Defining parameters
Level: | \( N \) | \(=\) | \( 1984 = 2^{6} \cdot 31 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 1984.e (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 31 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(256\) | ||
Trace bound: | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(1984, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 24 | 4 | 20 |
Cusp forms | 12 | 2 | 10 |
Eisenstein series | 12 | 2 | 10 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 2 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(1984, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
1984.1.e.a | $1$ | $0.990$ | \(\Q\) | $D_{3}$ | \(\Q(\sqrt{-31}) \) | None | \(0\) | \(0\) | \(1\) | \(-1\) | \(q+q^{5}-q^{7}+q^{9}+q^{19}+q^{31}-q^{35}+\cdots\) |
1984.1.e.b | $1$ | $0.990$ | \(\Q\) | $D_{3}$ | \(\Q(\sqrt{-31}) \) | None | \(0\) | \(0\) | \(1\) | \(1\) | \(q+q^{5}+q^{7}+q^{9}-q^{19}-q^{31}+q^{35}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(1984, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(1984, [\chi]) \cong \) \(S_{1}^{\mathrm{new}}(31, [\chi])\)\(^{\oplus 7}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(496, [\chi])\)\(^{\oplus 3}\)