Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [197,8,Mod(1,197)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(197, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 8, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("197.1");
S:= CuspForms(chi, 8);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 197 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 197.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(61.5398500204\) |
Analytic rank: | \(1\) |
Dimension: | \(55\) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −22.2510 | 45.1613 | 367.105 | 28.2712 | −1004.88 | −292.983 | −5320.33 | −147.455 | −629.060 | ||||||||||||||||||
1.2 | −20.7456 | 69.7029 | 302.379 | 71.1733 | −1446.03 | −755.780 | −3617.59 | 2671.50 | −1476.53 | ||||||||||||||||||
1.3 | −20.3297 | −92.2509 | 285.297 | 240.282 | 1875.43 | 528.959 | −3197.81 | 6323.23 | −4884.87 | ||||||||||||||||||
1.4 | −20.2556 | −80.5531 | 282.289 | −368.076 | 1631.65 | −1402.81 | −3125.22 | 4301.80 | 7455.60 | ||||||||||||||||||
1.5 | −19.8304 | −24.8621 | 265.245 | −146.760 | 493.027 | −946.144 | −2721.63 | −1568.87 | 2910.32 | ||||||||||||||||||
1.6 | −19.4258 | 18.3231 | 249.363 | −401.739 | −355.942 | −1624.25 | −2357.58 | −1851.26 | 7804.13 | ||||||||||||||||||
1.7 | −19.2901 | 35.5299 | 244.107 | −116.493 | −685.374 | 1300.96 | −2239.71 | −924.628 | 2247.16 | ||||||||||||||||||
1.8 | −18.3103 | −51.5977 | 207.268 | 98.1266 | 944.771 | 976.314 | −1451.42 | 475.327 | −1796.73 | ||||||||||||||||||
1.9 | −17.5947 | 61.4535 | 181.573 | 339.311 | −1081.26 | −1066.95 | −942.604 | 1589.54 | −5970.08 | ||||||||||||||||||
1.10 | −16.3599 | −65.1308 | 139.647 | −162.360 | 1065.53 | 1195.64 | −190.548 | 2055.02 | 2656.19 | ||||||||||||||||||
1.11 | −15.4291 | −4.35926 | 110.056 | −253.520 | 67.2593 | 265.166 | 276.855 | −2168.00 | 3911.57 | ||||||||||||||||||
1.12 | −14.7987 | −34.4797 | 91.0011 | 280.810 | 510.255 | 1213.61 | 547.535 | −998.149 | −4155.62 | ||||||||||||||||||
1.13 | −13.5137 | −76.4894 | 54.6202 | 518.006 | 1033.65 | 363.757 | 991.632 | 3663.62 | −7000.18 | ||||||||||||||||||
1.14 | −12.7849 | 15.4183 | 35.4535 | 305.354 | −197.121 | −880.474 | 1183.20 | −1949.28 | −3903.92 | ||||||||||||||||||
1.15 | −11.5822 | 68.2819 | 6.14643 | 6.41923 | −790.852 | 1174.18 | 1411.33 | 2475.42 | −74.3486 | ||||||||||||||||||
1.16 | −11.5335 | −59.4702 | 5.02171 | 254.185 | 685.899 | −1419.31 | 1418.37 | 1349.70 | −2931.65 | ||||||||||||||||||
1.17 | −10.6427 | 44.6209 | −14.7320 | 347.881 | −474.889 | 835.820 | 1519.06 | −195.974 | −3702.41 | ||||||||||||||||||
1.18 | −10.6203 | −31.9061 | −15.2088 | −403.368 | 338.853 | −734.185 | 1520.92 | −1169.00 | 4283.90 | ||||||||||||||||||
1.19 | −10.4867 | 67.6647 | −18.0290 | −106.711 | −709.579 | −371.212 | 1531.36 | 2391.51 | 1119.04 | ||||||||||||||||||
1.20 | −8.94046 | 32.9611 | −48.0682 | −459.188 | −294.687 | 1720.14 | 1574.13 | −1100.57 | 4105.35 | ||||||||||||||||||
See all 55 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(197\) | \( -1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 197.8.a.a | ✓ | 55 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
197.8.a.a | ✓ | 55 | 1.a | even | 1 | 1 | trivial |