Defining parameters
| Level: | \( N \) | \(=\) | \( 2 \) |
| Weight: | \( k \) | \(=\) | \( 22 \) |
| Character orbit: | \([\chi]\) | \(=\) | 2.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(5\) | ||
| Trace bound: | \(2\) | ||
| Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{22}(\Gamma_0(2))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 6 | 2 | 4 |
| Cusp forms | 4 | 2 | 2 |
| Eisenstein series | 2 | 0 | 2 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||
| \(+\) | \(3\) | \(1\) | \(2\) | \(2\) | \(1\) | \(1\) | \(1\) | \(0\) | \(1\) | |||
| \(-\) | \(3\) | \(1\) | \(2\) | \(2\) | \(1\) | \(1\) | \(1\) | \(0\) | \(1\) | |||
Trace form
Decomposition of \(S_{22}^{\mathrm{new}}(\Gamma_0(2))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | |||||||
| 2.22.a.a | $1$ | $5.590$ | \(\Q\) | None | \(-1024\) | \(71604\) | \(-28693770\) | \(-853202392\) | $+$ | \(q-2^{10}q^{2}+71604q^{3}+2^{20}q^{4}-28693770q^{5}+\cdots\) | |
| 2.22.a.b | $1$ | $5.590$ | \(\Q\) | None | \(1024\) | \(59316\) | \(4975350\) | \(1427425832\) | $-$ | \(q+2^{10}q^{2}+59316q^{3}+2^{20}q^{4}+4975350q^{5}+\cdots\) | |
Decomposition of \(S_{22}^{\mathrm{old}}(\Gamma_0(2))\) into lower level spaces
\( S_{22}^{\mathrm{old}}(\Gamma_0(2)) \simeq \) \(S_{22}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 2}\)