Properties

Label 2.28.a.b
Level $2$
Weight $28$
Character orbit 2.a
Self dual yes
Analytic conductor $9.237$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2,28,Mod(1,2)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2, base_ring=CyclotomicField(1))
 
chi = DirichletCharacter(H, H._module([]))
 
N = Newforms(chi, 28, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2.1");
 
S:= CuspForms(chi, 28);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2 \)
Weight: \( k \) \(=\) \( 28 \)
Character orbit: \([\chi]\) \(=\) 2.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.23711149676\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 8192 q^{2} - 1016388 q^{3} + 67108864 q^{4} - 3341197410 q^{5} - 8326250496 q^{6} - 51021361384 q^{7} + 549755813888 q^{8} - 6592552918443 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 8192 q^{2} - 1016388 q^{3} + 67108864 q^{4} - 3341197410 q^{5} - 8326250496 q^{6} - 51021361384 q^{7} + 549755813888 q^{8} - 6592552918443 q^{9} - 27371089182720 q^{10} - 177413845094508 q^{11} - 68208644063232 q^{12} - 264386643393418 q^{13} - 417966992457728 q^{14} + 33\!\cdots\!80 q^{15}+ \cdots + 11\!\cdots\!44 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
8192.00 −1.01639e6 6.71089e7 −3.34120e9 −8.32625e9 −5.10214e10 5.49756e11 −6.59255e12 −2.73711e13
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2.28.a.b 1
3.b odd 2 1 18.28.a.c 1
4.b odd 2 1 16.28.a.b 1
5.b even 2 1 50.28.a.a 1
5.c odd 4 2 50.28.b.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2.28.a.b 1 1.a even 1 1 trivial
16.28.a.b 1 4.b odd 2 1
18.28.a.c 1 3.b odd 2 1
50.28.a.a 1 5.b even 2 1
50.28.b.b 2 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} + 1016388 \) acting on \(S_{28}^{\mathrm{new}}(\Gamma_0(2))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 8192 \) Copy content Toggle raw display
$3$ \( T + 1016388 \) Copy content Toggle raw display
$5$ \( T + 3341197410 \) Copy content Toggle raw display
$7$ \( T + 51021361384 \) Copy content Toggle raw display
$11$ \( T + 177413845094508 \) Copy content Toggle raw display
$13$ \( T + 264386643393418 \) Copy content Toggle raw display
$17$ \( T - 76\!\cdots\!06 \) Copy content Toggle raw display
$19$ \( T + 14\!\cdots\!40 \) Copy content Toggle raw display
$23$ \( T - 35\!\cdots\!12 \) Copy content Toggle raw display
$29$ \( T + 75\!\cdots\!70 \) Copy content Toggle raw display
$31$ \( T + 13\!\cdots\!48 \) Copy content Toggle raw display
$37$ \( T + 66\!\cdots\!74 \) Copy content Toggle raw display
$41$ \( T - 63\!\cdots\!42 \) Copy content Toggle raw display
$43$ \( T - 69\!\cdots\!52 \) Copy content Toggle raw display
$47$ \( T + 30\!\cdots\!44 \) Copy content Toggle raw display
$53$ \( T + 72\!\cdots\!18 \) Copy content Toggle raw display
$59$ \( T + 42\!\cdots\!40 \) Copy content Toggle raw display
$61$ \( T + 30\!\cdots\!98 \) Copy content Toggle raw display
$67$ \( T + 20\!\cdots\!04 \) Copy content Toggle raw display
$71$ \( T - 12\!\cdots\!72 \) Copy content Toggle raw display
$73$ \( T + 22\!\cdots\!18 \) Copy content Toggle raw display
$79$ \( T - 53\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T - 52\!\cdots\!92 \) Copy content Toggle raw display
$89$ \( T + 21\!\cdots\!90 \) Copy content Toggle raw display
$97$ \( T + 35\!\cdots\!54 \) Copy content Toggle raw display
show more
show less