Properties

Label 2.22.a
Level $2$
Weight $22$
Character orbit 2.a
Rep. character $\chi_{2}(1,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $2$
Sturm bound $5$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 2 \)
Weight: \( k \) \(=\) \( 22 \)
Character orbit: \([\chi]\) \(=\) 2.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(5\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{22}(\Gamma_0(2))\).

Total New Old
Modular forms 6 2 4
Cusp forms 4 2 2
Eisenstein series 2 0 2

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(3\)\(1\)\(2\)\(2\)\(1\)\(1\)\(1\)\(0\)\(1\)
\(-\)\(3\)\(1\)\(2\)\(2\)\(1\)\(1\)\(1\)\(0\)\(1\)

Trace form

\( 2 q + 130920 q^{3} + 2097152 q^{4} - 23718420 q^{5} - 12582912 q^{6} + 574223440 q^{7} - 12275185734 q^{9} + 34477178880 q^{10} - 20036715336 q^{11} + 137279569920 q^{12} - 1045474008260 q^{13} + 2335363301376 q^{14}+ \cdots + 27\!\cdots\!12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{22}^{\mathrm{new}}(\Gamma_0(2))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2
2.22.a.a 2.a 1.a $1$ $5.590$ \(\Q\) None 2.22.a.a \(-1024\) \(71604\) \(-28693770\) \(-853202392\) $+$ $\mathrm{SU}(2)$ \(q-2^{10}q^{2}+71604q^{3}+2^{20}q^{4}-28693770q^{5}+\cdots\)
2.22.a.b 2.a 1.a $1$ $5.590$ \(\Q\) None 2.22.a.b \(1024\) \(59316\) \(4975350\) \(1427425832\) $-$ $\mathrm{SU}(2)$ \(q+2^{10}q^{2}+59316q^{3}+2^{20}q^{4}+4975350q^{5}+\cdots\)

Decomposition of \(S_{22}^{\mathrm{old}}(\Gamma_0(2))\) into lower level spaces

\( S_{22}^{\mathrm{old}}(\Gamma_0(2)) \simeq \) \(S_{22}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 2}\)