Defining parameters
| Level: | \( N \) | \(=\) | \( 198 = 2 \cdot 3^{2} \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 198.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 5 \) | ||
| Sturm bound: | \(72\) | ||
| Trace bound: | \(11\) | ||
| Distinguishing \(T_p\): | \(5\), \(13\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(198))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 44 | 5 | 39 |
| Cusp forms | 29 | 5 | 24 |
| Eisenstein series | 15 | 0 | 15 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(11\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(3\) | \(0\) | \(3\) | \(2\) | \(0\) | \(2\) | \(1\) | \(0\) | \(1\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(7\) | \(1\) | \(6\) | \(5\) | \(1\) | \(4\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(6\) | \(1\) | \(5\) | \(4\) | \(1\) | \(3\) | \(2\) | \(0\) | \(2\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(5\) | \(1\) | \(4\) | \(3\) | \(1\) | \(2\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(5\) | \(1\) | \(4\) | \(3\) | \(1\) | \(2\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(7\) | \(0\) | \(7\) | \(5\) | \(0\) | \(5\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(5\) | \(0\) | \(5\) | \(3\) | \(0\) | \(3\) | \(2\) | \(0\) | \(2\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(6\) | \(1\) | \(5\) | \(4\) | \(1\) | \(3\) | \(2\) | \(0\) | \(2\) | |||
| Plus space | \(+\) | \(20\) | \(1\) | \(19\) | \(13\) | \(1\) | \(12\) | \(7\) | \(0\) | \(7\) | |||||
| Minus space | \(-\) | \(24\) | \(4\) | \(20\) | \(16\) | \(4\) | \(12\) | \(8\) | \(0\) | \(8\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(198))\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 11 | |||||||
| 198.2.a.a | $1$ | $1.581$ | \(\Q\) | None | \(-1\) | \(0\) | \(-2\) | \(-4\) | $+$ | $-$ | $-$ | \(q-q^{2}+q^{4}-2q^{5}-4q^{7}-q^{8}+2q^{10}+\cdots\) | |
| 198.2.a.b | $1$ | $1.581$ | \(\Q\) | None | \(-1\) | \(0\) | \(0\) | \(2\) | $+$ | $+$ | $-$ | \(q-q^{2}+q^{4}+2q^{7}-q^{8}+q^{11}+2q^{13}+\cdots\) | |
| 198.2.a.c | $1$ | $1.581$ | \(\Q\) | None | \(-1\) | \(0\) | \(4\) | \(-2\) | $+$ | $-$ | $+$ | \(q-q^{2}+q^{4}+4q^{5}-2q^{7}-q^{8}-4q^{10}+\cdots\) | |
| 198.2.a.d | $1$ | $1.581$ | \(\Q\) | None | \(1\) | \(0\) | \(0\) | \(2\) | $-$ | $+$ | $+$ | \(q+q^{2}+q^{4}+2q^{7}+q^{8}-q^{11}+2q^{13}+\cdots\) | |
| 198.2.a.e | $1$ | $1.581$ | \(\Q\) | None | \(1\) | \(0\) | \(0\) | \(2\) | $-$ | $-$ | $-$ | \(q+q^{2}+q^{4}+2q^{7}+q^{8}+q^{11}-4q^{13}+\cdots\) | |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(198))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(198)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(99))\)\(^{\oplus 2}\)