Properties

Label 198.2.f.e.181.1
Level $198$
Weight $2$
Character 198.181
Analytic conductor $1.581$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [198,2,Mod(37,198)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(198, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("198.37"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 198 = 2 \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 198.f (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,1,0,-1,6,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.58103796002\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 22)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 181.1
Root \(-0.309017 + 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 198.181
Dual form 198.2.f.e.163.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.309017 - 0.951057i) q^{2} +(-0.809017 + 0.587785i) q^{4} +(0.381966 - 1.17557i) q^{5} +(1.61803 - 1.17557i) q^{7} +(0.809017 + 0.587785i) q^{8} -1.23607 q^{10} +(0.809017 - 3.21644i) q^{11} +(-1.00000 - 3.07768i) q^{13} +(-1.61803 - 1.17557i) q^{14} +(0.309017 - 0.951057i) q^{16} +(-0.500000 + 1.53884i) q^{17} +(-0.690983 - 0.502029i) q^{19} +(0.381966 + 1.17557i) q^{20} +(-3.30902 + 0.224514i) q^{22} +3.23607 q^{23} +(2.80902 + 2.04087i) q^{25} +(-2.61803 + 1.90211i) q^{26} +(-0.618034 + 1.90211i) q^{28} +(-3.61803 + 2.62866i) q^{29} +(0.618034 + 1.90211i) q^{31} -1.00000 q^{32} +1.61803 q^{34} +(-0.763932 - 2.35114i) q^{35} +(-7.85410 + 5.70634i) q^{37} +(-0.263932 + 0.812299i) q^{38} +(1.00000 - 0.726543i) q^{40} +(2.73607 + 1.98787i) q^{41} +11.5623 q^{43} +(1.23607 + 3.07768i) q^{44} +(-1.00000 - 3.07768i) q^{46} +(2.00000 + 1.45309i) q^{47} +(-0.927051 + 2.85317i) q^{49} +(1.07295 - 3.30220i) q^{50} +(2.61803 + 1.90211i) q^{52} +(3.23607 + 9.95959i) q^{53} +(-3.47214 - 2.17963i) q^{55} +2.00000 q^{56} +(3.61803 + 2.62866i) q^{58} +(-5.16312 + 3.75123i) q^{59} +(2.00000 - 6.15537i) q^{61} +(1.61803 - 1.17557i) q^{62} +(0.309017 + 0.951057i) q^{64} -4.00000 q^{65} -0.0901699 q^{67} +(-0.500000 - 1.53884i) q^{68} +(-2.00000 + 1.45309i) q^{70} +(0.236068 - 0.726543i) q^{71} +(-10.2082 + 7.41669i) q^{73} +(7.85410 + 5.70634i) q^{74} +0.854102 q^{76} +(-2.47214 - 6.15537i) q^{77} +(-4.14590 - 12.7598i) q^{79} +(-1.00000 - 0.726543i) q^{80} +(1.04508 - 3.21644i) q^{82} +(1.95492 - 6.01661i) q^{83} +(1.61803 + 1.17557i) q^{85} +(-3.57295 - 10.9964i) q^{86} +(2.54508 - 2.12663i) q^{88} -3.09017 q^{89} +(-5.23607 - 3.80423i) q^{91} +(-2.61803 + 1.90211i) q^{92} +(0.763932 - 2.35114i) q^{94} +(-0.854102 + 0.620541i) q^{95} +(4.28115 + 13.1760i) q^{97} +3.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} - q^{4} + 6 q^{5} + 2 q^{7} + q^{8} + 4 q^{10} + q^{11} - 4 q^{13} - 2 q^{14} - q^{16} - 2 q^{17} - 5 q^{19} + 6 q^{20} - 11 q^{22} + 4 q^{23} + 9 q^{25} - 6 q^{26} + 2 q^{28} - 10 q^{29}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/198\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(155\)
\(\chi(n)\) \(e\left(\frac{2}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.309017 0.951057i −0.218508 0.672499i
\(3\) 0 0
\(4\) −0.809017 + 0.587785i −0.404508 + 0.293893i
\(5\) 0.381966 1.17557i 0.170820 0.525731i −0.828598 0.559845i \(-0.810861\pi\)
0.999418 + 0.0341136i \(0.0108608\pi\)
\(6\) 0 0
\(7\) 1.61803 1.17557i 0.611559 0.444324i −0.238404 0.971166i \(-0.576624\pi\)
0.849963 + 0.526842i \(0.176624\pi\)
\(8\) 0.809017 + 0.587785i 0.286031 + 0.207813i
\(9\) 0 0
\(10\) −1.23607 −0.390879
\(11\) 0.809017 3.21644i 0.243928 0.969793i
\(12\) 0 0
\(13\) −1.00000 3.07768i −0.277350 0.853596i −0.988588 0.150644i \(-0.951865\pi\)
0.711238 0.702951i \(-0.248135\pi\)
\(14\) −1.61803 1.17557i −0.432438 0.314184i
\(15\) 0 0
\(16\) 0.309017 0.951057i 0.0772542 0.237764i
\(17\) −0.500000 + 1.53884i −0.121268 + 0.373224i −0.993203 0.116398i \(-0.962865\pi\)
0.871935 + 0.489622i \(0.162865\pi\)
\(18\) 0 0
\(19\) −0.690983 0.502029i −0.158522 0.115173i 0.505696 0.862712i \(-0.331236\pi\)
−0.664219 + 0.747538i \(0.731236\pi\)
\(20\) 0.381966 + 1.17557i 0.0854102 + 0.262866i
\(21\) 0 0
\(22\) −3.30902 + 0.224514i −0.705485 + 0.0478665i
\(23\) 3.23607 0.674767 0.337383 0.941367i \(-0.390458\pi\)
0.337383 + 0.941367i \(0.390458\pi\)
\(24\) 0 0
\(25\) 2.80902 + 2.04087i 0.561803 + 0.408174i
\(26\) −2.61803 + 1.90211i −0.513439 + 0.373035i
\(27\) 0 0
\(28\) −0.618034 + 1.90211i −0.116797 + 0.359466i
\(29\) −3.61803 + 2.62866i −0.671852 + 0.488129i −0.870645 0.491912i \(-0.836298\pi\)
0.198793 + 0.980042i \(0.436298\pi\)
\(30\) 0 0
\(31\) 0.618034 + 1.90211i 0.111002 + 0.341630i 0.991092 0.133177i \(-0.0425179\pi\)
−0.880090 + 0.474807i \(0.842518\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 1.61803 0.277491
\(35\) −0.763932 2.35114i −0.129128 0.397415i
\(36\) 0 0
\(37\) −7.85410 + 5.70634i −1.29121 + 0.938116i −0.999829 0.0184918i \(-0.994114\pi\)
−0.291377 + 0.956608i \(0.594114\pi\)
\(38\) −0.263932 + 0.812299i −0.0428154 + 0.131772i
\(39\) 0 0
\(40\) 1.00000 0.726543i 0.158114 0.114876i
\(41\) 2.73607 + 1.98787i 0.427302 + 0.310453i 0.780569 0.625069i \(-0.214929\pi\)
−0.353267 + 0.935522i \(0.614929\pi\)
\(42\) 0 0
\(43\) 11.5623 1.76324 0.881618 0.471964i \(-0.156455\pi\)
0.881618 + 0.471964i \(0.156455\pi\)
\(44\) 1.23607 + 3.07768i 0.186344 + 0.463978i
\(45\) 0 0
\(46\) −1.00000 3.07768i −0.147442 0.453780i
\(47\) 2.00000 + 1.45309i 0.291730 + 0.211954i 0.724018 0.689782i \(-0.242293\pi\)
−0.432288 + 0.901736i \(0.642293\pi\)
\(48\) 0 0
\(49\) −0.927051 + 2.85317i −0.132436 + 0.407596i
\(50\) 1.07295 3.30220i 0.151738 0.467001i
\(51\) 0 0
\(52\) 2.61803 + 1.90211i 0.363056 + 0.263776i
\(53\) 3.23607 + 9.95959i 0.444508 + 1.36806i 0.883022 + 0.469331i \(0.155505\pi\)
−0.438514 + 0.898724i \(0.644495\pi\)
\(54\) 0 0
\(55\) −3.47214 2.17963i −0.468183 0.293901i
\(56\) 2.00000 0.267261
\(57\) 0 0
\(58\) 3.61803 + 2.62866i 0.475071 + 0.345159i
\(59\) −5.16312 + 3.75123i −0.672181 + 0.488368i −0.870755 0.491718i \(-0.836369\pi\)
0.198574 + 0.980086i \(0.436369\pi\)
\(60\) 0 0
\(61\) 2.00000 6.15537i 0.256074 0.788114i −0.737542 0.675301i \(-0.764014\pi\)
0.993616 0.112813i \(-0.0359862\pi\)
\(62\) 1.61803 1.17557i 0.205491 0.149298i
\(63\) 0 0
\(64\) 0.309017 + 0.951057i 0.0386271 + 0.118882i
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) −0.0901699 −0.0110160 −0.00550801 0.999985i \(-0.501753\pi\)
−0.00550801 + 0.999985i \(0.501753\pi\)
\(68\) −0.500000 1.53884i −0.0606339 0.186612i
\(69\) 0 0
\(70\) −2.00000 + 1.45309i −0.239046 + 0.173677i
\(71\) 0.236068 0.726543i 0.0280161 0.0862247i −0.936071 0.351812i \(-0.885566\pi\)
0.964087 + 0.265587i \(0.0855657\pi\)
\(72\) 0 0
\(73\) −10.2082 + 7.41669i −1.19478 + 0.868058i −0.993761 0.111529i \(-0.964425\pi\)
−0.201019 + 0.979587i \(0.564425\pi\)
\(74\) 7.85410 + 5.70634i 0.913021 + 0.663348i
\(75\) 0 0
\(76\) 0.854102 0.0979722
\(77\) −2.47214 6.15537i −0.281726 0.701469i
\(78\) 0 0
\(79\) −4.14590 12.7598i −0.466450 1.43559i −0.857150 0.515067i \(-0.827767\pi\)
0.390700 0.920518i \(-0.372233\pi\)
\(80\) −1.00000 0.726543i −0.111803 0.0812299i
\(81\) 0 0
\(82\) 1.04508 3.21644i 0.115410 0.355196i
\(83\) 1.95492 6.01661i 0.214580 0.660409i −0.784603 0.619998i \(-0.787133\pi\)
0.999183 0.0404107i \(-0.0128666\pi\)
\(84\) 0 0
\(85\) 1.61803 + 1.17557i 0.175500 + 0.127509i
\(86\) −3.57295 10.9964i −0.385281 1.18577i
\(87\) 0 0
\(88\) 2.54508 2.12663i 0.271307 0.226699i
\(89\) −3.09017 −0.327557 −0.163779 0.986497i \(-0.552368\pi\)
−0.163779 + 0.986497i \(0.552368\pi\)
\(90\) 0 0
\(91\) −5.23607 3.80423i −0.548889 0.398791i
\(92\) −2.61803 + 1.90211i −0.272949 + 0.198309i
\(93\) 0 0
\(94\) 0.763932 2.35114i 0.0787936 0.242502i
\(95\) −0.854102 + 0.620541i −0.0876290 + 0.0636662i
\(96\) 0 0
\(97\) 4.28115 + 13.1760i 0.434685 + 1.33782i 0.893409 + 0.449245i \(0.148307\pi\)
−0.458724 + 0.888579i \(0.651693\pi\)
\(98\) 3.00000 0.303046
\(99\) 0 0
\(100\) −3.47214 −0.347214
\(101\) −5.61803 17.2905i −0.559015 1.72047i −0.685097 0.728452i \(-0.740240\pi\)
0.126081 0.992020i \(-0.459760\pi\)
\(102\) 0 0
\(103\) −1.85410 + 1.34708i −0.182690 + 0.132732i −0.675372 0.737478i \(-0.736017\pi\)
0.492682 + 0.870210i \(0.336017\pi\)
\(104\) 1.00000 3.07768i 0.0980581 0.301792i
\(105\) 0 0
\(106\) 8.47214 6.15537i 0.822887 0.597862i
\(107\) −6.35410 4.61653i −0.614274 0.446296i 0.236643 0.971597i \(-0.423953\pi\)
−0.850917 + 0.525300i \(0.823953\pi\)
\(108\) 0 0
\(109\) 1.05573 0.101120 0.0505602 0.998721i \(-0.483899\pi\)
0.0505602 + 0.998721i \(0.483899\pi\)
\(110\) −1.00000 + 3.97574i −0.0953463 + 0.379072i
\(111\) 0 0
\(112\) −0.618034 1.90211i −0.0583987 0.179733i
\(113\) 3.92705 + 2.85317i 0.369426 + 0.268404i 0.756973 0.653446i \(-0.226677\pi\)
−0.387547 + 0.921850i \(0.626677\pi\)
\(114\) 0 0
\(115\) 1.23607 3.80423i 0.115264 0.354746i
\(116\) 1.38197 4.25325i 0.128312 0.394905i
\(117\) 0 0
\(118\) 5.16312 + 3.75123i 0.475304 + 0.345328i
\(119\) 1.00000 + 3.07768i 0.0916698 + 0.282131i
\(120\) 0 0
\(121\) −9.69098 5.20431i −0.880998 0.473119i
\(122\) −6.47214 −0.585960
\(123\) 0 0
\(124\) −1.61803 1.17557i −0.145304 0.105569i
\(125\) 8.47214 6.15537i 0.757771 0.550553i
\(126\) 0 0
\(127\) 2.14590 6.60440i 0.190418 0.586045i −0.809582 0.587007i \(-0.800306\pi\)
1.00000 0.000961675i \(0.000306111\pi\)
\(128\) 0.809017 0.587785i 0.0715077 0.0519534i
\(129\) 0 0
\(130\) 1.23607 + 3.80423i 0.108410 + 0.333653i
\(131\) 17.7984 1.55505 0.777526 0.628851i \(-0.216475\pi\)
0.777526 + 0.628851i \(0.216475\pi\)
\(132\) 0 0
\(133\) −1.70820 −0.148120
\(134\) 0.0278640 + 0.0857567i 0.00240709 + 0.00740825i
\(135\) 0 0
\(136\) −1.30902 + 0.951057i −0.112247 + 0.0815524i
\(137\) −1.51722 + 4.66953i −0.129625 + 0.398945i −0.994715 0.102671i \(-0.967261\pi\)
0.865090 + 0.501616i \(0.167261\pi\)
\(138\) 0 0
\(139\) 0 0 −0.587785 0.809017i \(-0.700000\pi\)
0.587785 + 0.809017i \(0.300000\pi\)
\(140\) 2.00000 + 1.45309i 0.169031 + 0.122808i
\(141\) 0 0
\(142\) −0.763932 −0.0641078
\(143\) −10.7082 + 0.726543i −0.895465 + 0.0607565i
\(144\) 0 0
\(145\) 1.70820 + 5.25731i 0.141859 + 0.436596i
\(146\) 10.2082 + 7.41669i 0.844837 + 0.613810i
\(147\) 0 0
\(148\) 3.00000 9.23305i 0.246598 0.758952i
\(149\) −5.00000 + 15.3884i −0.409616 + 1.26067i 0.507363 + 0.861732i \(0.330620\pi\)
−0.916979 + 0.398936i \(0.869380\pi\)
\(150\) 0 0
\(151\) 6.47214 + 4.70228i 0.526695 + 0.382666i 0.819120 0.573622i \(-0.194462\pi\)
−0.292425 + 0.956288i \(0.594462\pi\)
\(152\) −0.263932 0.812299i −0.0214077 0.0658862i
\(153\) 0 0
\(154\) −5.09017 + 4.25325i −0.410178 + 0.342737i
\(155\) 2.47214 0.198567
\(156\) 0 0
\(157\) 3.00000 + 2.17963i 0.239426 + 0.173953i 0.701028 0.713134i \(-0.252725\pi\)
−0.461601 + 0.887087i \(0.652725\pi\)
\(158\) −10.8541 + 7.88597i −0.863506 + 0.627374i
\(159\) 0 0
\(160\) −0.381966 + 1.17557i −0.0301971 + 0.0929370i
\(161\) 5.23607 3.80423i 0.412660 0.299815i
\(162\) 0 0
\(163\) 3.73607 + 11.4984i 0.292631 + 0.900627i 0.984007 + 0.178131i \(0.0570051\pi\)
−0.691375 + 0.722496i \(0.742995\pi\)
\(164\) −3.38197 −0.264087
\(165\) 0 0
\(166\) −6.32624 −0.491011
\(167\) 5.94427 + 18.2946i 0.459982 + 1.41568i 0.865186 + 0.501451i \(0.167200\pi\)
−0.405204 + 0.914226i \(0.632800\pi\)
\(168\) 0 0
\(169\) 2.04508 1.48584i 0.157314 0.114295i
\(170\) 0.618034 1.90211i 0.0474010 0.145885i
\(171\) 0 0
\(172\) −9.35410 + 6.79615i −0.713244 + 0.518202i
\(173\) −11.2361 8.16348i −0.854262 0.620658i 0.0720555 0.997401i \(-0.477044\pi\)
−0.926318 + 0.376743i \(0.877044\pi\)
\(174\) 0 0
\(175\) 6.94427 0.524938
\(176\) −2.80902 1.76336i −0.211738 0.132918i
\(177\) 0 0
\(178\) 0.954915 + 2.93893i 0.0715739 + 0.220282i
\(179\) −5.16312 3.75123i −0.385910 0.280380i 0.377868 0.925860i \(-0.376657\pi\)
−0.763777 + 0.645480i \(0.776657\pi\)
\(180\) 0 0
\(181\) 5.61803 17.2905i 0.417585 1.28520i −0.492333 0.870407i \(-0.663856\pi\)
0.909918 0.414788i \(-0.136144\pi\)
\(182\) −2.00000 + 6.15537i −0.148250 + 0.456266i
\(183\) 0 0
\(184\) 2.61803 + 1.90211i 0.193004 + 0.140226i
\(185\) 3.70820 + 11.4127i 0.272633 + 0.839077i
\(186\) 0 0
\(187\) 4.54508 + 2.85317i 0.332370 + 0.208644i
\(188\) −2.47214 −0.180299
\(189\) 0 0
\(190\) 0.854102 + 0.620541i 0.0619631 + 0.0450188i
\(191\) 7.47214 5.42882i 0.540665 0.392816i −0.283667 0.958923i \(-0.591551\pi\)
0.824332 + 0.566107i \(0.191551\pi\)
\(192\) 0 0
\(193\) −2.90983 + 8.95554i −0.209454 + 0.644634i 0.790047 + 0.613046i \(0.210056\pi\)
−0.999501 + 0.0315871i \(0.989944\pi\)
\(194\) 11.2082 8.14324i 0.804702 0.584650i
\(195\) 0 0
\(196\) −0.927051 2.85317i −0.0662179 0.203798i
\(197\) 3.05573 0.217712 0.108856 0.994058i \(-0.465281\pi\)
0.108856 + 0.994058i \(0.465281\pi\)
\(198\) 0 0
\(199\) −1.05573 −0.0748386 −0.0374193 0.999300i \(-0.511914\pi\)
−0.0374193 + 0.999300i \(0.511914\pi\)
\(200\) 1.07295 + 3.30220i 0.0758690 + 0.233501i
\(201\) 0 0
\(202\) −14.7082 + 10.6861i −1.03487 + 0.751874i
\(203\) −2.76393 + 8.50651i −0.193990 + 0.597040i
\(204\) 0 0
\(205\) 3.38197 2.45714i 0.236207 0.171614i
\(206\) 1.85410 + 1.34708i 0.129181 + 0.0938558i
\(207\) 0 0
\(208\) −3.23607 −0.224381
\(209\) −2.17376 + 1.81636i −0.150362 + 0.125640i
\(210\) 0 0
\(211\) 1.57295 + 4.84104i 0.108286 + 0.333271i 0.990488 0.137601i \(-0.0439393\pi\)
−0.882201 + 0.470872i \(0.843939\pi\)
\(212\) −8.47214 6.15537i −0.581869 0.422752i
\(213\) 0 0
\(214\) −2.42705 + 7.46969i −0.165910 + 0.510618i
\(215\) 4.41641 13.5923i 0.301197 0.926988i
\(216\) 0 0
\(217\) 3.23607 + 2.35114i 0.219679 + 0.159606i
\(218\) −0.326238 1.00406i −0.0220956 0.0680033i
\(219\) 0 0
\(220\) 4.09017 0.277515i 0.275759 0.0187100i
\(221\) 5.23607 0.352216
\(222\) 0 0
\(223\) −9.94427 7.22494i −0.665918 0.483818i 0.202739 0.979233i \(-0.435016\pi\)
−0.868656 + 0.495415i \(0.835016\pi\)
\(224\) −1.61803 + 1.17557i −0.108109 + 0.0785461i
\(225\) 0 0
\(226\) 1.50000 4.61653i 0.0997785 0.307087i
\(227\) −19.0172 + 13.8168i −1.26222 + 0.917055i −0.998864 0.0476450i \(-0.984828\pi\)
−0.263353 + 0.964700i \(0.584828\pi\)
\(228\) 0 0
\(229\) −3.61803 11.1352i −0.239086 0.735832i −0.996553 0.0829584i \(-0.973563\pi\)
0.757467 0.652874i \(-0.226437\pi\)
\(230\) −4.00000 −0.263752
\(231\) 0 0
\(232\) −4.47214 −0.293610
\(233\) 2.28115 + 7.02067i 0.149443 + 0.459939i 0.997556 0.0698773i \(-0.0222608\pi\)
−0.848112 + 0.529817i \(0.822261\pi\)
\(234\) 0 0
\(235\) 2.47214 1.79611i 0.161264 0.117165i
\(236\) 1.97214 6.06961i 0.128375 0.395098i
\(237\) 0 0
\(238\) 2.61803 1.90211i 0.169702 0.123296i
\(239\) −6.70820 4.87380i −0.433918 0.315260i 0.349296 0.937012i \(-0.386421\pi\)
−0.783213 + 0.621753i \(0.786421\pi\)
\(240\) 0 0
\(241\) 0.0901699 0.00580836 0.00290418 0.999996i \(-0.499076\pi\)
0.00290418 + 0.999996i \(0.499076\pi\)
\(242\) −1.95492 + 10.8249i −0.125667 + 0.695850i
\(243\) 0 0
\(244\) 2.00000 + 6.15537i 0.128037 + 0.394057i
\(245\) 3.00000 + 2.17963i 0.191663 + 0.139251i
\(246\) 0 0
\(247\) −0.854102 + 2.62866i −0.0543452 + 0.167257i
\(248\) −0.618034 + 1.90211i −0.0392452 + 0.120784i
\(249\) 0 0
\(250\) −8.47214 6.15537i −0.535825 0.389300i
\(251\) −0.944272 2.90617i −0.0596019 0.183436i 0.916823 0.399295i \(-0.130745\pi\)
−0.976425 + 0.215859i \(0.930745\pi\)
\(252\) 0 0
\(253\) 2.61803 10.4086i 0.164594 0.654384i
\(254\) −6.94427 −0.435722
\(255\) 0 0
\(256\) −0.809017 0.587785i −0.0505636 0.0367366i
\(257\) −2.73607 + 1.98787i −0.170671 + 0.124000i −0.669842 0.742504i \(-0.733638\pi\)
0.499171 + 0.866504i \(0.333638\pi\)
\(258\) 0 0
\(259\) −6.00000 + 18.4661i −0.372822 + 1.14743i
\(260\) 3.23607 2.35114i 0.200692 0.145812i
\(261\) 0 0
\(262\) −5.50000 16.9273i −0.339791 1.04577i
\(263\) 18.7639 1.15703 0.578517 0.815670i \(-0.303632\pi\)
0.578517 + 0.815670i \(0.303632\pi\)
\(264\) 0 0
\(265\) 12.9443 0.795160
\(266\) 0.527864 + 1.62460i 0.0323654 + 0.0996105i
\(267\) 0 0
\(268\) 0.0729490 0.0530006i 0.00445607 0.00323752i
\(269\) 5.00000 15.3884i 0.304855 0.938248i −0.674876 0.737931i \(-0.735803\pi\)
0.979731 0.200317i \(-0.0641972\pi\)
\(270\) 0 0
\(271\) −1.61803 + 1.17557i −0.0982886 + 0.0714108i −0.635844 0.771818i \(-0.719348\pi\)
0.537555 + 0.843228i \(0.319348\pi\)
\(272\) 1.30902 + 0.951057i 0.0793708 + 0.0576663i
\(273\) 0 0
\(274\) 4.90983 0.296614
\(275\) 8.83688 7.38394i 0.532884 0.445268i
\(276\) 0 0
\(277\) −3.18034 9.78808i −0.191088 0.588109i −1.00000 0.000178809i \(-0.999943\pi\)
0.808912 0.587930i \(-0.200057\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0.763932 2.35114i 0.0456537 0.140508i
\(281\) 1.51722 4.66953i 0.0905098 0.278561i −0.895548 0.444966i \(-0.853216\pi\)
0.986057 + 0.166405i \(0.0532159\pi\)
\(282\) 0 0
\(283\) −19.4164 14.1068i −1.15419 0.838565i −0.165154 0.986268i \(-0.552812\pi\)
−0.989032 + 0.147703i \(0.952812\pi\)
\(284\) 0.236068 + 0.726543i 0.0140081 + 0.0431124i
\(285\) 0 0
\(286\) 4.00000 + 9.95959i 0.236525 + 0.588923i
\(287\) 6.76393 0.399262
\(288\) 0 0
\(289\) 11.6353 + 8.45351i 0.684427 + 0.497265i
\(290\) 4.47214 3.24920i 0.262613 0.190799i
\(291\) 0 0
\(292\) 3.89919 12.0005i 0.228183 0.702274i
\(293\) 13.2361 9.61657i 0.773259 0.561806i −0.129689 0.991555i \(-0.541398\pi\)
0.902948 + 0.429749i \(0.141398\pi\)
\(294\) 0 0
\(295\) 2.43769 + 7.50245i 0.141928 + 0.436810i
\(296\) −9.70820 −0.564278
\(297\) 0 0
\(298\) 16.1803 0.937302
\(299\) −3.23607 9.95959i −0.187147 0.575978i
\(300\) 0 0
\(301\) 18.7082 13.5923i 1.07832 0.783447i
\(302\) 2.47214 7.60845i 0.142255 0.437817i
\(303\) 0 0
\(304\) −0.690983 + 0.502029i −0.0396306 + 0.0287933i
\(305\) −6.47214 4.70228i −0.370593 0.269252i
\(306\) 0 0
\(307\) 3.20163 0.182726 0.0913632 0.995818i \(-0.470878\pi\)
0.0913632 + 0.995818i \(0.470878\pi\)
\(308\) 5.61803 + 3.52671i 0.320117 + 0.200953i
\(309\) 0 0
\(310\) −0.763932 2.35114i −0.0433884 0.133536i
\(311\) −25.9443 18.8496i −1.47116 1.06886i −0.980274 0.197642i \(-0.936672\pi\)
−0.490891 0.871221i \(-0.663328\pi\)
\(312\) 0 0
\(313\) −3.50000 + 10.7719i −0.197832 + 0.608863i 0.802100 + 0.597190i \(0.203716\pi\)
−0.999932 + 0.0116738i \(0.996284\pi\)
\(314\) 1.14590 3.52671i 0.0646668 0.199024i
\(315\) 0 0
\(316\) 10.8541 + 7.88597i 0.610591 + 0.443620i
\(317\) −3.00000 9.23305i −0.168497 0.518580i 0.830780 0.556601i \(-0.187895\pi\)
−0.999277 + 0.0380209i \(0.987895\pi\)
\(318\) 0 0
\(319\) 5.52786 + 13.7638i 0.309501 + 0.770626i
\(320\) 1.23607 0.0690983
\(321\) 0 0
\(322\) −5.23607 3.80423i −0.291795 0.212001i
\(323\) 1.11803 0.812299i 0.0622091 0.0451975i
\(324\) 0 0
\(325\) 3.47214 10.6861i 0.192599 0.592760i
\(326\) 9.78115 7.10642i 0.541728 0.393588i
\(327\) 0 0
\(328\) 1.04508 + 3.21644i 0.0577052 + 0.177598i
\(329\) 4.94427 0.272587
\(330\) 0 0
\(331\) −27.2705 −1.49892 −0.749461 0.662048i \(-0.769687\pi\)
−0.749461 + 0.662048i \(0.769687\pi\)
\(332\) 1.95492 + 6.01661i 0.107290 + 0.330204i
\(333\) 0 0
\(334\) 15.5623 11.3067i 0.851531 0.618674i
\(335\) −0.0344419 + 0.106001i −0.00188176 + 0.00579146i
\(336\) 0 0
\(337\) 1.78115 1.29408i 0.0970256 0.0704932i −0.538215 0.842808i \(-0.680901\pi\)
0.635240 + 0.772315i \(0.280901\pi\)
\(338\) −2.04508 1.48584i −0.111238 0.0808191i
\(339\) 0 0
\(340\) −2.00000 −0.108465
\(341\) 6.61803 0.449028i 0.358387 0.0243162i
\(342\) 0 0
\(343\) 6.18034 + 19.0211i 0.333707 + 1.02704i
\(344\) 9.35410 + 6.79615i 0.504339 + 0.366424i
\(345\) 0 0
\(346\) −4.29180 + 13.2088i −0.230728 + 0.710109i
\(347\) −4.44427 + 13.6781i −0.238581 + 0.734277i 0.758045 + 0.652202i \(0.226155\pi\)
−0.996626 + 0.0820748i \(0.973845\pi\)
\(348\) 0 0
\(349\) −23.9443 17.3965i −1.28171 0.931215i −0.282104 0.959384i \(-0.591032\pi\)
−0.999603 + 0.0281687i \(0.991032\pi\)
\(350\) −2.14590 6.60440i −0.114703 0.353020i
\(351\) 0 0
\(352\) −0.809017 + 3.21644i −0.0431208 + 0.171437i
\(353\) −30.3820 −1.61707 −0.808534 0.588449i \(-0.799739\pi\)
−0.808534 + 0.588449i \(0.799739\pi\)
\(354\) 0 0
\(355\) −0.763932 0.555029i −0.0405453 0.0294579i
\(356\) 2.50000 1.81636i 0.132500 0.0962667i
\(357\) 0 0
\(358\) −1.97214 + 6.06961i −0.104231 + 0.320789i
\(359\) −28.4164 + 20.6457i −1.49976 + 1.08964i −0.529284 + 0.848445i \(0.677539\pi\)
−0.970477 + 0.241195i \(0.922461\pi\)
\(360\) 0 0
\(361\) −5.64590 17.3763i −0.297153 0.914541i
\(362\) −18.1803 −0.955537
\(363\) 0 0
\(364\) 6.47214 0.339232
\(365\) 4.81966 + 14.8334i 0.252273 + 0.776415i
\(366\) 0 0
\(367\) −5.09017 + 3.69822i −0.265705 + 0.193046i −0.712658 0.701511i \(-0.752509\pi\)
0.446954 + 0.894557i \(0.352509\pi\)
\(368\) 1.00000 3.07768i 0.0521286 0.160435i
\(369\) 0 0
\(370\) 9.70820 7.05342i 0.504705 0.366690i
\(371\) 16.9443 + 12.3107i 0.879703 + 0.639141i
\(372\) 0 0
\(373\) −17.7082 −0.916896 −0.458448 0.888721i \(-0.651594\pi\)
−0.458448 + 0.888721i \(0.651594\pi\)
\(374\) 1.30902 5.20431i 0.0676877 0.269108i
\(375\) 0 0
\(376\) 0.763932 + 2.35114i 0.0393968 + 0.121251i
\(377\) 11.7082 + 8.50651i 0.603003 + 0.438107i
\(378\) 0 0
\(379\) −5.95492 + 18.3273i −0.305883 + 0.941412i 0.673463 + 0.739221i \(0.264806\pi\)
−0.979346 + 0.202191i \(0.935194\pi\)
\(380\) 0.326238 1.00406i 0.0167357 0.0515070i
\(381\) 0 0
\(382\) −7.47214 5.42882i −0.382308 0.277763i
\(383\) −5.05573 15.5599i −0.258336 0.795075i −0.993154 0.116812i \(-0.962733\pi\)
0.734818 0.678264i \(-0.237267\pi\)
\(384\) 0 0
\(385\) −8.18034 + 0.555029i −0.416909 + 0.0282869i
\(386\) 9.41641 0.479283
\(387\) 0 0
\(388\) −11.2082 8.14324i −0.569010 0.413410i
\(389\) 16.7082 12.1392i 0.847140 0.615483i −0.0772163 0.997014i \(-0.524603\pi\)
0.924356 + 0.381531i \(0.124603\pi\)
\(390\) 0 0
\(391\) −1.61803 + 4.97980i −0.0818275 + 0.251839i
\(392\) −2.42705 + 1.76336i −0.122585 + 0.0890629i
\(393\) 0 0
\(394\) −0.944272 2.90617i −0.0475717 0.146411i
\(395\) −16.5836 −0.834411
\(396\) 0 0
\(397\) 23.1246 1.16059 0.580295 0.814406i \(-0.302937\pi\)
0.580295 + 0.814406i \(0.302937\pi\)
\(398\) 0.326238 + 1.00406i 0.0163528 + 0.0503288i
\(399\) 0 0
\(400\) 2.80902 2.04087i 0.140451 0.102044i
\(401\) −2.10081 + 6.46564i −0.104910 + 0.322879i −0.989709 0.143093i \(-0.954295\pi\)
0.884800 + 0.465972i \(0.154295\pi\)
\(402\) 0 0
\(403\) 5.23607 3.80423i 0.260827 0.189502i
\(404\) 14.7082 + 10.6861i 0.731760 + 0.531655i
\(405\) 0 0
\(406\) 8.94427 0.443897
\(407\) 12.0000 + 29.8788i 0.594818 + 1.48104i
\(408\) 0 0
\(409\) 4.14590 + 12.7598i 0.205001 + 0.630930i 0.999713 + 0.0239428i \(0.00762195\pi\)
−0.794712 + 0.606987i \(0.792378\pi\)
\(410\) −3.38197 2.45714i −0.167023 0.121350i
\(411\) 0 0
\(412\) 0.708204 2.17963i 0.0348907 0.107383i
\(413\) −3.94427 + 12.1392i −0.194085 + 0.597332i
\(414\) 0 0
\(415\) −6.32624 4.59628i −0.310543 0.225623i
\(416\) 1.00000 + 3.07768i 0.0490290 + 0.150896i
\(417\) 0 0
\(418\) 2.39919 + 1.50609i 0.117348 + 0.0736651i
\(419\) 4.14590 0.202540 0.101270 0.994859i \(-0.467709\pi\)
0.101270 + 0.994859i \(0.467709\pi\)
\(420\) 0 0
\(421\) 3.70820 + 2.69417i 0.180727 + 0.131306i 0.674471 0.738302i \(-0.264372\pi\)
−0.493744 + 0.869607i \(0.664372\pi\)
\(422\) 4.11803 2.99193i 0.200463 0.145645i
\(423\) 0 0
\(424\) −3.23607 + 9.95959i −0.157157 + 0.483681i
\(425\) −4.54508 + 3.30220i −0.220469 + 0.160180i
\(426\) 0 0
\(427\) −4.00000 12.3107i −0.193574 0.595758i
\(428\) 7.85410 0.379642
\(429\) 0 0
\(430\) −14.2918 −0.689212
\(431\) −0.291796 0.898056i −0.0140553 0.0432578i 0.943783 0.330566i \(-0.107240\pi\)
−0.957838 + 0.287308i \(0.907240\pi\)
\(432\) 0 0
\(433\) 11.9271 8.66551i 0.573177 0.416438i −0.263081 0.964774i \(-0.584739\pi\)
0.836258 + 0.548336i \(0.184739\pi\)
\(434\) 1.23607 3.80423i 0.0593332 0.182609i
\(435\) 0 0
\(436\) −0.854102 + 0.620541i −0.0409041 + 0.0297185i
\(437\) −2.23607 1.62460i −0.106966 0.0777151i
\(438\) 0 0
\(439\) −33.4164 −1.59488 −0.797439 0.603399i \(-0.793812\pi\)
−0.797439 + 0.603399i \(0.793812\pi\)
\(440\) −1.52786 3.80423i −0.0728381 0.181359i
\(441\) 0 0
\(442\) −1.61803 4.97980i −0.0769620 0.236865i
\(443\) 9.35410 + 6.79615i 0.444427 + 0.322895i 0.787391 0.616453i \(-0.211431\pi\)
−0.342965 + 0.939348i \(0.611431\pi\)
\(444\) 0 0
\(445\) −1.18034 + 3.63271i −0.0559535 + 0.172207i
\(446\) −3.79837 + 11.6902i −0.179858 + 0.553547i
\(447\) 0 0
\(448\) 1.61803 + 1.17557i 0.0764449 + 0.0555405i
\(449\) 7.50000 + 23.0826i 0.353947 + 1.08934i 0.956618 + 0.291347i \(0.0941033\pi\)
−0.602671 + 0.797990i \(0.705897\pi\)
\(450\) 0 0
\(451\) 8.60739 7.19218i 0.405306 0.338667i
\(452\) −4.85410 −0.228318
\(453\) 0 0
\(454\) 19.0172 + 13.8168i 0.892522 + 0.648455i
\(455\) −6.47214 + 4.70228i −0.303418 + 0.220446i
\(456\) 0 0
\(457\) −9.13525 + 28.1154i −0.427329 + 1.31518i 0.473417 + 0.880838i \(0.343020\pi\)
−0.900746 + 0.434346i \(0.856980\pi\)
\(458\) −9.47214 + 6.88191i −0.442604 + 0.321571i
\(459\) 0 0
\(460\) 1.23607 + 3.80423i 0.0576320 + 0.177373i
\(461\) −32.6525 −1.52078 −0.760389 0.649468i \(-0.774992\pi\)
−0.760389 + 0.649468i \(0.774992\pi\)
\(462\) 0 0
\(463\) 7.41641 0.344670 0.172335 0.985038i \(-0.444869\pi\)
0.172335 + 0.985038i \(0.444869\pi\)
\(464\) 1.38197 + 4.25325i 0.0641562 + 0.197452i
\(465\) 0 0
\(466\) 5.97214 4.33901i 0.276654 0.201001i
\(467\) −9.05573 + 27.8707i −0.419049 + 1.28970i 0.489530 + 0.871987i \(0.337169\pi\)
−0.908579 + 0.417714i \(0.862831\pi\)
\(468\) 0 0
\(469\) −0.145898 + 0.106001i −0.00673695 + 0.00489468i
\(470\) −2.47214 1.79611i −0.114031 0.0828485i
\(471\) 0 0
\(472\) −6.38197 −0.293754
\(473\) 9.35410 37.1895i 0.430102 1.70997i
\(474\) 0 0
\(475\) −0.916408 2.82041i −0.0420477 0.129409i
\(476\) −2.61803 1.90211i −0.119997 0.0871832i
\(477\) 0 0
\(478\) −2.56231 + 7.88597i −0.117197 + 0.360696i
\(479\) 7.88854 24.2784i 0.360437 1.10931i −0.592353 0.805679i \(-0.701801\pi\)
0.952790 0.303632i \(-0.0981992\pi\)
\(480\) 0 0
\(481\) 25.4164 + 18.4661i 1.15889 + 0.841982i
\(482\) −0.0278640 0.0857567i −0.00126917 0.00390611i
\(483\) 0 0
\(484\) 10.8992 1.48584i 0.495418 0.0675382i
\(485\) 17.1246 0.777589
\(486\) 0 0
\(487\) 26.4164 + 19.1926i 1.19704 + 0.869702i 0.993990 0.109466i \(-0.0349142\pi\)
0.203051 + 0.979168i \(0.434914\pi\)
\(488\) 5.23607 3.80423i 0.237026 0.172209i
\(489\) 0 0
\(490\) 1.14590 3.52671i 0.0517664 0.159321i
\(491\) 13.0623 9.49032i 0.589494 0.428292i −0.252641 0.967560i \(-0.581299\pi\)
0.842134 + 0.539268i \(0.181299\pi\)
\(492\) 0 0
\(493\) −2.23607 6.88191i −0.100707 0.309946i
\(494\) 2.76393 0.124355
\(495\) 0 0
\(496\) 2.00000 0.0898027
\(497\) −0.472136 1.45309i −0.0211782 0.0651798i
\(498\) 0 0
\(499\) 19.5344 14.1926i 0.874482 0.635348i −0.0573041 0.998357i \(-0.518250\pi\)
0.931786 + 0.363009i \(0.118250\pi\)
\(500\) −3.23607 + 9.95959i −0.144721 + 0.445407i
\(501\) 0 0
\(502\) −2.47214 + 1.79611i −0.110337 + 0.0801644i
\(503\) 1.00000 + 0.726543i 0.0445878 + 0.0323949i 0.609856 0.792512i \(-0.291227\pi\)
−0.565268 + 0.824907i \(0.691227\pi\)
\(504\) 0 0
\(505\) −22.4721 −0.999997
\(506\) −10.7082 + 0.726543i −0.476038 + 0.0322988i
\(507\) 0 0
\(508\) 2.14590 + 6.60440i 0.0952088 + 0.293023i
\(509\) −17.5623 12.7598i −0.778436 0.565567i 0.126074 0.992021i \(-0.459762\pi\)
−0.904509 + 0.426454i \(0.859762\pi\)
\(510\) 0 0
\(511\) −7.79837 + 24.0009i −0.344980 + 1.06174i
\(512\) −0.309017 + 0.951057i −0.0136568 + 0.0420312i
\(513\) 0 0
\(514\) 2.73607 + 1.98787i 0.120683 + 0.0876812i
\(515\) 0.875388 + 2.69417i 0.0385742 + 0.118719i
\(516\) 0 0
\(517\) 6.29180 5.25731i 0.276713 0.231216i
\(518\) 19.4164 0.853108
\(519\) 0 0
\(520\) −3.23607 2.35114i −0.141911 0.103104i
\(521\) 7.30902 5.31031i 0.320214 0.232649i −0.416053 0.909340i \(-0.636587\pi\)
0.736267 + 0.676691i \(0.236587\pi\)
\(522\) 0 0
\(523\) 10.4443 32.1442i 0.456696 1.40557i −0.412436 0.910986i \(-0.635322\pi\)
0.869132 0.494580i \(-0.164678\pi\)
\(524\) −14.3992 + 10.4616i −0.629031 + 0.457018i
\(525\) 0 0
\(526\) −5.79837 17.8456i −0.252821 0.778103i
\(527\) −3.23607 −0.140965
\(528\) 0 0
\(529\) −12.5279 −0.544690
\(530\) −4.00000 12.3107i −0.173749 0.534744i
\(531\) 0 0
\(532\) 1.38197 1.00406i 0.0599158 0.0435314i
\(533\) 3.38197 10.4086i 0.146489 0.450847i
\(534\) 0 0
\(535\) −7.85410 + 5.70634i −0.339562 + 0.246707i
\(536\) −0.0729490 0.0530006i −0.00315092 0.00228928i
\(537\) 0 0
\(538\) −16.1803 −0.697584
\(539\) 8.42705 + 5.29007i 0.362979 + 0.227859i
\(540\) 0 0
\(541\) 11.4721 + 35.3076i 0.493226 + 1.51799i 0.819704 + 0.572788i \(0.194138\pi\)
−0.326478 + 0.945205i \(0.605862\pi\)
\(542\) 1.61803 + 1.17557i 0.0695005 + 0.0504951i
\(543\) 0 0
\(544\) 0.500000 1.53884i 0.0214373 0.0659773i
\(545\) 0.403252 1.24108i 0.0172734 0.0531621i
\(546\) 0 0
\(547\) 5.92705 + 4.30625i 0.253422 + 0.184122i 0.707242 0.706971i \(-0.249939\pi\)
−0.453820 + 0.891093i \(0.649939\pi\)
\(548\) −1.51722 4.66953i −0.0648125 0.199472i
\(549\) 0 0
\(550\) −9.75329 6.12261i −0.415882 0.261069i
\(551\) 3.81966 0.162723
\(552\) 0 0
\(553\) −21.7082 15.7719i −0.923127 0.670691i
\(554\) −8.32624 + 6.04937i −0.353748 + 0.257013i
\(555\) 0 0
\(556\) 0 0
\(557\) 24.8885 18.0826i 1.05456 0.766184i 0.0814869 0.996674i \(-0.474033\pi\)
0.973075 + 0.230491i \(0.0740331\pi\)
\(558\) 0 0
\(559\) −11.5623 35.5851i −0.489033 1.50509i
\(560\) −2.47214 −0.104467
\(561\) 0 0
\(562\) −4.90983 −0.207109
\(563\) −0.809017 2.48990i −0.0340960 0.104937i 0.932560 0.361015i \(-0.117570\pi\)
−0.966656 + 0.256078i \(0.917570\pi\)
\(564\) 0 0
\(565\) 4.85410 3.52671i 0.204214 0.148370i
\(566\) −7.41641 + 22.8254i −0.311735 + 0.959421i
\(567\) 0 0
\(568\) 0.618034 0.449028i 0.0259321 0.0188408i
\(569\) −10.6910 7.76745i −0.448189 0.325629i 0.340691 0.940175i \(-0.389339\pi\)
−0.788880 + 0.614547i \(0.789339\pi\)
\(570\) 0 0
\(571\) 6.47214 0.270850 0.135425 0.990788i \(-0.456760\pi\)
0.135425 + 0.990788i \(0.456760\pi\)
\(572\) 8.23607 6.88191i 0.344367 0.287747i
\(573\) 0 0
\(574\) −2.09017 6.43288i −0.0872420 0.268503i
\(575\) 9.09017 + 6.60440i 0.379086 + 0.275422i
\(576\) 0 0
\(577\) 5.50000 16.9273i 0.228968 0.704691i −0.768897 0.639373i \(-0.779194\pi\)
0.997865 0.0653178i \(-0.0208061\pi\)
\(578\) 4.44427 13.6781i 0.184857 0.568932i
\(579\) 0 0
\(580\) −4.47214 3.24920i −0.185695 0.134916i
\(581\) −3.90983 12.0332i −0.162207 0.499222i
\(582\) 0 0
\(583\) 34.6525 2.35114i 1.43516 0.0973743i
\(584\) −12.6180 −0.522138
\(585\) 0 0
\(586\) −13.2361 9.61657i −0.546777 0.397257i
\(587\) 23.3435 16.9600i 0.963488 0.700015i 0.00952954 0.999955i \(-0.496967\pi\)
0.953958 + 0.299940i \(0.0969666\pi\)
\(588\) 0 0
\(589\) 0.527864 1.62460i 0.0217503 0.0669404i
\(590\) 6.38197 4.63677i 0.262741 0.190893i
\(591\) 0 0
\(592\) 3.00000 + 9.23305i 0.123299 + 0.379476i
\(593\) −31.6869 −1.30123 −0.650613 0.759410i \(-0.725488\pi\)
−0.650613 + 0.759410i \(0.725488\pi\)
\(594\) 0 0
\(595\) 4.00000 0.163984
\(596\) −5.00000 15.3884i −0.204808 0.630334i
\(597\) 0 0
\(598\) −8.47214 + 6.15537i −0.346451 + 0.251712i
\(599\) −4.14590 + 12.7598i −0.169397 + 0.521350i −0.999333 0.0365080i \(-0.988377\pi\)
0.829937 + 0.557858i \(0.188377\pi\)
\(600\) 0 0
\(601\) 27.3885 19.8989i 1.11720 0.811695i 0.133419 0.991060i \(-0.457404\pi\)
0.983783 + 0.179365i \(0.0574043\pi\)
\(602\) −18.7082 13.5923i −0.762489 0.553981i
\(603\) 0 0
\(604\) −8.00000 −0.325515
\(605\) −9.81966 + 9.40456i −0.399226 + 0.382350i
\(606\) 0 0
\(607\) −5.29180 16.2865i −0.214787 0.661048i −0.999169 0.0407685i \(-0.987019\pi\)
0.784381 0.620279i \(-0.212981\pi\)
\(608\) 0.690983 + 0.502029i 0.0280231 + 0.0203599i
\(609\) 0 0
\(610\) −2.47214 + 7.60845i −0.100094 + 0.308057i
\(611\) 2.47214 7.60845i 0.100012 0.307805i
\(612\) 0 0
\(613\) −18.0344 13.1028i −0.728404 0.529217i 0.160654 0.987011i \(-0.448640\pi\)
−0.889058 + 0.457794i \(0.848640\pi\)
\(614\) −0.989357 3.04493i −0.0399272 0.122883i
\(615\) 0 0
\(616\) 1.61803 6.43288i 0.0651924 0.259188i
\(617\) 32.4508 1.30642 0.653211 0.757176i \(-0.273421\pi\)
0.653211 + 0.757176i \(0.273421\pi\)
\(618\) 0 0
\(619\) −24.1074 17.5150i −0.968958 0.703989i −0.0137440 0.999906i \(-0.504375\pi\)
−0.955214 + 0.295916i \(0.904375\pi\)
\(620\) −2.00000 + 1.45309i −0.0803219 + 0.0583573i
\(621\) 0 0
\(622\) −9.90983 + 30.4993i −0.397348 + 1.22291i
\(623\) −5.00000 + 3.63271i −0.200321 + 0.145542i
\(624\) 0 0
\(625\) 1.36475 + 4.20025i 0.0545898 + 0.168010i
\(626\) 11.3262 0.452688
\(627\) 0 0
\(628\) −3.70820 −0.147973
\(629\) −4.85410 14.9394i −0.193546 0.595672i
\(630\) 0 0
\(631\) −8.32624 + 6.04937i −0.331462 + 0.240821i −0.741051 0.671449i \(-0.765672\pi\)
0.409589 + 0.912270i \(0.365672\pi\)
\(632\) 4.14590 12.7598i 0.164915 0.507556i
\(633\) 0 0
\(634\) −7.85410 + 5.70634i −0.311926 + 0.226628i
\(635\) −6.94427 5.04531i −0.275575 0.200217i
\(636\) 0 0
\(637\) 9.70820 0.384653
\(638\) 11.3820 9.51057i 0.450616 0.376527i
\(639\) 0 0
\(640\) −0.381966 1.17557i −0.0150985 0.0464685i
\(641\) 26.1525 + 19.0009i 1.03296 + 0.750490i 0.968899 0.247456i \(-0.0795946\pi\)
0.0640616 + 0.997946i \(0.479595\pi\)
\(642\) 0 0
\(643\) −2.15654 + 6.63715i −0.0850457 + 0.261744i −0.984532 0.175205i \(-0.943941\pi\)
0.899486 + 0.436949i \(0.143941\pi\)
\(644\) −2.00000 + 6.15537i −0.0788110 + 0.242555i
\(645\) 0 0
\(646\) −1.11803 0.812299i −0.0439885 0.0319595i
\(647\) −14.5066 44.6467i −0.570312 1.75524i −0.651613 0.758552i \(-0.725907\pi\)
0.0813006 0.996690i \(-0.474093\pi\)
\(648\) 0 0
\(649\) 7.88854 + 19.6417i 0.309652 + 0.771003i
\(650\) −11.2361 −0.440715
\(651\) 0 0
\(652\) −9.78115 7.10642i −0.383060 0.278309i
\(653\) −37.7426 + 27.4216i −1.47698 + 1.07309i −0.498471 + 0.866906i \(0.666105\pi\)
−0.978513 + 0.206185i \(0.933895\pi\)
\(654\) 0 0
\(655\) 6.79837 20.9232i 0.265634 0.817539i
\(656\) 2.73607 1.98787i 0.106826 0.0776133i
\(657\) 0 0
\(658\) −1.52786 4.70228i −0.0595623 0.183314i
\(659\) 28.0902 1.09424 0.547119 0.837055i \(-0.315725\pi\)
0.547119 + 0.837055i \(0.315725\pi\)
\(660\) 0 0
\(661\) −12.4721 −0.485110 −0.242555 0.970138i \(-0.577985\pi\)
−0.242555 + 0.970138i \(0.577985\pi\)
\(662\) 8.42705 + 25.9358i 0.327527 + 1.00802i
\(663\) 0 0
\(664\) 5.11803 3.71847i 0.198618 0.144305i
\(665\) −0.652476 + 2.00811i −0.0253019 + 0.0778713i
\(666\) 0 0
\(667\) −11.7082 + 8.50651i −0.453343 + 0.329373i
\(668\) −15.5623 11.3067i −0.602124 0.437468i
\(669\) 0 0
\(670\) 0.111456 0.00430593
\(671\) −18.1803 11.4127i −0.701844 0.440582i
\(672\) 0 0
\(673\) 0.972136 + 2.99193i 0.0374731 + 0.115330i 0.968043 0.250783i \(-0.0806882\pi\)
−0.930570 + 0.366114i \(0.880688\pi\)
\(674\) −1.78115 1.29408i −0.0686074 0.0498462i
\(675\) 0 0
\(676\) −0.781153 + 2.40414i −0.0300443 + 0.0924670i
\(677\) −9.38197 + 28.8747i −0.360578 + 1.10975i 0.592126 + 0.805846i \(0.298289\pi\)
−0.952704 + 0.303900i \(0.901711\pi\)
\(678\) 0 0
\(679\) 22.4164 + 16.2865i 0.860263 + 0.625017i
\(680\) 0.618034 + 1.90211i 0.0237005 + 0.0729427i
\(681\) 0 0
\(682\) −2.47214 6.15537i −0.0946630 0.235701i
\(683\) −9.52786 −0.364574 −0.182287 0.983245i \(-0.558350\pi\)
−0.182287 + 0.983245i \(0.558350\pi\)
\(684\) 0 0
\(685\) 4.90983 + 3.56720i 0.187595 + 0.136296i
\(686\) 16.1803 11.7557i 0.617768 0.448835i
\(687\) 0 0
\(688\) 3.57295 10.9964i 0.136217 0.419234i
\(689\) 27.4164 19.9192i 1.04448 0.758861i
\(690\) 0 0
\(691\) 7.79180 + 23.9807i 0.296414 + 0.912268i 0.982743 + 0.184977i \(0.0592210\pi\)
−0.686329 + 0.727291i \(0.740779\pi\)
\(692\) 13.8885 0.527963
\(693\) 0 0
\(694\) 14.3820 0.545932
\(695\) 0 0
\(696\) 0 0
\(697\) −4.42705 + 3.21644i −0.167687 + 0.121831i
\(698\) −9.14590 + 28.1482i −0.346177 + 1.06542i
\(699\) 0 0
\(700\) −5.61803 + 4.08174i −0.212342 + 0.154275i
\(701\) 31.4164 + 22.8254i 1.18658 + 0.862102i 0.992899 0.118962i \(-0.0379568\pi\)
0.193683 + 0.981064i \(0.437957\pi\)
\(702\) 0 0
\(703\) 8.29180 0.312731
\(704\) 3.30902 0.224514i 0.124713 0.00846169i
\(705\) 0 0
\(706\) 9.38854 + 28.8950i 0.353343 + 1.08748i
\(707\) −29.4164 21.3723i −1.10632 0.803787i
\(708\) 0 0
\(709\) 4.79837 14.7679i 0.180207 0.554619i −0.819626 0.572899i \(-0.805819\pi\)
0.999833 + 0.0182794i \(0.00581885\pi\)
\(710\) −0.291796 + 0.898056i −0.0109509 + 0.0337034i
\(711\) 0 0
\(712\) −2.50000 1.81636i −0.0936915 0.0680708i
\(713\) 2.00000 + 6.15537i 0.0749006 + 0.230520i
\(714\) 0 0
\(715\) −3.23607 + 12.8658i −0.121022 + 0.481152i
\(716\) 6.38197 0.238505
\(717\) 0 0
\(718\) 28.4164 + 20.6457i 1.06049 + 0.770492i
\(719\) −21.7082 + 15.7719i −0.809579 + 0.588194i −0.913709 0.406370i \(-0.866794\pi\)
0.104129 + 0.994564i \(0.466794\pi\)
\(720\) 0 0
\(721\) −1.41641 + 4.35926i −0.0527498 + 0.162347i
\(722\) −14.7812 + 10.7391i −0.550098 + 0.399669i
\(723\) 0 0
\(724\) 5.61803 + 17.2905i 0.208793 + 0.642598i
\(725\) −15.5279 −0.576690
\(726\) 0 0
\(727\) 43.1246 1.59940 0.799702 0.600398i \(-0.204991\pi\)
0.799702 + 0.600398i \(0.204991\pi\)
\(728\) −2.00000 6.15537i −0.0741249 0.228133i
\(729\) 0 0
\(730\) 12.6180 9.16754i 0.467014 0.339306i
\(731\) −5.78115 + 17.7926i −0.213824 + 0.658082i
\(732\) 0 0
\(733\) −14.0902 + 10.2371i −0.520432 + 0.378116i −0.816767 0.576968i \(-0.804236\pi\)
0.296334 + 0.955084i \(0.404236\pi\)
\(734\) 5.09017 + 3.69822i 0.187882 + 0.136504i
\(735\) 0 0
\(736\) −3.23607 −0.119283
\(737\) −0.0729490 + 0.290026i −0.00268711 + 0.0106833i
\(738\) 0 0
\(739\) −5.38854 16.5842i −0.198221 0.610061i −0.999924 0.0123384i \(-0.996072\pi\)
0.801703 0.597722i \(-0.203928\pi\)
\(740\) −9.70820 7.05342i −0.356881 0.259289i
\(741\) 0 0
\(742\) 6.47214 19.9192i 0.237600 0.731256i
\(743\) 4.09017 12.5882i 0.150054 0.461818i −0.847572 0.530680i \(-0.821937\pi\)
0.997626 + 0.0688617i \(0.0219367\pi\)
\(744\) 0 0
\(745\) 16.1803 + 11.7557i 0.592802 + 0.430696i
\(746\) 5.47214 + 16.8415i 0.200349 + 0.616611i
\(747\) 0 0
\(748\) −5.35410 + 0.363271i −0.195765 + 0.0132825i
\(749\) −15.7082 −0.573965
\(750\) 0 0
\(751\) −30.5623 22.2048i −1.11523 0.810265i −0.131754 0.991282i \(-0.542061\pi\)
−0.983480 + 0.181017i \(0.942061\pi\)
\(752\) 2.00000 1.45309i 0.0729325 0.0529886i
\(753\) 0 0
\(754\) 4.47214 13.7638i 0.162866 0.501249i
\(755\) 8.00000 5.81234i 0.291150 0.211533i
\(756\) 0 0
\(757\) 8.85410 + 27.2501i 0.321808 + 0.990423i 0.972861 + 0.231390i \(0.0743275\pi\)
−0.651053 + 0.759032i \(0.725673\pi\)
\(758\) 19.2705 0.699936
\(759\) 0 0
\(760\) −1.05573 −0.0382953
\(761\) 14.4443 + 44.4549i 0.523604 + 1.61149i 0.767059 + 0.641576i \(0.221719\pi\)
−0.243455 + 0.969912i \(0.578281\pi\)
\(762\) 0 0
\(763\) 1.70820 1.24108i 0.0618411 0.0449302i
\(764\) −2.85410 + 8.78402i −0.103258 + 0.317795i
\(765\) 0 0
\(766\) −13.2361 + 9.61657i −0.478239 + 0.347461i
\(767\) 16.7082 + 12.1392i 0.603298 + 0.438322i
\(768\) 0 0
\(769\) −13.4164 −0.483808 −0.241904 0.970300i \(-0.577772\pi\)
−0.241904 + 0.970300i \(0.577772\pi\)
\(770\) 3.05573 + 7.60845i 0.110121 + 0.274190i
\(771\) 0 0
\(772\) −2.90983 8.95554i −0.104727 0.322317i
\(773\) 25.7984 + 18.7436i 0.927903 + 0.674161i 0.945478 0.325685i \(-0.105595\pi\)
−0.0175755 + 0.999846i \(0.505595\pi\)
\(774\) 0 0
\(775\) −2.14590 + 6.60440i −0.0770829 + 0.237237i
\(776\) −4.28115 + 13.1760i −0.153684 + 0.472992i
\(777\) 0 0
\(778\) −16.7082 12.1392i −0.599018 0.435212i
\(779\) −0.892609 2.74717i −0.0319810 0.0984275i
\(780\) 0 0
\(781\) −2.14590 1.34708i −0.0767863 0.0482025i
\(782\) 5.23607 0.187241
\(783\) 0 0
\(784\) 2.42705 + 1.76336i 0.0866804 + 0.0629770i
\(785\) 3.70820 2.69417i 0.132351 0.0961590i
\(786\) 0 0
\(787\) −7.79180 + 23.9807i −0.277748 + 0.854819i 0.710732 + 0.703463i \(0.248364\pi\)
−0.988479 + 0.151356i \(0.951636\pi\)
\(788\) −2.47214 + 1.79611i −0.0880662 + 0.0639838i
\(789\) 0 0
\(790\) 5.12461 + 15.7719i 0.182326 + 0.561140i
\(791\) 9.70820 0.345184
\(792\) 0 0
\(793\) −20.9443 −0.743753
\(794\) −7.14590 21.9928i −0.253598 0.780496i
\(795\) 0 0
\(796\) 0.854102 0.620541i 0.0302728 0.0219945i
\(797\) 9.03444 27.8052i 0.320016 0.984909i −0.653624 0.756820i \(-0.726752\pi\)
0.973640 0.228089i \(-0.0732479\pi\)
\(798\) 0 0
\(799\) −3.23607 + 2.35114i −0.114484 + 0.0831774i
\(800\) −2.80902 2.04087i −0.0993137 0.0721557i
\(801\) 0 0
\(802\) 6.79837 0.240059
\(803\) 15.5967 + 38.8343i 0.550397 + 1.37043i
\(804\) 0 0
\(805\) −2.47214 7.60845i −0.0871313 0.268163i
\(806\) −5.23607 3.80423i −0.184433 0.133998i
\(807\) 0 0
\(808\) 5.61803 17.2905i 0.197642 0.608279i
\(809\) −8.68034 + 26.7153i −0.305184 + 0.939261i 0.674424 + 0.738344i \(0.264392\pi\)
−0.979608 + 0.200917i \(0.935608\pi\)
\(810\) 0 0
\(811\) −8.59017 6.24112i −0.301642 0.219155i 0.426660 0.904412i \(-0.359690\pi\)
−0.728302 + 0.685257i \(0.759690\pi\)
\(812\) −2.76393 8.50651i −0.0969950 0.298520i
\(813\) 0 0
\(814\) 24.7082 20.6457i 0.866022 0.723632i
\(815\) 14.9443 0.523475
\(816\) 0 0
\(817\) −7.98936 5.80461i −0.279512 0.203078i
\(818\) 10.8541 7.88597i 0.379505 0.275726i
\(819\) 0 0
\(820\) −1.29180 + 3.97574i −0.0451115 + 0.138839i
\(821\) −29.5623 + 21.4783i −1.03173 + 0.749597i −0.968655 0.248412i \(-0.920091\pi\)
−0.0630771 + 0.998009i \(0.520091\pi\)
\(822\) 0 0
\(823\) −7.90983 24.3440i −0.275719 0.848577i −0.989028 0.147727i \(-0.952804\pi\)
0.713309 0.700850i \(-0.247196\pi\)
\(824\) −2.29180 −0.0798385
\(825\) 0 0
\(826\) 12.7639 0.444114
\(827\) −12.8607 39.5811i −0.447210 1.37637i −0.880042 0.474895i \(-0.842486\pi\)
0.432833 0.901474i \(-0.357514\pi\)
\(828\) 0 0
\(829\) −39.5967 + 28.7687i −1.37525 + 0.999179i −0.377946 + 0.925828i \(0.623369\pi\)
−0.997306 + 0.0733512i \(0.976631\pi\)
\(830\) −2.41641 + 7.43694i −0.0838747 + 0.258140i
\(831\) 0 0
\(832\) 2.61803 1.90211i 0.0907640 0.0659439i
\(833\) −3.92705 2.85317i −0.136064 0.0988565i
\(834\) 0 0
\(835\) 23.7771 0.822840
\(836\) 0.690983 2.74717i 0.0238981 0.0950128i
\(837\) 0 0
\(838\) −1.28115 3.94298i −0.0442567 0.136208i
\(839\) 38.7426 + 28.1482i 1.33754 + 0.971783i 0.999530 + 0.0306421i \(0.00975521\pi\)
0.338014 + 0.941141i \(0.390245\pi\)
\(840\) 0 0
\(841\) −2.78115 + 8.55951i −0.0959018 + 0.295155i
\(842\) 1.41641 4.35926i 0.0488126 0.150230i
\(843\) 0 0
\(844\) −4.11803 2.99193i −0.141749 0.102986i
\(845\) −0.965558 2.97168i −0.0332162 0.102229i
\(846\) 0 0
\(847\) −21.7984 + 2.97168i −0.749001 + 0.102108i
\(848\) 10.4721 0.359615
\(849\) 0 0
\(850\) 4.54508 + 3.30220i 0.155895 + 0.113264i
\(851\) −25.4164 + 18.4661i −0.871263 + 0.633010i
\(852\) 0 0
\(853\) −6.65248 + 20.4742i −0.227776 + 0.701024i 0.770221 + 0.637777i \(0.220146\pi\)
−0.997998 + 0.0632472i \(0.979854\pi\)
\(854\) −10.4721 + 7.60845i −0.358349 + 0.260356i
\(855\) 0 0
\(856\) −2.42705 7.46969i −0.0829549 0.255309i
\(857\) −31.7426 −1.08431 −0.542154 0.840279i \(-0.682391\pi\)
−0.542154 + 0.840279i \(0.682391\pi\)
\(858\) 0 0
\(859\) 8.49342 0.289792 0.144896 0.989447i \(-0.453715\pi\)
0.144896 + 0.989447i \(0.453715\pi\)
\(860\) 4.41641 + 13.5923i 0.150598 + 0.463494i
\(861\) 0 0
\(862\) −0.763932 + 0.555029i −0.0260196 + 0.0189044i
\(863\) 8.88854 27.3561i 0.302570 0.931213i −0.678003 0.735059i \(-0.737155\pi\)
0.980573 0.196155i \(-0.0628454\pi\)
\(864\) 0 0
\(865\) −13.8885 + 10.0906i −0.472225 + 0.343091i
\(866\) −11.9271 8.66551i −0.405298 0.294466i
\(867\) 0 0
\(868\) −4.00000 −0.135769
\(869\) −44.3951 + 3.01217i −1.50600 + 0.102181i
\(870\) 0 0
\(871\) 0.0901699 + 0.277515i 0.00305529 + 0.00940322i
\(872\) 0.854102 + 0.620541i 0.0289235 + 0.0210142i
\(873\) 0 0
\(874\) −0.854102 + 2.62866i −0.0288904 + 0.0889156i
\(875\) 6.47214 19.9192i 0.218798 0.673391i
\(876\) 0 0
\(877\) 4.70820 + 3.42071i 0.158985 + 0.115509i 0.664433 0.747348i \(-0.268673\pi\)
−0.505449 + 0.862857i \(0.668673\pi\)
\(878\) 10.3262 + 31.7809i 0.348494 + 1.07255i
\(879\) 0 0
\(880\) −3.14590 + 2.62866i −0.106048 + 0.0886120i
\(881\) −45.3394 −1.52752 −0.763761 0.645499i \(-0.776650\pi\)
−0.763761 + 0.645499i \(0.776650\pi\)
\(882\) 0 0
\(883\) 19.0623 + 13.8496i 0.641498 + 0.466075i 0.860364 0.509679i \(-0.170236\pi\)
−0.218867 + 0.975755i \(0.570236\pi\)
\(884\) −4.23607 + 3.07768i −0.142474 + 0.103514i
\(885\) 0 0
\(886\) 3.57295 10.9964i 0.120036 0.369431i
\(887\) 27.3262 19.8537i 0.917525 0.666621i −0.0253815 0.999678i \(-0.508080\pi\)
0.942907 + 0.333057i \(0.108080\pi\)
\(888\) 0 0
\(889\) −4.29180 13.2088i −0.143942 0.443009i
\(890\) 3.81966 0.128035
\(891\) 0 0
\(892\) 12.2918 0.411560
\(893\) −0.652476 2.00811i −0.0218343 0.0671990i
\(894\) 0 0
\(895\) −6.38197 + 4.63677i −0.213326 + 0.154990i
\(896\) 0.618034 1.90211i 0.0206471 0.0635451i
\(897\) 0 0
\(898\) 19.6353 14.2658i 0.655237 0.476058i
\(899\) −7.23607 5.25731i −0.241336 0.175341i
\(900\) 0 0
\(901\) −16.9443 −0.564496
\(902\) −9.50000 5.96361i −0.316315 0.198566i
\(903\) 0 0
\(904\) 1.50000 + 4.61653i 0.0498893 + 0.153543i
\(905\) −18.1803 13.2088i −0.604335 0.439075i
\(906\) 0 0
\(907\) 9.44427 29.0665i 0.313592 0.965137i −0.662738 0.748851i \(-0.730606\pi\)
0.976330 0.216286i \(-0.0693942\pi\)
\(908\) 7.26393 22.3561i 0.241062 0.741913i
\(909\) 0 0
\(910\) 6.47214 + 4.70228i 0.214549 + 0.155879i
\(911\) 1.29180 + 3.97574i 0.0427991 + 0.131722i 0.970173 0.242414i \(-0.0779393\pi\)
−0.927374 + 0.374136i \(0.877939\pi\)
\(912\) 0 0
\(913\) −17.7705 11.1554i −0.588118 0.369190i
\(914\) 29.5623 0.977834
\(915\) 0 0
\(916\) 9.47214 + 6.88191i 0.312968 + 0.227385i
\(917\) 28.7984 20.9232i 0.951006 0.690946i
\(918\) 0 0
\(919\) 5.12461 15.7719i 0.169045 0.520268i −0.830266 0.557367i \(-0.811812\pi\)
0.999312 + 0.0370989i \(0.0118117\pi\)
\(920\) 3.23607 2.35114i 0.106690 0.0775148i
\(921\) 0 0
\(922\) 10.0902 + 31.0543i 0.332302 + 1.02272i
\(923\) −2.47214 −0.0813713
\(924\) 0 0
\(925\) −33.7082 −1.10832
\(926\) −2.29180 7.05342i −0.0753131 0.231790i
\(927\) 0 0
\(928\) 3.61803 2.62866i 0.118768 0.0862898i
\(929\) 18.1525 55.8676i 0.595563 1.83296i 0.0436620 0.999046i \(-0.486098\pi\)
0.551901 0.833909i \(-0.313902\pi\)
\(930\) 0 0
\(931\) 2.07295 1.50609i 0.0679382 0.0493600i
\(932\) −5.97214 4.33901i −0.195624 0.142129i
\(933\) 0 0
\(934\) 29.3050 0.958887
\(935\) 5.09017 4.25325i 0.166466 0.139096i
\(936\) 0 0
\(937\) −9.62461 29.6215i −0.314422 0.967693i −0.975992 0.217808i \(-0.930109\pi\)
0.661569 0.749884i \(-0.269891\pi\)
\(938\) 0.145898 + 0.106001i 0.00476374 + 0.00346106i
\(939\) 0 0
\(940\) −0.944272 + 2.90617i −0.0307988 + 0.0947888i
\(941\) −7.97871 + 24.5560i −0.260099 + 0.800501i 0.732684 + 0.680570i \(0.238268\pi\)
−0.992782 + 0.119932i \(0.961732\pi\)
\(942\) 0 0
\(943\) 8.85410 + 6.43288i 0.288329 + 0.209483i
\(944\) 1.97214 + 6.06961i 0.0641876 + 0.197549i
\(945\) 0 0
\(946\) −38.2599 + 2.59590i −1.24394 + 0.0844000i
\(947\) −21.2148 −0.689388 −0.344694 0.938715i \(-0.612017\pi\)
−0.344694 + 0.938715i \(0.612017\pi\)
\(948\) 0 0
\(949\) 33.0344 + 24.0009i 1.07234 + 0.779103i
\(950\) −2.39919 + 1.74311i −0.0778399 + 0.0565540i
\(951\) 0 0
\(952\) −1.00000 + 3.07768i −0.0324102 + 0.0997483i
\(953\) 3.50000 2.54290i 0.113376 0.0823726i −0.529652 0.848215i \(-0.677678\pi\)
0.643029 + 0.765842i \(0.277678\pi\)
\(954\) 0 0
\(955\) −3.52786 10.8576i −0.114159 0.351345i
\(956\) 8.29180 0.268176
\(957\) 0 0
\(958\) −25.5279 −0.824768
\(959\) 3.03444 + 9.33905i 0.0979872 + 0.301574i
\(960\) 0 0
\(961\) 21.8435 15.8702i 0.704628 0.511942i
\(962\) 9.70820 29.8788i 0.313005 0.963331i
\(963\) 0 0
\(964\) −0.0729490 + 0.0530006i −0.00234953 + 0.00170703i
\(965\) 9.41641 + 6.84142i 0.303125 + 0.220233i
\(966\) 0 0
\(967\) 38.0000 1.22200 0.610999 0.791632i \(-0.290768\pi\)
0.610999 + 0.791632i \(0.290768\pi\)
\(968\) −4.78115 9.90659i −0.153672 0.318410i
\(969\) 0 0
\(970\) −5.29180 16.2865i −0.169909 0.522927i
\(971\) −37.1246 26.9726i −1.19139 0.865592i −0.197975 0.980207i \(-0.563437\pi\)
−0.993410 + 0.114615i \(0.963437\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 10.0902 31.0543i 0.323310 0.995046i
\(975\) 0 0
\(976\) −5.23607 3.80423i −0.167602 0.121770i
\(977\) −5.96556 18.3601i −0.190855 0.587392i 0.809145 0.587609i \(-0.199931\pi\)
−1.00000 0.000217575i \(0.999931\pi\)
\(978\) 0 0
\(979\) −2.50000 + 9.93935i −0.0799003 + 0.317663i
\(980\) −3.70820 −0.118454
\(981\) 0 0
\(982\) −13.0623 9.49032i −0.416835 0.302848i
\(983\) −4.85410 + 3.52671i −0.154822 + 0.112485i −0.662499 0.749063i \(-0.730504\pi\)
0.507677 + 0.861547i \(0.330504\pi\)
\(984\) 0 0
\(985\) 1.16718 3.59222i 0.0371896 0.114458i
\(986\) −5.85410 + 4.25325i −0.186433 + 0.135451i
\(987\) 0 0
\(988\) −0.854102 2.62866i −0.0271726 0.0836287i
\(989\) 37.4164 1.18977
\(990\) 0 0
\(991\) −36.5410 −1.16076 −0.580382 0.814344i \(-0.697097\pi\)
−0.580382 + 0.814344i \(0.697097\pi\)
\(992\) −0.618034 1.90211i −0.0196226 0.0603921i
\(993\) 0 0
\(994\) −1.23607 + 0.898056i −0.0392057 + 0.0284846i
\(995\) −0.403252 + 1.24108i −0.0127840 + 0.0393450i
\(996\) 0 0
\(997\) 18.3262 13.3148i 0.580398 0.421684i −0.258470 0.966019i \(-0.583218\pi\)
0.838867 + 0.544336i \(0.183218\pi\)
\(998\) −19.5344 14.1926i −0.618352 0.449259i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 198.2.f.e.181.1 4
3.2 odd 2 22.2.c.a.5.1 4
11.3 even 5 2178.2.a.p.1.2 2
11.8 odd 10 2178.2.a.x.1.2 2
11.9 even 5 inner 198.2.f.e.163.1 4
12.11 even 2 176.2.m.c.49.1 4
15.2 even 4 550.2.ba.c.49.1 8
15.8 even 4 550.2.ba.c.49.2 8
15.14 odd 2 550.2.h.h.401.1 4
24.5 odd 2 704.2.m.h.577.1 4
24.11 even 2 704.2.m.a.577.1 4
33.2 even 10 242.2.c.c.9.1 4
33.5 odd 10 242.2.c.a.81.1 4
33.8 even 10 242.2.a.d.1.2 2
33.14 odd 10 242.2.a.f.1.2 2
33.17 even 10 242.2.c.d.81.1 4
33.20 odd 10 22.2.c.a.9.1 yes 4
33.26 odd 10 242.2.c.a.3.1 4
33.29 even 10 242.2.c.d.3.1 4
33.32 even 2 242.2.c.c.27.1 4
132.47 even 10 1936.2.a.o.1.1 2
132.107 odd 10 1936.2.a.n.1.1 2
132.119 even 10 176.2.m.c.97.1 4
165.14 odd 10 6050.2.a.bs.1.1 2
165.53 even 20 550.2.ba.c.449.1 8
165.74 even 10 6050.2.a.ci.1.1 2
165.119 odd 10 550.2.h.h.251.1 4
165.152 even 20 550.2.ba.c.449.2 8
264.53 odd 10 704.2.m.h.449.1 4
264.107 odd 10 7744.2.a.cy.1.2 2
264.173 even 10 7744.2.a.bn.1.1 2
264.179 even 10 7744.2.a.cz.1.2 2
264.245 odd 10 7744.2.a.bm.1.1 2
264.251 even 10 704.2.m.a.449.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
22.2.c.a.5.1 4 3.2 odd 2
22.2.c.a.9.1 yes 4 33.20 odd 10
176.2.m.c.49.1 4 12.11 even 2
176.2.m.c.97.1 4 132.119 even 10
198.2.f.e.163.1 4 11.9 even 5 inner
198.2.f.e.181.1 4 1.1 even 1 trivial
242.2.a.d.1.2 2 33.8 even 10
242.2.a.f.1.2 2 33.14 odd 10
242.2.c.a.3.1 4 33.26 odd 10
242.2.c.a.81.1 4 33.5 odd 10
242.2.c.c.9.1 4 33.2 even 10
242.2.c.c.27.1 4 33.32 even 2
242.2.c.d.3.1 4 33.29 even 10
242.2.c.d.81.1 4 33.17 even 10
550.2.h.h.251.1 4 165.119 odd 10
550.2.h.h.401.1 4 15.14 odd 2
550.2.ba.c.49.1 8 15.2 even 4
550.2.ba.c.49.2 8 15.8 even 4
550.2.ba.c.449.1 8 165.53 even 20
550.2.ba.c.449.2 8 165.152 even 20
704.2.m.a.449.1 4 264.251 even 10
704.2.m.a.577.1 4 24.11 even 2
704.2.m.h.449.1 4 264.53 odd 10
704.2.m.h.577.1 4 24.5 odd 2
1936.2.a.n.1.1 2 132.107 odd 10
1936.2.a.o.1.1 2 132.47 even 10
2178.2.a.p.1.2 2 11.3 even 5
2178.2.a.x.1.2 2 11.8 odd 10
6050.2.a.bs.1.1 2 165.14 odd 10
6050.2.a.ci.1.1 2 165.74 even 10
7744.2.a.bm.1.1 2 264.245 odd 10
7744.2.a.bn.1.1 2 264.173 even 10
7744.2.a.cy.1.2 2 264.107 odd 10
7744.2.a.cz.1.2 2 264.179 even 10