Properties

Label 1984.1.e
Level $1984$
Weight $1$
Character orbit 1984.e
Rep. character $\chi_{1984}(1921,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $2$
Sturm bound $256$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1984 = 2^{6} \cdot 31 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1984.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 31 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(256\)
Trace bound: \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(1984, [\chi])\).

Total New Old
Modular forms 24 4 20
Cusp forms 12 2 10
Eisenstein series 12 2 10

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 2 0 0 0

Trace form

\( 2 q + 2 q^{5} + 2 q^{9} + O(q^{10}) \) \( 2 q + 2 q^{5} + 2 q^{9} - 2 q^{41} + 2 q^{45} + 2 q^{81} - 2 q^{97} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(1984, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1984.1.e.a 1984.e 31.b $1$ $0.990$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-31}) \) None \(0\) \(0\) \(1\) \(-1\) \(q+q^{5}-q^{7}+q^{9}+q^{19}+q^{31}-q^{35}+\cdots\)
1984.1.e.b 1984.e 31.b $1$ $0.990$ \(\Q\) $D_{3}$ \(\Q(\sqrt{-31}) \) None \(0\) \(0\) \(1\) \(1\) \(q+q^{5}+q^{7}+q^{9}-q^{19}-q^{31}+q^{35}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(1984, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(1984, [\chi]) \cong \) \(S_{1}^{\mathrm{new}}(31, [\chi])\)\(^{\oplus 7}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(496, [\chi])\)\(^{\oplus 3}\)