Properties

Label 2.26
Level 2
Weight 26
Dimension 3
Nonzero newspaces 1
Newform subspaces 2
Sturm bound 6
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 2 \)
Weight: \( k \) = \( 26 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 2 \)
Sturm bound: \(6\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{26}(\Gamma_1(2))\).

Total New Old
Modular forms 7 3 4
Cusp forms 5 3 2
Eisenstein series 2 0 2

Trace form

\( 3 q + 4096 q^{2} + 477804 q^{3} + 50331648 q^{4} + 1082958450 q^{5} + 1154629632 q^{6} - 41259174312 q^{7} + 68719476736 q^{8} + 2456838201159 q^{9} + 1642281984000 q^{10} - 6183187766844 q^{11} + 8016220913664 q^{12}+ \cdots + 23\!\cdots\!68 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{26}^{\mathrm{new}}(\Gamma_1(2))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
2.26.a \(\chi_{2}(1, \cdot)\) 2.26.a.a 1 1
2.26.a.b 2

Decomposition of \(S_{26}^{\mathrm{old}}(\Gamma_1(2))\) into lower level spaces

\( S_{26}^{\mathrm{old}}(\Gamma_1(2)) \cong \) \(S_{26}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 2}\)