Learn more

Refine search


Results (40 matches)

  displayed columns for results
Label Char Prim Dim $A$ Field CM RM Minimal twist Traces Fricke sign Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1975.1.c.a 1975.c 395.c $4$ $0.986$ \(\Q(i, \sqrt{5})\) \(\Q(\sqrt{-79}) \) None 79.1.b.a \(0\) \(0\) \(0\) \(0\) \(q-\beta _{1}q^{2}+\beta _{2}q^{4}-\beta _{3}q^{8}-q^{9}+\beta _{2}q^{11}+\cdots\)
1975.1.d.a 1975.d 79.b $1$ $0.986$ \(\Q\) \(\Q(\sqrt{-79}) \), \(\Q(\sqrt{-395}) \) \(\Q(\sqrt{5}) \) 395.1.c.a \(0\) \(0\) \(0\) \(0\) \(q-q^{4}+q^{9}-2q^{11}+q^{16}+2q^{19}+\cdots\)
1975.1.d.b 1975.d 79.b $2$ $0.986$ \(\Q(\sqrt{-2}) \) \(\Q(\sqrt{-395}) \) None 395.1.c.b \(0\) \(0\) \(0\) \(0\) \(q-\beta q^{3}-q^{4}-\beta q^{7}-q^{9}+\beta q^{12}+\cdots\)
1975.1.d.c 1975.d 79.b $2$ $0.986$ \(\Q(\sqrt{5}) \) \(\Q(\sqrt{-79}) \) None 79.1.b.a \(1\) \(0\) \(0\) \(0\) \(q+(1-\beta )q^{2}+(1-\beta )q^{4}+q^{8}+q^{9}+\cdots\)
1975.1.d.d 1975.d 79.b $4$ $0.986$ \(\Q(\zeta_{20})^+\) \(\Q(\sqrt{-79}) \) None 395.1.c.c \(0\) \(0\) \(0\) \(0\) \(q-\beta _{1}q^{2}+(2+\beta _{2})q^{4}+(-\beta _{1}-\beta _{3})q^{8}+\cdots\)
1975.1.l.a 1975.l 1975.l $20$ $0.986$ \(\Q(\zeta_{50})\) \(\Q(\sqrt{-79}) \) None 1975.1.l.a \(0\) \(0\) \(0\) \(0\) \(q+(-\zeta_{50}^{9}-\zeta_{50}^{21})q^{2}+(-\zeta_{50}^{5}+\cdots)q^{4}+\cdots\)
1975.1.m.a 1975.m 1975.m $20$ $0.986$ \(\Q(\zeta_{50})\) \(\Q(\sqrt{-79}) \) None 1975.1.m.a \(0\) \(0\) \(0\) \(0\) \(q+(-\zeta_{50}^{18}+\zeta_{50}^{22})q^{2}+(-\zeta_{50}^{11}+\cdots)q^{4}+\cdots\)
1975.2.a.a 1975.a 1.a $1$ $15.770$ \(\Q\) None None 395.2.b.a \(0\) \(-1\) \(0\) \(-1\) $+$ $\mathrm{SU}(2)$ \(q-q^{3}-2q^{4}-q^{7}-2q^{9}+q^{11}+2q^{12}+\cdots\)
1975.2.a.b 1975.a 1.a $1$ $15.770$ \(\Q\) None None 395.2.b.a \(0\) \(1\) \(0\) \(1\) $+$ $\mathrm{SU}(2)$ \(q+q^{3}-2q^{4}+q^{7}-2q^{9}+q^{11}-2q^{12}+\cdots\)
1975.2.a.c 1975.a 1.a $1$ $15.770$ \(\Q\) None None 395.2.a.c \(1\) \(-2\) \(0\) \(-2\) $+$ $\mathrm{SU}(2)$ \(q+q^{2}-2q^{3}-q^{4}-2q^{6}-2q^{7}-3q^{8}+\cdots\)
1975.2.a.d 1975.a 1.a $1$ $15.770$ \(\Q\) None None 395.2.a.b \(1\) \(0\) \(0\) \(4\) $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{4}+4q^{7}-3q^{8}-3q^{9}+4q^{11}+\cdots\)
1975.2.a.e 1975.a 1.a $1$ $15.770$ \(\Q\) None None 79.2.a.a \(1\) \(1\) \(0\) \(1\) $+$ $\mathrm{SU}(2)$ \(q+q^{2}+q^{3}-q^{4}+q^{6}+q^{7}-3q^{8}+\cdots\)
1975.2.a.f 1975.a 1.a $1$ $15.770$ \(\Q\) None None 395.2.a.a \(2\) \(1\) \(0\) \(-3\) $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+q^{3}+2q^{4}+2q^{6}-3q^{7}+\cdots\)
1975.2.a.g 1975.a 1.a $3$ $15.770$ 3.3.564.1 None None 395.2.a.f \(-6\) \(-1\) \(0\) \(-3\) $+$ $\mathrm{SU}(2)$ \(q-2q^{2}-\beta _{1}q^{3}+2q^{4}+2\beta _{1}q^{6}+(-1+\cdots)q^{7}+\cdots\)
1975.2.a.h 1975.a 1.a $3$ $15.770$ \(\Q(\zeta_{18})^+\) None None 395.2.a.e \(0\) \(0\) \(0\) \(3\) $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(-\beta _{1}+\beta _{2})q^{3}+\beta _{2}q^{4}+\cdots\)
1975.2.a.i 1975.a 1.a $3$ $15.770$ \(\Q(\zeta_{14})^+\) None None 395.2.a.d \(2\) \(2\) \(0\) \(3\) $-$ $\mathrm{SU}(2)$ \(q+(1-\beta _{1})q^{2}+(\beta _{1}-\beta _{2})q^{3}+(1-2\beta _{1}+\cdots)q^{4}+\cdots\)
1975.2.a.j 1975.a 1.a $4$ $15.770$ 4.4.10273.1 None None 395.2.a.g \(-1\) \(-2\) \(0\) \(-3\) $+$ $\mathrm{SU}(2)$ \(q-\beta _{3}q^{2}+(-1-\beta _{2}+\beta _{3})q^{3}+(3-2\beta _{1}+\cdots)q^{4}+\cdots\)
1975.2.a.k 1975.a 1.a $5$ $15.770$ 5.5.81589.1 None None 79.2.a.b \(0\) \(-1\) \(0\) \(5\) $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(-1+\beta _{2}+\beta _{4})q^{3}+\beta _{2}q^{4}+\cdots\)
1975.2.a.l 1975.a 1.a $6$ $15.770$ 6.6.7978176.1 None None 1975.2.a.l \(0\) \(-6\) \(0\) \(-6\) $+$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{2}+(-1+\beta _{1})q^{3}+(\beta _{2}+\beta _{4}+\cdots)q^{4}+\cdots\)
1975.2.a.m 1975.a 1.a $6$ $15.770$ 6.6.7978176.1 None None 1975.2.a.l \(0\) \(6\) \(0\) \(6\) $-$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{2}+(1+\beta _{1})q^{3}+(\beta _{2}+\beta _{4})q^{4}+\cdots\)
1975.2.a.n 1975.a 1.a $7$ $15.770$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None None 1975.2.a.n \(-3\) \(-1\) \(0\) \(2\) $+$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{2}+(\beta _{3}-\beta _{5})q^{3}+(2+\beta _{2}+\beta _{5}+\cdots)q^{4}+\cdots\)
1975.2.a.o 1975.a 1.a $7$ $15.770$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None None 1975.2.a.n \(3\) \(1\) \(0\) \(-2\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{2}+(-\beta _{3}+\beta _{5})q^{3}+(2+\beta _{2}+\cdots)q^{4}+\cdots\)
1975.2.a.p 1975.a 1.a $11$ $15.770$ \(\mathbb{Q}[x]/(x^{11} - \cdots)\) None None 395.2.a.h \(0\) \(2\) \(0\) \(-7\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{4}q^{3}+(2+\beta _{2})q^{4}+(\beta _{3}+\cdots)q^{6}+\cdots\)
1975.2.a.q 1975.a 1.a $12$ $15.770$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None None 395.2.b.b \(0\) \(0\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$ \(q+\beta _{10}q^{2}+\beta _{1}q^{3}+(1+\beta _{3})q^{4}+(-1+\cdots)q^{6}+\cdots\)
1975.2.a.r 1975.a 1.a $13$ $15.770$ \(\mathbb{Q}[x]/(x^{13} - \cdots)\) None None 1975.2.a.r \(-5\) \(-5\) \(0\) \(-4\) $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+\beta _{9}q^{3}+(1+\beta _{2})q^{4}+(\beta _{1}+\cdots)q^{6}+\cdots\)
1975.2.a.s 1975.a 1.a $13$ $15.770$ \(\mathbb{Q}[x]/(x^{13} - \cdots)\) None None 1975.2.a.r \(5\) \(5\) \(0\) \(4\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{9}q^{3}+(1+\beta _{2})q^{4}+(\beta _{1}+\cdots)q^{6}+\cdots\)
1975.2.a.t 1975.a 1.a $24$ $15.770$ None None 395.2.b.c \(0\) \(0\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$
1975.4.a.a 1975.a 1.a $2$ $116.529$ \(\Q(\sqrt{17}) \) None None 79.4.a.a \(1\) \(2\) \(0\) \(-8\) $-$ $\mathrm{SU}(2)$ \(q+\beta q^{2}+q^{3}+(-4+\beta )q^{4}+\beta q^{6}+\cdots\)
1975.4.a.b 1975.a 1.a $5$ $116.529$ 5.5.4787257.1 None None 79.4.a.b \(3\) \(8\) \(0\) \(20\) $-$ $\mathrm{SU}(2)$ \(q+(1+\beta _{4})q^{2}+(1+\beta _{2}-\beta _{4})q^{3}+(5+\cdots)q^{4}+\cdots\)
1975.4.a.c 1975.a 1.a $12$ $116.529$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None None 79.4.a.c \(-4\) \(-8\) \(0\) \(-16\) $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(-1+\beta _{9})q^{3}+(5+\beta _{2})q^{4}+\cdots\)
1975.4.a.d 1975.a 1.a $15$ $116.529$ \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None None 395.4.a.a \(0\) \(-2\) \(0\) \(24\) $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{3}q^{3}+(2+\beta _{2})q^{4}+(-\beta _{2}+\cdots)q^{6}+\cdots\)
1975.4.a.e 1975.a 1.a $16$ $116.529$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None None 395.4.a.b \(6\) \(16\) \(0\) \(74\) $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1-\beta _{7})q^{3}+(2+\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
1975.4.a.f 1975.a 1.a $23$ $116.529$ None None 395.4.a.c \(0\) \(4\) \(0\) \(-46\) $+$ $\mathrm{SU}(2)$
1975.4.a.g 1975.a 1.a $24$ $116.529$ None None 395.4.a.d \(-10\) \(-14\) \(0\) \(-52\) $-$ $\mathrm{SU}(2)$
1975.4.a.h 1975.a 1.a $39$ $116.529$ None None 1975.4.a.h \(-10\) \(-19\) \(0\) \(-28\) $-$ $\mathrm{SU}(2)$
1975.4.a.i 1975.a 1.a $39$ $116.529$ None None 1975.4.a.i \(-6\) \(-17\) \(0\) \(-28\) $-$ $\mathrm{SU}(2)$
1975.4.a.j 1975.a 1.a $39$ $116.529$ None None 1975.4.a.i \(6\) \(17\) \(0\) \(28\) $+$ $\mathrm{SU}(2)$
1975.4.a.k 1975.a 1.a $39$ $116.529$ None None 1975.4.a.h \(10\) \(19\) \(0\) \(28\) $+$ $\mathrm{SU}(2)$
1975.4.a.l 1975.a 1.a $54$ $116.529$ None None 395.4.b.a \(0\) \(0\) \(0\) \(0\) $-$ $\mathrm{SU}(2)$
1975.4.a.m 1975.a 1.a $64$ $116.529$ None None 395.4.b.b \(0\) \(0\) \(0\) \(0\) $+$ $\mathrm{SU}(2)$
  displayed columns for results