Properties

Label 198.2.a
Level $198$
Weight $2$
Character orbit 198.a
Rep. character $\chi_{198}(1,\cdot)$
Character field $\Q$
Dimension $5$
Newform subspaces $5$
Sturm bound $72$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 198 = 2 \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 198.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(72\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(5\), \(13\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(198))\).

Total New Old
Modular forms 44 5 39
Cusp forms 29 5 24
Eisenstein series 15 0 15

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(3\)\(11\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(+\)\(3\)\(0\)\(3\)\(2\)\(0\)\(2\)\(1\)\(0\)\(1\)
\(+\)\(+\)\(-\)\(-\)\(7\)\(1\)\(6\)\(5\)\(1\)\(4\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(+\)\(-\)\(6\)\(1\)\(5\)\(4\)\(1\)\(3\)\(2\)\(0\)\(2\)
\(+\)\(-\)\(-\)\(+\)\(5\)\(1\)\(4\)\(3\)\(1\)\(2\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(+\)\(-\)\(5\)\(1\)\(4\)\(3\)\(1\)\(2\)\(2\)\(0\)\(2\)
\(-\)\(+\)\(-\)\(+\)\(7\)\(0\)\(7\)\(5\)\(0\)\(5\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(+\)\(+\)\(5\)\(0\)\(5\)\(3\)\(0\)\(3\)\(2\)\(0\)\(2\)
\(-\)\(-\)\(-\)\(-\)\(6\)\(1\)\(5\)\(4\)\(1\)\(3\)\(2\)\(0\)\(2\)
Plus space\(+\)\(20\)\(1\)\(19\)\(13\)\(1\)\(12\)\(7\)\(0\)\(7\)
Minus space\(-\)\(24\)\(4\)\(20\)\(16\)\(4\)\(12\)\(8\)\(0\)\(8\)

Trace form

\( 5 q - q^{2} + 5 q^{4} + 2 q^{5} - q^{8} - 2 q^{10} + q^{11} - 2 q^{13} + 8 q^{14} + 5 q^{16} + 6 q^{17} + 4 q^{19} + 2 q^{20} - q^{22} - 4 q^{23} - 5 q^{25} - 2 q^{26} - 22 q^{29} - 8 q^{31} - q^{32}+ \cdots - 9 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(198))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 3 11
198.2.a.a 198.a 1.a $1$ $1.581$ \(\Q\) None 66.2.a.b \(-1\) \(0\) \(-2\) \(-4\) $+$ $-$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}-2q^{5}-4q^{7}-q^{8}+2q^{10}+\cdots\)
198.2.a.b 198.a 1.a $1$ $1.581$ \(\Q\) None 198.2.a.b \(-1\) \(0\) \(0\) \(2\) $+$ $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+2q^{7}-q^{8}+q^{11}+2q^{13}+\cdots\)
198.2.a.c 198.a 1.a $1$ $1.581$ \(\Q\) None 66.2.a.c \(-1\) \(0\) \(4\) \(-2\) $+$ $-$ $+$ $\mathrm{SU}(2)$ \(q-q^{2}+q^{4}+4q^{5}-2q^{7}-q^{8}-4q^{10}+\cdots\)
198.2.a.d 198.a 1.a $1$ $1.581$ \(\Q\) None 198.2.a.b \(1\) \(0\) \(0\) \(2\) $-$ $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+2q^{7}+q^{8}-q^{11}+2q^{13}+\cdots\)
198.2.a.e 198.a 1.a $1$ $1.581$ \(\Q\) None 66.2.a.a \(1\) \(0\) \(0\) \(2\) $-$ $-$ $-$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{4}+2q^{7}+q^{8}+q^{11}-4q^{13}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(198))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(198)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(99))\)\(^{\oplus 2}\)