Defining parameters
Level: | \( N \) | \(=\) | \( 198 = 2 \cdot 3^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 198.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(5\), \(13\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(198))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 44 | 5 | 39 |
Cusp forms | 29 | 5 | 24 |
Eisenstein series | 15 | 0 | 15 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(11\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(-\) | $-$ | \(1\) |
\(+\) | \(-\) | \(+\) | $-$ | \(1\) |
\(+\) | \(-\) | \(-\) | $+$ | \(1\) |
\(-\) | \(+\) | \(+\) | $-$ | \(1\) |
\(-\) | \(-\) | \(-\) | $-$ | \(1\) |
Plus space | \(+\) | \(1\) | ||
Minus space | \(-\) | \(4\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(198))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 11 | |||||||
198.2.a.a | $1$ | $1.581$ | \(\Q\) | None | \(-1\) | \(0\) | \(-2\) | \(-4\) | $+$ | $-$ | $-$ | \(q-q^{2}+q^{4}-2q^{5}-4q^{7}-q^{8}+2q^{10}+\cdots\) | |
198.2.a.b | $1$ | $1.581$ | \(\Q\) | None | \(-1\) | \(0\) | \(0\) | \(2\) | $+$ | $+$ | $-$ | \(q-q^{2}+q^{4}+2q^{7}-q^{8}+q^{11}+2q^{13}+\cdots\) | |
198.2.a.c | $1$ | $1.581$ | \(\Q\) | None | \(-1\) | \(0\) | \(4\) | \(-2\) | $+$ | $-$ | $+$ | \(q-q^{2}+q^{4}+4q^{5}-2q^{7}-q^{8}-4q^{10}+\cdots\) | |
198.2.a.d | $1$ | $1.581$ | \(\Q\) | None | \(1\) | \(0\) | \(0\) | \(2\) | $-$ | $+$ | $+$ | \(q+q^{2}+q^{4}+2q^{7}+q^{8}-q^{11}+2q^{13}+\cdots\) | |
198.2.a.e | $1$ | $1.581$ | \(\Q\) | None | \(1\) | \(0\) | \(0\) | \(2\) | $-$ | $-$ | $-$ | \(q+q^{2}+q^{4}+2q^{7}+q^{8}+q^{11}-4q^{13}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(198))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(198)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(99))\)\(^{\oplus 2}\)