1.73491e63 −1.76113
\(852\) −4.37048e62 −0.432592
\(853\) 3.37317e62 0.325562 0.162781 0.986662i \(-0.447954\pi\)
0.162781 + 0.986662i \(0.447954\pi\)
\(854\) 2.22029e62 0.208962
\(855\) 7.67055e62 0.703972
\(856\) 3.40233e62 0.304502
\(857\) 7.32198e62 0.639059 0.319530 0.947576i \(-0.396475\pi\)
0.319530 + 0.947576i \(0.396475\pi\)
\(858\) −7.81261e62 −0.664996
\(859\) 1.05145e63 0.872844 0.436422 0.899742i \(-0.356246\pi\)
0.436422 + 0.899742i \(0.356246\pi\)
\(860\) 1.45789e63 1.18034
\(861\) 2.76011e62 0.217951
\(862\) −9.38318e62 −0.722677
\(863\) −1.87788e63 −1.41071 −0.705353 0.708856i \(-0.749211\pi\)
−0.705353 + 0.708856i \(0.749211\pi\)
\(864\) −2.57609e62 −0.188763
\(865\) 2.52536e63 1.80500
\(866\) −7.10395e61 −0.0495297
\(867\) −5.24438e62 −0.356684
\(868\) −3.36166e62 −0.223038
\(869\) −6.40636e62 −0.414654
\(870\) 1.84667e62 0.116607
\(871\) −1.46606e63 −0.903152
\(872\) 3.71472e62 0.223265
\(873\) −5.38422e62 −0.315731
\(874\) 1.38335e63 0.791476
\(875\) −5.81347e62 −0.324535
\(876\) 8.40814e61 0.0457996
\(877\) −1.22772e63 −0.652541 −0.326270 0.945276i \(-0.605792\pi\)
−0.326270 + 0.945276i \(0.605792\pi\)
\(878\) 1.77726e63 0.921760
\(879\) 1.33642e61 0.00676369
\(880\) 7.52136e62 0.371466
\(881\) −2.09648e63 −1.01044 −0.505219 0.862991i \(-0.668588\pi\)
−0.505219 + 0.862991i \(0.668588\pi\)
\(882\) −5.70678e62 −0.268421
\(883\) −3.97564e63 −1.82495 −0.912477 0.409128i \(-0.865833\pi\)
−0.912477 + 0.409128i \(0.865833\pi\)
\(884\) −1.87302e63 −0.839110
\(885\) 1.29617e63 0.566735
\(886\) −1.49771e63 −0.639151
\(887\) 2.03352e63 0.847012 0.423506 0.905893i \(-0.360799\pi\)
0.423506 + 0.905893i \(0.360799\pi\)
\(888\) −9.28556e62 −0.377511
\(889\) 1.54095e63 0.611505
\(890\) 1.96778e63 0.762240
\(891\) −7.35217e62 −0.278000
\(892\) 2.26939e63 0.837655
\(893\) −3.62719e63 −1.30696
\(894\) 4.61514e62 0.162341
\(895\) 5.18807e63 1.78160
\(896\) 1.19689e62 0.0401267
\(897\) 3.61084e63 1.18187
\(898\) 1.08950e62 0.0348165
\(899\) 4.58718e62 0.143124
\(900\) −1.14275e63 −0.348128
\(901\) 7.95133e63 2.36514
\(902\) −1.53400e63 −0.445539
\(903\) 1.74184e63 0.493995
\(904\) 1.29677e63 0.359122
\(905\) −6.67117e63 −1.80409
\(906\) −1.12866e63 −0.298062
\(907\) −6.09664e63 −1.57229 −0.786147 0.618039i \(-0.787927\pi\)
−0.786147 + 0.618039i \(0.787927\pi\)
\(908\) −3.04305e63 −0.766415
\(909\) −4.70092e62 −0.115627
\(910\) −2.87574e63 −0.690811
\(911\) 4.57893e63 1.07428 0.537141 0.843492i \(-0.319504\pi\)
0.537141 + 0.843492i \(0.319504\pi\)
\(912\) 7.40396e62 0.169658
\(913\) 5.63375e63 1.26089
\(914\) 4.91687e63 1.07484
\(915\) −3.45140e63 −0.736955
\(916\) −2.75965e63 −0.575574
\(917\) 1.76832e63 0.360264
\(918\) −4.63696e63 −0.922818
\(919\) 4.02894e63 0.783262 0.391631 0.920122i \(-0.371911\pi\)
0.391631 + 0.920122i \(0.371911\pi\)
\(920\) −3.47624e63 −0.660194
\(921\) −5.11377e63 −0.948766
\(922\) 2.43555e63 0.441451
\(923\) −9.28714e63 −1.64454
\(924\) 8.98630e62 0.155465
\(925\) −1.27336e64 −2.15231
\(926\) 2.99082e63 0.493917
\(927\) −8.22885e62 −0.132778
\(928\) −1.63323e62 −0.0257493
\(929\) 7.64195e63 1.17724 0.588622 0.808408i \(-0.299671\pi\)
0.588622 + 0.808408i \(0.299671\pi\)
\(930\) 5.22562e63 0.786601
\(931\) 5.07046e63 0.745811
\(932\) 3.52916e63 0.507258
\(933\) −8.10325e63 −1.13816
\(934\) −4.06738e63 −0.558286
\(935\) 1.35384e64 1.81601
\(936\) −1.77077e63 −0.232129
\(937\) 4.86207e63 0.622903 0.311451 0.950262i \(-0.399185\pi\)
0.311451 + 0.950262i \(0.399185\pi\)
\(938\) 1.68630e63 0.211142
\(939\) 5.55285e63 0.679526
\(940\) 9.11478e63 1.09018
\(941\) −3.00329e63 −0.351092 −0.175546 0.984471i \(-0.556169\pi\)
−0.175546 + 0.984471i \(0.556169\pi\)
\(942\) −6.63391e62 −0.0758011
\(943\) 7.08989e63 0.791841
\(944\) −1.14636e63 −0.125147
\(945\) −7.11935e63 −0.759725
\(946\) −9.68075e63 −1.00983
\(947\) −1.08153e64 −1.10284 −0.551422 0.834226i \(-0.685915\pi\)
−0.551422 + 0.834226i \(0.685915\pi\)
\(948\) 1.58473e63 0.157970
\(949\) 1.78670e63 0.174112
\(950\) 1.01533e64 0.967276
\(951\) −1.12879e63 −0.105131
\(952\) 2.15441e63 0.196170
\(953\) −1.03034e64 −0.917237 −0.458619 0.888633i \(-0.651656\pi\)
−0.458619 + 0.888633i \(0.651656\pi\)
\(954\) 7.51724e63 0.654287
\(955\) −2.50921e63 −0.213533
\(956\) 2.36429e63 0.196723
\(957\) −1.22623e63 −0.0997622
\(958\) −1.45279e63 −0.115570
\(959\) −5.45237e63 −0.424117
\(960\) −1.86054e63 −0.141517
\(961\) −4.64150e62 −0.0345227
\(962\) −1.97315e64 −1.43515
\(963\) 5.78983e63 0.411814
\(964\) 5.53413e62 0.0384940
\(965\) 1.31206e64 0.892515
\(966\) −4.15331e63 −0.276303
\(967\) 2.18440e63 0.142122 0.0710612 0.997472i \(-0.477361\pi\)
0.0710612 + 0.997472i \(0.477361\pi\)
\(968\) 5.61796e62 0.0357486
\(969\) 1.33271e64 0.829420
\(970\) −1.20214e64 −0.731749
\(971\) −8.26509e63 −0.492078 −0.246039 0.969260i \(-0.579129\pi\)
−0.246039 + 0.969260i \(0.579129\pi\)
\(972\) −7.34955e63 −0.427992
\(973\) −7.66980e63 −0.436876
\(974\) −9.49103e63 −0.528805
\(975\) 2.65023e64 1.44439
\(976\) 3.05249e63 0.162736
\(977\) −1.47278e64 −0.768078 −0.384039 0.923317i \(-0.625467\pi\)
−0.384039 + 0.923317i \(0.625467\pi\)
\(978\) 8.85790e63 0.451903
\(979\) −1.30665e64 −0.652128
\(980\) −1.27416e64 −0.622103
\(981\) 6.32144e63 0.301948
\(982\) 1.49196e64 0.697202
\(983\) 3.00159e64 1.37231 0.686153 0.727457i \(-0.259298\pi\)
0.686153 + 0.727457i \(0.259298\pi\)
\(984\) 3.79463e63 0.169736
\(985\) −3.86822e64 −1.69290
\(986\) −2.93981e63 −0.125883
\(987\) 1.08901e64 0.456259
\(988\) 1.57332e64 0.644974
\(989\) 4.47427e64 1.79474
\(990\) 1.27993e64 0.502377
\(991\) −3.15959e64 −1.21352 −0.606760 0.794885i \(-0.707531\pi\)
−0.606760 + 0.794885i \(0.707531\pi\)
\(992\) −4.62165e63 −0.173698
\(993\) 2.00531e64 0.737518
\(994\) 1.06824e64 0.384468
\(995\) 3.92902e64 1.38385
\(996\) −1.39361e64 −0.480358
\(997\) −1.16979e64 −0.394605 −0.197302 0.980343i \(-0.563218\pi\)
−0.197302 + 0.980343i \(0.563218\pi\)
\(998\) 2.75483e64 0.909470
\(999\) −4.88485e64 −1.57831
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))