Properties

Label 198.6.a.i.1.1
Level $198$
Weight $6$
Character 198.1
Self dual yes
Analytic conductor $31.756$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [198,6,Mod(1,198)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(198, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("198.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 198 = 2 \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 198.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.7559963230\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 22)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 198.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} +16.0000 q^{4} +51.0000 q^{5} -166.000 q^{7} +64.0000 q^{8} +O(q^{10})\) \(q+4.00000 q^{2} +16.0000 q^{4} +51.0000 q^{5} -166.000 q^{7} +64.0000 q^{8} +204.000 q^{10} +121.000 q^{11} +692.000 q^{13} -664.000 q^{14} +256.000 q^{16} +738.000 q^{17} +1424.00 q^{19} +816.000 q^{20} +484.000 q^{22} +1779.00 q^{23} -524.000 q^{25} +2768.00 q^{26} -2656.00 q^{28} +2064.00 q^{29} +6245.00 q^{31} +1024.00 q^{32} +2952.00 q^{34} -8466.00 q^{35} -14785.0 q^{37} +5696.00 q^{38} +3264.00 q^{40} -5304.00 q^{41} +17798.0 q^{43} +1936.00 q^{44} +7116.00 q^{46} +17184.0 q^{47} +10749.0 q^{49} -2096.00 q^{50} +11072.0 q^{52} +30726.0 q^{53} +6171.00 q^{55} -10624.0 q^{56} +8256.00 q^{58} +34989.0 q^{59} -45940.0 q^{61} +24980.0 q^{62} +4096.00 q^{64} +35292.0 q^{65} +25343.0 q^{67} +11808.0 q^{68} -33864.0 q^{70} -13311.0 q^{71} -53260.0 q^{73} -59140.0 q^{74} +22784.0 q^{76} -20086.0 q^{77} +77234.0 q^{79} +13056.0 q^{80} -21216.0 q^{82} -55014.0 q^{83} +37638.0 q^{85} +71192.0 q^{86} +7744.00 q^{88} -125415. q^{89} -114872. q^{91} +28464.0 q^{92} +68736.0 q^{94} +72624.0 q^{95} -88807.0 q^{97} +42996.0 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) 0 0
\(4\) 16.0000 0.500000
\(5\) 51.0000 0.912316 0.456158 0.889899i \(-0.349225\pi\)
0.456158 + 0.889899i \(0.349225\pi\)
\(6\) 0 0
\(7\) −166.000 −1.28045 −0.640226 0.768187i \(-0.721159\pi\)
−0.640226 + 0.768187i \(0.721159\pi\)
\(8\) 64.0000 0.353553
\(9\) 0 0
\(10\) 204.000 0.645105
\(11\) 121.000 0.301511
\(12\) 0 0
\(13\) 692.000 1.13566 0.567829 0.823146i \(-0.307783\pi\)
0.567829 + 0.823146i \(0.307783\pi\)
\(14\) −664.000 −0.905416
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 738.000 0.619347 0.309674 0.950843i \(-0.399780\pi\)
0.309674 + 0.950843i \(0.399780\pi\)
\(18\) 0 0
\(19\) 1424.00 0.904953 0.452476 0.891776i \(-0.350541\pi\)
0.452476 + 0.891776i \(0.350541\pi\)
\(20\) 816.000 0.456158
\(21\) 0 0
\(22\) 484.000 0.213201
\(23\) 1779.00 0.701223 0.350612 0.936521i \(-0.385974\pi\)
0.350612 + 0.936521i \(0.385974\pi\)
\(24\) 0 0
\(25\) −524.000 −0.167680
\(26\) 2768.00 0.803032
\(27\) 0 0
\(28\) −2656.00 −0.640226
\(29\) 2064.00 0.455737 0.227869 0.973692i \(-0.426824\pi\)
0.227869 + 0.973692i \(0.426824\pi\)
\(30\) 0 0
\(31\) 6245.00 1.16715 0.583577 0.812058i \(-0.301653\pi\)
0.583577 + 0.812058i \(0.301653\pi\)
\(32\) 1024.00 0.176777
\(33\) 0 0
\(34\) 2952.00 0.437944
\(35\) −8466.00 −1.16818
\(36\) 0 0
\(37\) −14785.0 −1.77549 −0.887743 0.460340i \(-0.847727\pi\)
−0.887743 + 0.460340i \(0.847727\pi\)
\(38\) 5696.00 0.639898
\(39\) 0 0
\(40\) 3264.00 0.322552
\(41\) −5304.00 −0.492770 −0.246385 0.969172i \(-0.579243\pi\)
−0.246385 + 0.969172i \(0.579243\pi\)
\(42\) 0 0
\(43\) 17798.0 1.46791 0.733956 0.679197i \(-0.237672\pi\)
0.733956 + 0.679197i \(0.237672\pi\)
\(44\) 1936.00 0.150756
\(45\) 0 0
\(46\) 7116.00 0.495840
\(47\) 17184.0 1.13470 0.567348 0.823478i \(-0.307969\pi\)
0.567348 + 0.823478i \(0.307969\pi\)
\(48\) 0 0
\(49\) 10749.0 0.639555
\(50\) −2096.00 −0.118568
\(51\) 0 0
\(52\) 11072.0 0.567829
\(53\) 30726.0 1.50251 0.751253 0.660014i \(-0.229450\pi\)
0.751253 + 0.660014i \(0.229450\pi\)
\(54\) 0 0
\(55\) 6171.00 0.275074
\(56\) −10624.0 −0.452708
\(57\) 0 0
\(58\) 8256.00 0.322255
\(59\) 34989.0 1.30858 0.654292 0.756242i \(-0.272967\pi\)
0.654292 + 0.756242i \(0.272967\pi\)
\(60\) 0 0
\(61\) −45940.0 −1.58076 −0.790381 0.612616i \(-0.790117\pi\)
−0.790381 + 0.612616i \(0.790117\pi\)
\(62\) 24980.0 0.825303
\(63\) 0 0
\(64\) 4096.00 0.125000
\(65\) 35292.0 1.03608
\(66\) 0 0
\(67\) 25343.0 0.689717 0.344859 0.938655i \(-0.387927\pi\)
0.344859 + 0.938655i \(0.387927\pi\)
\(68\) 11808.0 0.309674
\(69\) 0 0
\(70\) −33864.0 −0.826025
\(71\) −13311.0 −0.313375 −0.156688 0.987648i \(-0.550082\pi\)
−0.156688 + 0.987648i \(0.550082\pi\)
\(72\) 0 0
\(73\) −53260.0 −1.16975 −0.584876 0.811123i \(-0.698857\pi\)
−0.584876 + 0.811123i \(0.698857\pi\)
\(74\) −59140.0 −1.25546
\(75\) 0 0
\(76\) 22784.0 0.452476
\(77\) −20086.0 −0.386071
\(78\) 0 0
\(79\) 77234.0 1.39233 0.696163 0.717884i \(-0.254889\pi\)
0.696163 + 0.717884i \(0.254889\pi\)
\(80\) 13056.0 0.228079
\(81\) 0 0
\(82\) −21216.0 −0.348441
\(83\) −55014.0 −0.876553 −0.438276 0.898840i \(-0.644411\pi\)
−0.438276 + 0.898840i \(0.644411\pi\)
\(84\) 0 0
\(85\) 37638.0 0.565040
\(86\) 71192.0 1.03797
\(87\) 0 0
\(88\) 7744.00 0.106600
\(89\) −125415. −1.67832 −0.839159 0.543886i \(-0.816953\pi\)
−0.839159 + 0.543886i \(0.816953\pi\)
\(90\) 0 0
\(91\) −114872. −1.45416
\(92\) 28464.0 0.350612
\(93\) 0 0
\(94\) 68736.0 0.802351
\(95\) 72624.0 0.825603
\(96\) 0 0
\(97\) −88807.0 −0.958336 −0.479168 0.877723i \(-0.659062\pi\)
−0.479168 + 0.877723i \(0.659062\pi\)
\(98\) 42996.0 0.452234
\(99\) 0 0
\(100\) −8384.00 −0.0838400
\(101\) −1482.00 −0.0144559 −0.00722794 0.999974i \(-0.502301\pi\)
−0.00722794 + 0.999974i \(0.502301\pi\)
\(102\) 0 0
\(103\) −117496. −1.09126 −0.545632 0.838025i \(-0.683710\pi\)
−0.545632 + 0.838025i \(0.683710\pi\)
\(104\) 44288.0 0.401516
\(105\) 0 0
\(106\) 122904. 1.06243
\(107\) 79362.0 0.670121 0.335060 0.942197i \(-0.391243\pi\)
0.335060 + 0.942197i \(0.391243\pi\)
\(108\) 0 0
\(109\) 87842.0 0.708167 0.354084 0.935214i \(-0.384793\pi\)
0.354084 + 0.935214i \(0.384793\pi\)
\(110\) 24684.0 0.194506
\(111\) 0 0
\(112\) −42496.0 −0.320113
\(113\) 47247.0 0.348079 0.174040 0.984739i \(-0.444318\pi\)
0.174040 + 0.984739i \(0.444318\pi\)
\(114\) 0 0
\(115\) 90729.0 0.639737
\(116\) 33024.0 0.227869
\(117\) 0 0
\(118\) 139956. 0.925308
\(119\) −122508. −0.793044
\(120\) 0 0
\(121\) 14641.0 0.0909091
\(122\) −183760. −1.11777
\(123\) 0 0
\(124\) 99920.0 0.583577
\(125\) −186099. −1.06529
\(126\) 0 0
\(127\) −239416. −1.31718 −0.658588 0.752504i \(-0.728846\pi\)
−0.658588 + 0.752504i \(0.728846\pi\)
\(128\) 16384.0 0.0883883
\(129\) 0 0
\(130\) 141168. 0.732618
\(131\) 98142.0 0.499662 0.249831 0.968289i \(-0.419625\pi\)
0.249831 + 0.968289i \(0.419625\pi\)
\(132\) 0 0
\(133\) −236384. −1.15875
\(134\) 101372. 0.487704
\(135\) 0 0
\(136\) 47232.0 0.218972
\(137\) −400137. −1.82141 −0.910704 0.413059i \(-0.864460\pi\)
−0.910704 + 0.413059i \(0.864460\pi\)
\(138\) 0 0
\(139\) 205766. 0.903310 0.451655 0.892193i \(-0.350834\pi\)
0.451655 + 0.892193i \(0.350834\pi\)
\(140\) −135456. −0.584088
\(141\) 0 0
\(142\) −53244.0 −0.221590
\(143\) 83732.0 0.342414
\(144\) 0 0
\(145\) 105264. 0.415776
\(146\) −213040. −0.827140
\(147\) 0 0
\(148\) −236560. −0.887743
\(149\) −87726.0 −0.323715 −0.161857 0.986814i \(-0.551748\pi\)
−0.161857 + 0.986814i \(0.551748\pi\)
\(150\) 0 0
\(151\) −432778. −1.54462 −0.772312 0.635243i \(-0.780900\pi\)
−0.772312 + 0.635243i \(0.780900\pi\)
\(152\) 91136.0 0.319949
\(153\) 0 0
\(154\) −80344.0 −0.272993
\(155\) 318495. 1.06481
\(156\) 0 0
\(157\) −34075.0 −0.110328 −0.0551641 0.998477i \(-0.517568\pi\)
−0.0551641 + 0.998477i \(0.517568\pi\)
\(158\) 308936. 0.984523
\(159\) 0 0
\(160\) 52224.0 0.161276
\(161\) −295314. −0.897882
\(162\) 0 0
\(163\) 45020.0 0.132720 0.0663600 0.997796i \(-0.478861\pi\)
0.0663600 + 0.997796i \(0.478861\pi\)
\(164\) −84864.0 −0.246385
\(165\) 0 0
\(166\) −220056. −0.619816
\(167\) −482556. −1.33893 −0.669463 0.742845i \(-0.733476\pi\)
−0.669463 + 0.742845i \(0.733476\pi\)
\(168\) 0 0
\(169\) 107571. 0.289720
\(170\) 150552. 0.399544
\(171\) 0 0
\(172\) 284768. 0.733956
\(173\) 766254. 1.94651 0.973257 0.229719i \(-0.0737808\pi\)
0.973257 + 0.229719i \(0.0737808\pi\)
\(174\) 0 0
\(175\) 86984.0 0.214706
\(176\) 30976.0 0.0753778
\(177\) 0 0
\(178\) −501660. −1.18675
\(179\) −303399. −0.707753 −0.353876 0.935292i \(-0.615137\pi\)
−0.353876 + 0.935292i \(0.615137\pi\)
\(180\) 0 0
\(181\) −285181. −0.647030 −0.323515 0.946223i \(-0.604865\pi\)
−0.323515 + 0.946223i \(0.604865\pi\)
\(182\) −459488. −1.02824
\(183\) 0 0
\(184\) 113856. 0.247920
\(185\) −754035. −1.61980
\(186\) 0 0
\(187\) 89298.0 0.186740
\(188\) 274944. 0.567348
\(189\) 0 0
\(190\) 290496. 0.583789
\(191\) −767067. −1.52142 −0.760711 0.649090i \(-0.775150\pi\)
−0.760711 + 0.649090i \(0.775150\pi\)
\(192\) 0 0
\(193\) 411668. 0.795525 0.397763 0.917488i \(-0.369787\pi\)
0.397763 + 0.917488i \(0.369787\pi\)
\(194\) −355228. −0.677646
\(195\) 0 0
\(196\) 171984. 0.319777
\(197\) 759258. 1.39387 0.696937 0.717132i \(-0.254545\pi\)
0.696937 + 0.717132i \(0.254545\pi\)
\(198\) 0 0
\(199\) −46600.0 −0.0834167 −0.0417084 0.999130i \(-0.513280\pi\)
−0.0417084 + 0.999130i \(0.513280\pi\)
\(200\) −33536.0 −0.0592838
\(201\) 0 0
\(202\) −5928.00 −0.0102219
\(203\) −342624. −0.583549
\(204\) 0 0
\(205\) −270504. −0.449561
\(206\) −469984. −0.771641
\(207\) 0 0
\(208\) 177152. 0.283915
\(209\) 172304. 0.272854
\(210\) 0 0
\(211\) −932428. −1.44181 −0.720907 0.693032i \(-0.756274\pi\)
−0.720907 + 0.693032i \(0.756274\pi\)
\(212\) 491616. 0.751253
\(213\) 0 0
\(214\) 317448. 0.473847
\(215\) 907698. 1.33920
\(216\) 0 0
\(217\) −1.03667e6 −1.49448
\(218\) 351368. 0.500750
\(219\) 0 0
\(220\) 98736.0 0.137537
\(221\) 510696. 0.703367
\(222\) 0 0
\(223\) 169745. 0.228578 0.114289 0.993448i \(-0.463541\pi\)
0.114289 + 0.993448i \(0.463541\pi\)
\(224\) −169984. −0.226354
\(225\) 0 0
\(226\) 188988. 0.246129
\(227\) −198078. −0.255136 −0.127568 0.991830i \(-0.540717\pi\)
−0.127568 + 0.991830i \(0.540717\pi\)
\(228\) 0 0
\(229\) −849997. −1.07110 −0.535548 0.844505i \(-0.679895\pi\)
−0.535548 + 0.844505i \(0.679895\pi\)
\(230\) 362916. 0.452362
\(231\) 0 0
\(232\) 132096. 0.161128
\(233\) 401832. 0.484903 0.242451 0.970164i \(-0.422048\pi\)
0.242451 + 0.970164i \(0.422048\pi\)
\(234\) 0 0
\(235\) 876384. 1.03520
\(236\) 559824. 0.654292
\(237\) 0 0
\(238\) −490032. −0.560766
\(239\) −855174. −0.968411 −0.484206 0.874954i \(-0.660891\pi\)
−0.484206 + 0.874954i \(0.660891\pi\)
\(240\) 0 0
\(241\) 1.12546e6 1.24821 0.624107 0.781339i \(-0.285463\pi\)
0.624107 + 0.781339i \(0.285463\pi\)
\(242\) 58564.0 0.0642824
\(243\) 0 0
\(244\) −735040. −0.790381
\(245\) 548199. 0.583476
\(246\) 0 0
\(247\) 985408. 1.02772
\(248\) 399680. 0.412651
\(249\) 0 0
\(250\) −744396. −0.753276
\(251\) 1.19751e6 1.19976 0.599882 0.800088i \(-0.295214\pi\)
0.599882 + 0.800088i \(0.295214\pi\)
\(252\) 0 0
\(253\) 215259. 0.211427
\(254\) −957664. −0.931384
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) −37758.0 −0.0356596 −0.0178298 0.999841i \(-0.505676\pi\)
−0.0178298 + 0.999841i \(0.505676\pi\)
\(258\) 0 0
\(259\) 2.45431e6 2.27342
\(260\) 564672. 0.518040
\(261\) 0 0
\(262\) 392568. 0.353315
\(263\) 631254. 0.562749 0.281375 0.959598i \(-0.409210\pi\)
0.281375 + 0.959598i \(0.409210\pi\)
\(264\) 0 0
\(265\) 1.56703e6 1.37076
\(266\) −945536. −0.819359
\(267\) 0 0
\(268\) 405488. 0.344859
\(269\) 1.08034e6 0.910292 0.455146 0.890417i \(-0.349587\pi\)
0.455146 + 0.890417i \(0.349587\pi\)
\(270\) 0 0
\(271\) −816100. −0.675025 −0.337513 0.941321i \(-0.609586\pi\)
−0.337513 + 0.941321i \(0.609586\pi\)
\(272\) 188928. 0.154837
\(273\) 0 0
\(274\) −1.60055e6 −1.28793
\(275\) −63404.0 −0.0505574
\(276\) 0 0
\(277\) 1.68820e6 1.32198 0.660989 0.750396i \(-0.270137\pi\)
0.660989 + 0.750396i \(0.270137\pi\)
\(278\) 823064. 0.638736
\(279\) 0 0
\(280\) −541824. −0.413012
\(281\) 879042. 0.664116 0.332058 0.943259i \(-0.392257\pi\)
0.332058 + 0.943259i \(0.392257\pi\)
\(282\) 0 0
\(283\) 1.54027e6 1.14322 0.571611 0.820525i \(-0.306319\pi\)
0.571611 + 0.820525i \(0.306319\pi\)
\(284\) −212976. −0.156688
\(285\) 0 0
\(286\) 334928. 0.242123
\(287\) 880464. 0.630967
\(288\) 0 0
\(289\) −875213. −0.616409
\(290\) 421056. 0.293998
\(291\) 0 0
\(292\) −852160. −0.584876
\(293\) −720840. −0.490535 −0.245267 0.969455i \(-0.578876\pi\)
−0.245267 + 0.969455i \(0.578876\pi\)
\(294\) 0 0
\(295\) 1.78444e6 1.19384
\(296\) −946240. −0.627729
\(297\) 0 0
\(298\) −350904. −0.228901
\(299\) 1.23107e6 0.796350
\(300\) 0 0
\(301\) −2.95447e6 −1.87959
\(302\) −1.73111e6 −1.09221
\(303\) 0 0
\(304\) 364544. 0.226238
\(305\) −2.34294e6 −1.44215
\(306\) 0 0
\(307\) −1.03905e6 −0.629201 −0.314601 0.949224i \(-0.601871\pi\)
−0.314601 + 0.949224i \(0.601871\pi\)
\(308\) −321376. −0.193035
\(309\) 0 0
\(310\) 1.27398e6 0.752937
\(311\) 1.25135e6 0.733630 0.366815 0.930294i \(-0.380448\pi\)
0.366815 + 0.930294i \(0.380448\pi\)
\(312\) 0 0
\(313\) −1.44336e6 −0.832749 −0.416375 0.909193i \(-0.636699\pi\)
−0.416375 + 0.909193i \(0.636699\pi\)
\(314\) −136300. −0.0780139
\(315\) 0 0
\(316\) 1.23574e6 0.696163
\(317\) 2.01208e6 1.12460 0.562298 0.826934i \(-0.309917\pi\)
0.562298 + 0.826934i \(0.309917\pi\)
\(318\) 0 0
\(319\) 249744. 0.137410
\(320\) 208896. 0.114039
\(321\) 0 0
\(322\) −1.18126e6 −0.634899
\(323\) 1.05091e6 0.560480
\(324\) 0 0
\(325\) −362608. −0.190427
\(326\) 180080. 0.0938472
\(327\) 0 0
\(328\) −339456. −0.174220
\(329\) −2.85254e6 −1.45292
\(330\) 0 0
\(331\) 2.01734e6 1.01207 0.506033 0.862514i \(-0.331112\pi\)
0.506033 + 0.862514i \(0.331112\pi\)
\(332\) −880224. −0.438276
\(333\) 0 0
\(334\) −1.93022e6 −0.946764
\(335\) 1.29249e6 0.629240
\(336\) 0 0
\(337\) 264122. 0.126686 0.0633432 0.997992i \(-0.479824\pi\)
0.0633432 + 0.997992i \(0.479824\pi\)
\(338\) 430284. 0.204863
\(339\) 0 0
\(340\) 602208. 0.282520
\(341\) 755645. 0.351910
\(342\) 0 0
\(343\) 1.00563e6 0.461532
\(344\) 1.13907e6 0.518985
\(345\) 0 0
\(346\) 3.06502e6 1.37639
\(347\) 1.71049e6 0.762601 0.381300 0.924451i \(-0.375476\pi\)
0.381300 + 0.924451i \(0.375476\pi\)
\(348\) 0 0
\(349\) 218822. 0.0961673 0.0480836 0.998843i \(-0.484689\pi\)
0.0480836 + 0.998843i \(0.484689\pi\)
\(350\) 347936. 0.151820
\(351\) 0 0
\(352\) 123904. 0.0533002
\(353\) −3.68192e6 −1.57267 −0.786334 0.617802i \(-0.788023\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(354\) 0 0
\(355\) −678861. −0.285897
\(356\) −2.00664e6 −0.839159
\(357\) 0 0
\(358\) −1.21360e6 −0.500457
\(359\) −1.88528e6 −0.772042 −0.386021 0.922490i \(-0.626151\pi\)
−0.386021 + 0.922490i \(0.626151\pi\)
\(360\) 0 0
\(361\) −448323. −0.181060
\(362\) −1.14072e6 −0.457519
\(363\) 0 0
\(364\) −1.83795e6 −0.727078
\(365\) −2.71626e6 −1.06718
\(366\) 0 0
\(367\) −3.11666e6 −1.20788 −0.603940 0.797029i \(-0.706404\pi\)
−0.603940 + 0.797029i \(0.706404\pi\)
\(368\) 455424. 0.175306
\(369\) 0 0
\(370\) −3.01614e6 −1.14537
\(371\) −5.10052e6 −1.92389
\(372\) 0 0
\(373\) 1.39441e6 0.518943 0.259471 0.965751i \(-0.416452\pi\)
0.259471 + 0.965751i \(0.416452\pi\)
\(374\) 357192. 0.132045
\(375\) 0 0
\(376\) 1.09978e6 0.401176
\(377\) 1.42829e6 0.517562
\(378\) 0 0
\(379\) −4.26036e6 −1.52352 −0.761759 0.647860i \(-0.775664\pi\)
−0.761759 + 0.647860i \(0.775664\pi\)
\(380\) 1.16198e6 0.412801
\(381\) 0 0
\(382\) −3.06827e6 −1.07581
\(383\) −201765. −0.0702828 −0.0351414 0.999382i \(-0.511188\pi\)
−0.0351414 + 0.999382i \(0.511188\pi\)
\(384\) 0 0
\(385\) −1.02439e6 −0.352218
\(386\) 1.64667e6 0.562521
\(387\) 0 0
\(388\) −1.42091e6 −0.479168
\(389\) −1.94882e6 −0.652977 −0.326489 0.945201i \(-0.605865\pi\)
−0.326489 + 0.945201i \(0.605865\pi\)
\(390\) 0 0
\(391\) 1.31290e6 0.434301
\(392\) 687936. 0.226117
\(393\) 0 0
\(394\) 3.03703e6 0.985618
\(395\) 3.93893e6 1.27024
\(396\) 0 0
\(397\) −1.46826e6 −0.467548 −0.233774 0.972291i \(-0.575108\pi\)
−0.233774 + 0.972291i \(0.575108\pi\)
\(398\) −186400. −0.0589845
\(399\) 0 0
\(400\) −134144. −0.0419200
\(401\) −2.24618e6 −0.697563 −0.348781 0.937204i \(-0.613404\pi\)
−0.348781 + 0.937204i \(0.613404\pi\)
\(402\) 0 0
\(403\) 4.32154e6 1.32549
\(404\) −23712.0 −0.00722794
\(405\) 0 0
\(406\) −1.37050e6 −0.412632
\(407\) −1.78898e6 −0.535329
\(408\) 0 0
\(409\) −3.61488e6 −1.06853 −0.534263 0.845318i \(-0.679411\pi\)
−0.534263 + 0.845318i \(0.679411\pi\)
\(410\) −1.08202e6 −0.317888
\(411\) 0 0
\(412\) −1.87994e6 −0.545632
\(413\) −5.80817e6 −1.67558
\(414\) 0 0
\(415\) −2.80571e6 −0.799693
\(416\) 708608. 0.200758
\(417\) 0 0
\(418\) 689216. 0.192937
\(419\) 3.81239e6 1.06087 0.530435 0.847726i \(-0.322029\pi\)
0.530435 + 0.847726i \(0.322029\pi\)
\(420\) 0 0
\(421\) 1.97346e6 0.542655 0.271327 0.962487i \(-0.412537\pi\)
0.271327 + 0.962487i \(0.412537\pi\)
\(422\) −3.72971e6 −1.01952
\(423\) 0 0
\(424\) 1.96646e6 0.531216
\(425\) −386712. −0.103852
\(426\) 0 0
\(427\) 7.62604e6 2.02409
\(428\) 1.26979e6 0.335060
\(429\) 0 0
\(430\) 3.63079e6 0.946957
\(431\) 2.08359e6 0.540280 0.270140 0.962821i \(-0.412930\pi\)
0.270140 + 0.962821i \(0.412930\pi\)
\(432\) 0 0
\(433\) −72691.0 −0.0186321 −0.00931603 0.999957i \(-0.502965\pi\)
−0.00931603 + 0.999957i \(0.502965\pi\)
\(434\) −4.14668e6 −1.05676
\(435\) 0 0
\(436\) 1.40547e6 0.354084
\(437\) 2.53330e6 0.634574
\(438\) 0 0
\(439\) 594392. 0.147201 0.0736007 0.997288i \(-0.476551\pi\)
0.0736007 + 0.997288i \(0.476551\pi\)
\(440\) 394944. 0.0972532
\(441\) 0 0
\(442\) 2.04278e6 0.497355
\(443\) −4.56651e6 −1.10554 −0.552770 0.833334i \(-0.686429\pi\)
−0.552770 + 0.833334i \(0.686429\pi\)
\(444\) 0 0
\(445\) −6.39616e6 −1.53116
\(446\) 678980. 0.161629
\(447\) 0 0
\(448\) −679936. −0.160056
\(449\) 5.44382e6 1.27435 0.637174 0.770720i \(-0.280103\pi\)
0.637174 + 0.770720i \(0.280103\pi\)
\(450\) 0 0
\(451\) −641784. −0.148576
\(452\) 755952. 0.174040
\(453\) 0 0
\(454\) −792312. −0.180408
\(455\) −5.85847e6 −1.32665
\(456\) 0 0
\(457\) 6.70312e6 1.50137 0.750683 0.660662i \(-0.229724\pi\)
0.750683 + 0.660662i \(0.229724\pi\)
\(458\) −3.39999e6 −0.757380
\(459\) 0 0
\(460\) 1.45166e6 0.319869
\(461\) 1.25994e6 0.276120 0.138060 0.990424i \(-0.455913\pi\)
0.138060 + 0.990424i \(0.455913\pi\)
\(462\) 0 0
\(463\) −5.02308e6 −1.08897 −0.544487 0.838769i \(-0.683276\pi\)
−0.544487 + 0.838769i \(0.683276\pi\)
\(464\) 528384. 0.113934
\(465\) 0 0
\(466\) 1.60733e6 0.342878
\(467\) 2.35660e6 0.500028 0.250014 0.968242i \(-0.419565\pi\)
0.250014 + 0.968242i \(0.419565\pi\)
\(468\) 0 0
\(469\) −4.20694e6 −0.883149
\(470\) 3.50554e6 0.731998
\(471\) 0 0
\(472\) 2.23930e6 0.462654
\(473\) 2.15356e6 0.442592
\(474\) 0 0
\(475\) −746176. −0.151743
\(476\) −1.96013e6 −0.396522
\(477\) 0 0
\(478\) −3.42070e6 −0.684770
\(479\) 6.72258e6 1.33874 0.669371 0.742928i \(-0.266563\pi\)
0.669371 + 0.742928i \(0.266563\pi\)
\(480\) 0 0
\(481\) −1.02312e7 −2.01634
\(482\) 4.50186e6 0.882620
\(483\) 0 0
\(484\) 234256. 0.0454545
\(485\) −4.52916e6 −0.874305
\(486\) 0 0
\(487\) 1.96001e6 0.374487 0.187243 0.982314i \(-0.440045\pi\)
0.187243 + 0.982314i \(0.440045\pi\)
\(488\) −2.94016e6 −0.558884
\(489\) 0 0
\(490\) 2.19280e6 0.412580
\(491\) 579624. 0.108503 0.0542516 0.998527i \(-0.482723\pi\)
0.0542516 + 0.998527i \(0.482723\pi\)
\(492\) 0 0
\(493\) 1.52323e6 0.282260
\(494\) 3.94163e6 0.726706
\(495\) 0 0
\(496\) 1.59872e6 0.291789
\(497\) 2.20963e6 0.401262
\(498\) 0 0
\(499\) 1.36905e6 0.246132 0.123066 0.992398i \(-0.460727\pi\)
0.123066 + 0.992398i \(0.460727\pi\)
\(500\) −2.97758e6 −0.532646
\(501\) 0 0
\(502\) 4.79005e6 0.848361
\(503\) −1.83343e6 −0.323105 −0.161552 0.986864i \(-0.551650\pi\)
−0.161552 + 0.986864i \(0.551650\pi\)
\(504\) 0 0
\(505\) −75582.0 −0.0131883
\(506\) 861036. 0.149501
\(507\) 0 0
\(508\) −3.83066e6 −0.658588
\(509\) 1.71266e6 0.293006 0.146503 0.989210i \(-0.453198\pi\)
0.146503 + 0.989210i \(0.453198\pi\)
\(510\) 0 0
\(511\) 8.84116e6 1.49781
\(512\) 262144. 0.0441942
\(513\) 0 0
\(514\) −151032. −0.0252151
\(515\) −5.99230e6 −0.995578
\(516\) 0 0
\(517\) 2.07926e6 0.342124
\(518\) 9.81724e6 1.60755
\(519\) 0 0
\(520\) 2.25869e6 0.366309
\(521\) 789435. 0.127415 0.0637077 0.997969i \(-0.479707\pi\)
0.0637077 + 0.997969i \(0.479707\pi\)
\(522\) 0 0
\(523\) 627392. 0.100296 0.0501481 0.998742i \(-0.484031\pi\)
0.0501481 + 0.998742i \(0.484031\pi\)
\(524\) 1.57027e6 0.249831
\(525\) 0 0
\(526\) 2.52502e6 0.397924
\(527\) 4.60881e6 0.722873
\(528\) 0 0
\(529\) −3.27150e6 −0.508286
\(530\) 6.26810e6 0.969274
\(531\) 0 0
\(532\) −3.78214e6 −0.579374
\(533\) −3.67037e6 −0.559618
\(534\) 0 0
\(535\) 4.04746e6 0.611362
\(536\) 1.62195e6 0.243852
\(537\) 0 0
\(538\) 4.32137e6 0.643673
\(539\) 1.30063e6 0.192833
\(540\) 0 0
\(541\) 3.20895e6 0.471379 0.235689 0.971828i \(-0.424265\pi\)
0.235689 + 0.971828i \(0.424265\pi\)
\(542\) −3.26440e6 −0.477315
\(543\) 0 0
\(544\) 755712. 0.109486
\(545\) 4.47994e6 0.646072
\(546\) 0 0
\(547\) 3.42658e6 0.489658 0.244829 0.969566i \(-0.421268\pi\)
0.244829 + 0.969566i \(0.421268\pi\)
\(548\) −6.40219e6 −0.910704
\(549\) 0 0
\(550\) −253616. −0.0357495
\(551\) 2.93914e6 0.412421
\(552\) 0 0
\(553\) −1.28208e7 −1.78280
\(554\) 6.75279e6 0.934779
\(555\) 0 0
\(556\) 3.29226e6 0.451655
\(557\) −1.05198e7 −1.43672 −0.718358 0.695674i \(-0.755106\pi\)
−0.718358 + 0.695674i \(0.755106\pi\)
\(558\) 0 0
\(559\) 1.23162e7 1.66705
\(560\) −2.16730e6 −0.292044
\(561\) 0 0
\(562\) 3.51617e6 0.469601
\(563\) −5.47288e6 −0.727687 −0.363844 0.931460i \(-0.618536\pi\)
−0.363844 + 0.931460i \(0.618536\pi\)
\(564\) 0 0
\(565\) 2.40960e6 0.317558
\(566\) 6.16107e6 0.808379
\(567\) 0 0
\(568\) −851904. −0.110795
\(569\) 1.17787e7 1.52516 0.762580 0.646893i \(-0.223932\pi\)
0.762580 + 0.646893i \(0.223932\pi\)
\(570\) 0 0
\(571\) −8.35628e6 −1.07256 −0.536281 0.844039i \(-0.680171\pi\)
−0.536281 + 0.844039i \(0.680171\pi\)
\(572\) 1.33971e6 0.171207
\(573\) 0 0
\(574\) 3.52186e6 0.446161
\(575\) −932196. −0.117581
\(576\) 0 0
\(577\) −1.37758e7 −1.72258 −0.861288 0.508117i \(-0.830342\pi\)
−0.861288 + 0.508117i \(0.830342\pi\)
\(578\) −3.50085e6 −0.435867
\(579\) 0 0
\(580\) 1.68422e6 0.207888
\(581\) 9.13232e6 1.12238
\(582\) 0 0
\(583\) 3.71785e6 0.453023
\(584\) −3.40864e6 −0.413570
\(585\) 0 0
\(586\) −2.88336e6 −0.346860
\(587\) 1.27093e7 1.52239 0.761196 0.648522i \(-0.224612\pi\)
0.761196 + 0.648522i \(0.224612\pi\)
\(588\) 0 0
\(589\) 8.89288e6 1.05622
\(590\) 7.13776e6 0.844173
\(591\) 0 0
\(592\) −3.78496e6 −0.443871
\(593\) −1.00825e6 −0.117742 −0.0588711 0.998266i \(-0.518750\pi\)
−0.0588711 + 0.998266i \(0.518750\pi\)
\(594\) 0 0
\(595\) −6.24791e6 −0.723506
\(596\) −1.40362e6 −0.161857
\(597\) 0 0
\(598\) 4.92427e6 0.563105
\(599\) −1.05100e7 −1.19684 −0.598421 0.801182i \(-0.704205\pi\)
−0.598421 + 0.801182i \(0.704205\pi\)
\(600\) 0 0
\(601\) −199390. −0.0225173 −0.0112587 0.999937i \(-0.503584\pi\)
−0.0112587 + 0.999937i \(0.503584\pi\)
\(602\) −1.18179e7 −1.32907
\(603\) 0 0
\(604\) −6.92445e6 −0.772312
\(605\) 746691. 0.0829378
\(606\) 0 0
\(607\) 16190.0 0.00178351 0.000891754 1.00000i \(-0.499716\pi\)
0.000891754 1.00000i \(0.499716\pi\)
\(608\) 1.45818e6 0.159975
\(609\) 0 0
\(610\) −9.37176e6 −1.01976
\(611\) 1.18913e7 1.28863
\(612\) 0 0
\(613\) −1.15253e7 −1.23880 −0.619402 0.785074i \(-0.712625\pi\)
−0.619402 + 0.785074i \(0.712625\pi\)
\(614\) −4.15619e6 −0.444913
\(615\) 0 0
\(616\) −1.28550e6 −0.136497
\(617\) −1.69974e7 −1.79750 −0.898751 0.438459i \(-0.855524\pi\)
−0.898751 + 0.438459i \(0.855524\pi\)
\(618\) 0 0
\(619\) −1.84875e7 −1.93933 −0.969663 0.244445i \(-0.921394\pi\)
−0.969663 + 0.244445i \(0.921394\pi\)
\(620\) 5.09592e6 0.532407
\(621\) 0 0
\(622\) 5.00539e6 0.518755
\(623\) 2.08189e7 2.14901
\(624\) 0 0
\(625\) −7.85355e6 −0.804203
\(626\) −5.77344e6 −0.588842
\(627\) 0 0
\(628\) −545200. −0.0551641
\(629\) −1.09113e7 −1.09964
\(630\) 0 0
\(631\) −4.54281e6 −0.454204 −0.227102 0.973871i \(-0.572925\pi\)
−0.227102 + 0.973871i \(0.572925\pi\)
\(632\) 4.94298e6 0.492261
\(633\) 0 0
\(634\) 8.04832e6 0.795210
\(635\) −1.22102e7 −1.20168
\(636\) 0 0
\(637\) 7.43831e6 0.726316
\(638\) 998976. 0.0971635
\(639\) 0 0
\(640\) 835584. 0.0806381
\(641\) −1.84286e7 −1.77153 −0.885764 0.464136i \(-0.846365\pi\)
−0.885764 + 0.464136i \(0.846365\pi\)
\(642\) 0 0
\(643\) 9.66604e6 0.921979 0.460989 0.887406i \(-0.347495\pi\)
0.460989 + 0.887406i \(0.347495\pi\)
\(644\) −4.72502e6 −0.448941
\(645\) 0 0
\(646\) 4.20365e6 0.396319
\(647\) 4.51430e6 0.423965 0.211982 0.977273i \(-0.432008\pi\)
0.211982 + 0.977273i \(0.432008\pi\)
\(648\) 0 0
\(649\) 4.23367e6 0.394553
\(650\) −1.45043e6 −0.134652
\(651\) 0 0
\(652\) 720320. 0.0663600
\(653\) 5.37235e6 0.493039 0.246519 0.969138i \(-0.420713\pi\)
0.246519 + 0.969138i \(0.420713\pi\)
\(654\) 0 0
\(655\) 5.00524e6 0.455850
\(656\) −1.35782e6 −0.123192
\(657\) 0 0
\(658\) −1.14102e7 −1.02737
\(659\) −9.87956e6 −0.886184 −0.443092 0.896476i \(-0.646119\pi\)
−0.443092 + 0.896476i \(0.646119\pi\)
\(660\) 0 0
\(661\) 1.08052e7 0.961898 0.480949 0.876748i \(-0.340292\pi\)
0.480949 + 0.876748i \(0.340292\pi\)
\(662\) 8.06935e6 0.715638
\(663\) 0 0
\(664\) −3.52090e6 −0.309908
\(665\) −1.20556e7 −1.05714
\(666\) 0 0
\(667\) 3.67186e6 0.319574
\(668\) −7.72090e6 −0.669463
\(669\) 0 0
\(670\) 5.16997e6 0.444940
\(671\) −5.55874e6 −0.476618
\(672\) 0 0
\(673\) 1.13275e7 0.964042 0.482021 0.876160i \(-0.339903\pi\)
0.482021 + 0.876160i \(0.339903\pi\)
\(674\) 1.05649e6 0.0895808
\(675\) 0 0
\(676\) 1.72114e6 0.144860
\(677\) 1.20595e7 1.01125 0.505624 0.862754i \(-0.331262\pi\)
0.505624 + 0.862754i \(0.331262\pi\)
\(678\) 0 0
\(679\) 1.47420e7 1.22710
\(680\) 2.40883e6 0.199772
\(681\) 0 0
\(682\) 3.02258e6 0.248838
\(683\) 5.14166e6 0.421747 0.210873 0.977513i \(-0.432369\pi\)
0.210873 + 0.977513i \(0.432369\pi\)
\(684\) 0 0
\(685\) −2.04070e7 −1.66170
\(686\) 4.02251e6 0.326353
\(687\) 0 0
\(688\) 4.55629e6 0.366978
\(689\) 2.12624e7 1.70633
\(690\) 0 0
\(691\) 1.31243e7 1.04563 0.522817 0.852445i \(-0.324881\pi\)
0.522817 + 0.852445i \(0.324881\pi\)
\(692\) 1.22601e7 0.973257
\(693\) 0 0
\(694\) 6.84197e6 0.539240
\(695\) 1.04941e7 0.824104
\(696\) 0 0
\(697\) −3.91435e6 −0.305195
\(698\) 875288. 0.0680005
\(699\) 0 0
\(700\) 1.39174e6 0.107353
\(701\) −3.65956e6 −0.281277 −0.140638 0.990061i \(-0.544916\pi\)
−0.140638 + 0.990061i \(0.544916\pi\)
\(702\) 0 0
\(703\) −2.10538e7 −1.60673
\(704\) 495616. 0.0376889
\(705\) 0 0
\(706\) −1.47277e7 −1.11204
\(707\) 246012. 0.0185101
\(708\) 0 0
\(709\) 1.02252e7 0.763935 0.381968 0.924176i \(-0.375247\pi\)
0.381968 + 0.924176i \(0.375247\pi\)
\(710\) −2.71544e6 −0.202160
\(711\) 0 0
\(712\) −8.02656e6 −0.593375
\(713\) 1.11099e7 0.818436
\(714\) 0 0
\(715\) 4.27033e6 0.312390
\(716\) −4.85438e6 −0.353876
\(717\) 0 0
\(718\) −7.54114e6 −0.545916
\(719\) −2.41683e7 −1.74351 −0.871753 0.489945i \(-0.837017\pi\)
−0.871753 + 0.489945i \(0.837017\pi\)
\(720\) 0 0
\(721\) 1.95043e7 1.39731
\(722\) −1.79329e6 −0.128029
\(723\) 0 0
\(724\) −4.56290e6 −0.323515
\(725\) −1.08154e6 −0.0764181
\(726\) 0 0
\(727\) 1.68246e7 1.18062 0.590310 0.807177i \(-0.299006\pi\)
0.590310 + 0.807177i \(0.299006\pi\)
\(728\) −7.35181e6 −0.514121
\(729\) 0 0
\(730\) −1.08650e7 −0.754613
\(731\) 1.31349e7 0.909147
\(732\) 0 0
\(733\) −5.04168e6 −0.346590 −0.173295 0.984870i \(-0.555441\pi\)
−0.173295 + 0.984870i \(0.555441\pi\)
\(734\) −1.24666e7 −0.854101
\(735\) 0 0
\(736\) 1.82170e6 0.123960
\(737\) 3.06650e6 0.207958
\(738\) 0 0
\(739\) −6.26375e6 −0.421913 −0.210957 0.977495i \(-0.567658\pi\)
−0.210957 + 0.977495i \(0.567658\pi\)
\(740\) −1.20646e7 −0.809901
\(741\) 0 0
\(742\) −2.04021e7 −1.36039
\(743\) −3.63976e6 −0.241880 −0.120940 0.992660i \(-0.538591\pi\)
−0.120940 + 0.992660i \(0.538591\pi\)
\(744\) 0 0
\(745\) −4.47403e6 −0.295330
\(746\) 5.57766e6 0.366948
\(747\) 0 0
\(748\) 1.42877e6 0.0933701
\(749\) −1.31741e7 −0.858057
\(750\) 0 0
\(751\) −1.87370e7 −1.21227 −0.606135 0.795362i \(-0.707281\pi\)
−0.606135 + 0.795362i \(0.707281\pi\)
\(752\) 4.39910e6 0.283674
\(753\) 0 0
\(754\) 5.71315e6 0.365972
\(755\) −2.20717e7 −1.40918
\(756\) 0 0
\(757\) 489242. 0.0310302 0.0155151 0.999880i \(-0.495061\pi\)
0.0155151 + 0.999880i \(0.495061\pi\)
\(758\) −1.70414e7 −1.07729
\(759\) 0 0
\(760\) 4.64794e6 0.291895
\(761\) −1.46969e7 −0.919952 −0.459976 0.887931i \(-0.652142\pi\)
−0.459976 + 0.887931i \(0.652142\pi\)
\(762\) 0 0
\(763\) −1.45818e7 −0.906774
\(764\) −1.22731e7 −0.760711
\(765\) 0 0
\(766\) −807060. −0.0496974
\(767\) 2.42124e7 1.48610
\(768\) 0 0
\(769\) 2.42072e7 1.47615 0.738073 0.674721i \(-0.235736\pi\)
0.738073 + 0.674721i \(0.235736\pi\)
\(770\) −4.09754e6 −0.249056
\(771\) 0 0
\(772\) 6.58669e6 0.397763
\(773\) −1.35260e7 −0.814181 −0.407091 0.913388i \(-0.633457\pi\)
−0.407091 + 0.913388i \(0.633457\pi\)
\(774\) 0 0
\(775\) −3.27238e6 −0.195708
\(776\) −5.68365e6 −0.338823
\(777\) 0 0
\(778\) −7.79528e6 −0.461725
\(779\) −7.55290e6 −0.445933
\(780\) 0 0
\(781\) −1.61063e6 −0.0944862
\(782\) 5.25161e6 0.307097
\(783\) 0 0
\(784\) 2.75174e6 0.159889
\(785\) −1.73782e6 −0.100654
\(786\) 0 0
\(787\) 1.42094e7 0.817786 0.408893 0.912582i \(-0.365915\pi\)
0.408893 + 0.912582i \(0.365915\pi\)
\(788\) 1.21481e7 0.696937
\(789\) 0 0
\(790\) 1.57557e7 0.898196
\(791\) −7.84300e6 −0.445698
\(792\) 0 0
\(793\) −3.17905e7 −1.79521
\(794\) −5.87303e6 −0.330606
\(795\) 0 0
\(796\) −745600. −0.0417084
\(797\) 7.93333e6 0.442395 0.221197 0.975229i \(-0.429003\pi\)
0.221197 + 0.975229i \(0.429003\pi\)
\(798\) 0 0
\(799\) 1.26818e7 0.702771
\(800\) −536576. −0.0296419
\(801\) 0 0
\(802\) −8.98471e6 −0.493251
\(803\) −6.44446e6 −0.352694
\(804\) 0 0
\(805\) −1.50610e7 −0.819152
\(806\) 1.72862e7 0.937262
\(807\) 0 0
\(808\) −94848.0 −0.00511093
\(809\) 1.04685e7 0.562359 0.281180 0.959655i \(-0.409274\pi\)
0.281180 + 0.959655i \(0.409274\pi\)
\(810\) 0 0
\(811\) 1.19147e7 0.636110 0.318055 0.948072i \(-0.396970\pi\)
0.318055 + 0.948072i \(0.396970\pi\)
\(812\) −5.48198e6 −0.291775
\(813\) 0 0
\(814\) −7.15594e6 −0.378535
\(815\) 2.29602e6 0.121083
\(816\) 0 0
\(817\) 2.53444e7 1.32839
\(818\) −1.44595e7 −0.755562
\(819\) 0 0
\(820\) −4.32806e6 −0.224781
\(821\) 1.86112e6 0.0963645 0.0481822 0.998839i \(-0.484657\pi\)
0.0481822 + 0.998839i \(0.484657\pi\)
\(822\) 0 0
\(823\) 2.30153e7 1.18445 0.592225 0.805773i \(-0.298250\pi\)
0.592225 + 0.805773i \(0.298250\pi\)
\(824\) −7.51974e6 −0.385820
\(825\) 0 0
\(826\) −2.32327e7 −1.18481
\(827\) 1.68351e7 0.855959 0.427980 0.903788i \(-0.359225\pi\)
0.427980 + 0.903788i \(0.359225\pi\)
\(828\) 0 0
\(829\) −2.35299e7 −1.18914 −0.594570 0.804044i \(-0.702678\pi\)
−0.594570 + 0.804044i \(0.702678\pi\)
\(830\) −1.12229e7 −0.565468
\(831\) 0 0
\(832\) 2.83443e6 0.141957
\(833\) 7.93276e6 0.396106
\(834\) 0 0
\(835\) −2.46104e7 −1.22152
\(836\) 2.75686e6 0.136427
\(837\) 0 0
\(838\) 1.52496e7 0.750148
\(839\) −2.91549e7 −1.42990 −0.714952 0.699173i \(-0.753552\pi\)
−0.714952 + 0.699173i \(0.753552\pi\)
\(840\) 0 0
\(841\) −1.62511e7 −0.792303
\(842\) 7.89385e6 0.383715
\(843\) 0 0
\(844\) −1.49188e7 −0.720907
\(845\) 5.48612e6 0.264316
\(846\) 0 0
\(847\) −2.43041e6 −0.116405
\(848\) 7.86586e6 0.375627
\(849\) 0 0
\(850\) −1.54685e6 −0.0734345
\(851\) −2.63025e7 −1.24501
\(852\) 0 0
\(853\) −9.49052e6 −0.446599 −0.223299 0.974750i \(-0.571683\pi\)
−0.223299 + 0.974750i \(0.571683\pi\)
\(854\) 3.05042e7 1.43125
\(855\) 0 0
\(856\) 5.07917e6 0.236924
\(857\) 1.81553e6 0.0844405 0.0422203 0.999108i \(-0.486557\pi\)
0.0422203 + 0.999108i \(0.486557\pi\)
\(858\) 0 0
\(859\) −1.07812e7 −0.498522 −0.249261 0.968436i \(-0.580188\pi\)
−0.249261 + 0.968436i \(0.580188\pi\)
\(860\) 1.45232e7 0.669600
\(861\) 0 0
\(862\) 8.33436e6 0.382036
\(863\) 2.83355e7 1.29510 0.647550 0.762023i \(-0.275794\pi\)
0.647550 + 0.762023i \(0.275794\pi\)
\(864\) 0 0
\(865\) 3.90790e7 1.77584
\(866\) −290764. −0.0131749
\(867\) 0 0
\(868\) −1.65867e7 −0.747242
\(869\) 9.34531e6 0.419802
\(870\) 0 0
\(871\) 1.75374e7 0.783283
\(872\) 5.62189e6 0.250375
\(873\) 0 0
\(874\) 1.01332e7 0.448712
\(875\) 3.08924e7 1.36406
\(876\) 0 0
\(877\) −2.68919e7 −1.18065 −0.590326 0.807165i \(-0.701001\pi\)
−0.590326 + 0.807165i \(0.701001\pi\)
\(878\) 2.37757e6 0.104087
\(879\) 0 0
\(880\) 1.57978e6 0.0687684
\(881\) 1.92132e7 0.833989 0.416995 0.908909i \(-0.363083\pi\)
0.416995 + 0.908909i \(0.363083\pi\)
\(882\) 0 0
\(883\) 1.15931e7 0.500378 0.250189 0.968197i \(-0.419507\pi\)
0.250189 + 0.968197i \(0.419507\pi\)
\(884\) 8.17114e6 0.351683
\(885\) 0 0
\(886\) −1.82660e7 −0.781735
\(887\) −1.31857e7 −0.562721 −0.281361 0.959602i \(-0.590786\pi\)
−0.281361 + 0.959602i \(0.590786\pi\)
\(888\) 0 0
\(889\) 3.97431e7 1.68658
\(890\) −2.55847e7 −1.08269
\(891\) 0 0
\(892\) 2.71592e6 0.114289
\(893\) 2.44700e7 1.02685
\(894\) 0 0
\(895\) −1.54733e7 −0.645694
\(896\) −2.71974e6 −0.113177
\(897\) 0 0
\(898\) 2.17753e7 0.901100
\(899\) 1.28897e7 0.531916
\(900\) 0 0
\(901\) 2.26758e7 0.930573
\(902\) −2.56714e6 −0.105059
\(903\) 0 0
\(904\) 3.02381e6 0.123065
\(905\) −1.45442e7 −0.590295
\(906\) 0 0
\(907\) 2.98195e6 0.120360 0.0601800 0.998188i \(-0.480833\pi\)
0.0601800 + 0.998188i \(0.480833\pi\)
\(908\) −3.16925e6 −0.127568
\(909\) 0 0
\(910\) −2.34339e7 −0.938082
\(911\) −2.96579e7 −1.18398 −0.591989 0.805946i \(-0.701657\pi\)
−0.591989 + 0.805946i \(0.701657\pi\)
\(912\) 0 0
\(913\) −6.65669e6 −0.264291
\(914\) 2.68125e7 1.06163
\(915\) 0 0
\(916\) −1.36000e7 −0.535548
\(917\) −1.62916e7 −0.639793
\(918\) 0 0
\(919\) 3.18057e7 1.24227 0.621135 0.783704i \(-0.286672\pi\)
0.621135 + 0.783704i \(0.286672\pi\)
\(920\) 5.80666e6 0.226181
\(921\) 0 0
\(922\) 5.03976e6 0.195246
\(923\) −9.21121e6 −0.355887
\(924\) 0 0
\(925\) 7.74734e6 0.297713
\(926\) −2.00923e7 −0.770021
\(927\) 0 0
\(928\) 2.11354e6 0.0805638
\(929\) 2.33444e7 0.887451 0.443725 0.896163i \(-0.353657\pi\)
0.443725 + 0.896163i \(0.353657\pi\)
\(930\) 0 0
\(931\) 1.53066e7 0.578767
\(932\) 6.42931e6 0.242451
\(933\) 0 0
\(934\) 9.42642e6 0.353573
\(935\) 4.55420e6 0.170366
\(936\) 0 0
\(937\) 2.07372e7 0.771616 0.385808 0.922579i \(-0.373923\pi\)
0.385808 + 0.922579i \(0.373923\pi\)
\(938\) −1.68278e7 −0.624481
\(939\) 0 0
\(940\) 1.40221e7 0.517601
\(941\) −2.69193e7 −0.991036 −0.495518 0.868598i \(-0.665022\pi\)
−0.495518 + 0.868598i \(0.665022\pi\)
\(942\) 0 0
\(943\) −9.43582e6 −0.345542
\(944\) 8.95718e6 0.327146
\(945\) 0 0
\(946\) 8.61423e6 0.312960
\(947\) −1.01896e7 −0.369216 −0.184608 0.982812i \(-0.559102\pi\)
−0.184608 + 0.982812i \(0.559102\pi\)
\(948\) 0 0
\(949\) −3.68559e7 −1.32844
\(950\) −2.98470e6 −0.107298
\(951\) 0 0
\(952\) −7.84051e6 −0.280383
\(953\) −1.03924e7 −0.370665 −0.185333 0.982676i \(-0.559336\pi\)
−0.185333 + 0.982676i \(0.559336\pi\)
\(954\) 0 0
\(955\) −3.91204e7 −1.38802
\(956\) −1.36828e7 −0.484206
\(957\) 0 0
\(958\) 2.68903e7 0.946634
\(959\) 6.64227e7 2.33222
\(960\) 0 0
\(961\) 1.03709e7 0.362249
\(962\) −4.09249e7 −1.42577
\(963\) 0 0
\(964\) 1.80074e7 0.624107
\(965\) 2.09951e7 0.725770
\(966\) 0 0
\(967\) −8.18877e6 −0.281613 −0.140806 0.990037i \(-0.544970\pi\)
−0.140806 + 0.990037i \(0.544970\pi\)
\(968\) 937024. 0.0321412
\(969\) 0 0
\(970\) −1.81166e7 −0.618227
\(971\) 1.73274e7 0.589775 0.294887 0.955532i \(-0.404718\pi\)
0.294887 + 0.955532i \(0.404718\pi\)
\(972\) 0 0
\(973\) −3.41572e7 −1.15664
\(974\) 7.84005e6 0.264802
\(975\) 0 0
\(976\) −1.17606e7 −0.395190
\(977\) 438963. 0.0147127 0.00735634 0.999973i \(-0.497658\pi\)
0.00735634 + 0.999973i \(0.497658\pi\)
\(978\) 0 0
\(979\) −1.51752e7 −0.506032
\(980\) 8.77118e6 0.291738
\(981\) 0 0
\(982\) 2.31850e6 0.0767234
\(983\) 2.79124e7 0.921326 0.460663 0.887575i \(-0.347612\pi\)
0.460663 + 0.887575i \(0.347612\pi\)
\(984\) 0 0
\(985\) 3.87222e7 1.27165
\(986\) 6.09293e6 0.199588
\(987\) 0 0
\(988\) 1.57665e7 0.513859
\(989\) 3.16626e7 1.02933
\(990\) 0 0
\(991\) −4.26846e7 −1.38066 −0.690331 0.723494i \(-0.742535\pi\)
−0.690331 + 0.723494i \(0.742535\pi\)
\(992\) 6.39488e6 0.206326
\(993\) 0 0
\(994\) 8.83850e6 0.283735
\(995\) −2.37660e6 −0.0761024
\(996\) 0 0
\(997\) −2.21044e7 −0.704273 −0.352137 0.935949i \(-0.614545\pi\)
−0.352137 + 0.935949i \(0.614545\pi\)
\(998\) 5.47621e6 0.174042
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 198.6.a.i.1.1 1
3.2 odd 2 22.6.a.b.1.1 1
12.11 even 2 176.6.a.b.1.1 1
15.2 even 4 550.6.b.f.199.1 2
15.8 even 4 550.6.b.f.199.2 2
15.14 odd 2 550.6.a.f.1.1 1
21.20 even 2 1078.6.a.a.1.1 1
24.5 odd 2 704.6.a.e.1.1 1
24.11 even 2 704.6.a.f.1.1 1
33.32 even 2 242.6.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
22.6.a.b.1.1 1 3.2 odd 2
176.6.a.b.1.1 1 12.11 even 2
198.6.a.i.1.1 1 1.1 even 1 trivial
242.6.a.d.1.1 1 33.32 even 2
550.6.a.f.1.1 1 15.14 odd 2
550.6.b.f.199.1 2 15.2 even 4
550.6.b.f.199.2 2 15.8 even 4
704.6.a.e.1.1 1 24.5 odd 2
704.6.a.f.1.1 1 24.11 even 2
1078.6.a.a.1.1 1 21.20 even 2