Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [197,4,Mod(16,197)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(197, base_ring=CyclotomicField(98))
chi = DirichletCharacter(H, H._module([2]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("197.16");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 197 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 197.g (of order \(49\), degree \(42\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(11.6233762711\) |
Analytic rank: | \(0\) |
Dimension: | \(2058\) |
Relative dimension: | \(49\) over \(\Q(\zeta_{49})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{49}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16.1 | −5.49911 | − | 0.353054i | −2.78314 | + | 3.98984i | 22.1812 | + | 2.85995i | 3.27206 | − | 2.12988i | 16.7134 | − | 20.9579i | −12.3005 | + | 0.789718i | −77.6965 | − | 15.1314i | 1.15190 | + | 3.13009i | −18.7454 | + | 10.5572i |
16.2 | −5.24248 | − | 0.336578i | 1.28903 | − | 1.84793i | 19.4359 | + | 2.50599i | −6.80345 | + | 4.42855i | −7.37970 | + | 9.25385i | 25.8222 | − | 1.65784i | −59.7978 | − | 11.6456i | 7.57163 | + | 20.5746i | 37.1575 | − | 20.9267i |
16.3 | −4.92908 | − | 0.316457i | 4.70953 | − | 6.75146i | 16.2613 | + | 2.09667i | 6.63060 | − | 4.31604i | −25.3502 | + | 31.7881i | 4.33945 | − | 0.278602i | −40.7048 | − | 7.92726i | −14.0777 | − | 38.2538i | −34.0486 | + | 19.1758i |
16.4 | −4.78000 | − | 0.306886i | 2.41641 | − | 3.46411i | 14.8199 | + | 1.91082i | −12.6224 | + | 8.21628i | −12.6135 | + | 15.8169i | −32.4079 | + | 2.08066i | −32.6408 | − | 6.35680i | 3.16387 | + | 8.59725i | 62.8567 | − | 35.4002i |
16.5 | −4.56883 | − | 0.293328i | 2.48580 | − | 3.56358i | 12.8538 | + | 1.65732i | 14.1644 | − | 9.22000i | −12.4025 | + | 15.5522i | −25.2149 | + | 1.61885i | −22.2903 | − | 4.34104i | 2.80495 | + | 7.62194i | −67.4192 | + | 37.9698i |
16.6 | −4.52040 | − | 0.290219i | −4.67204 | + | 6.69773i | 12.4154 | + | 1.60079i | −14.7302 | + | 9.58833i | 23.0633 | − | 28.9205i | −1.07991 | + | 0.0693322i | −20.0887 | − | 3.91227i | −13.7067 | − | 37.2455i | 69.3692 | − | 39.0680i |
16.7 | −4.37837 | − | 0.281101i | −5.11136 | + | 7.32752i | 11.1568 | + | 1.43851i | 16.4461 | − | 10.7052i | 24.4392 | − | 30.6458i | 21.4024 | − | 1.37408i | −13.9925 | − | 2.72503i | −18.2417 | − | 49.5685i | −75.0164 | + | 42.2485i |
16.8 | −4.27791 | − | 0.274651i | −1.17628 | + | 1.68628i | 10.2908 | + | 1.32685i | 4.43621 | − | 2.88765i | 5.49515 | − | 6.89071i | 4.20983 | − | 0.270280i | −9.99729 | − | 1.94697i | 7.86494 | + | 21.3716i | −19.7708 | + | 11.1347i |
16.9 | −4.01883 | − | 0.258017i | 0.971817 | − | 1.39317i | 8.15008 | + | 1.05084i | 10.9750 | − | 7.14395i | −4.26503 | + | 5.34818i | 23.5076 | − | 1.50924i | −0.859906 | − | 0.167467i | 8.32835 | + | 22.6308i | −45.9500 | + | 25.8785i |
16.10 | −3.76828 | − | 0.241932i | 0.210785 | − | 0.302176i | 6.20707 | + | 0.800313i | −13.3929 | + | 8.71782i | −0.867403 | + | 1.08769i | 11.5033 | − | 0.738537i | 6.45487 | + | 1.25709i | 9.27798 | + | 25.2113i | 52.5773 | − | 29.6110i |
16.11 | −3.74801 | − | 0.240630i | −3.64412 | + | 5.22412i | 6.05538 | + | 0.780755i | −1.27116 | + | 0.827435i | 14.9153 | − | 18.7032i | −8.42351 | + | 0.540807i | 6.98400 | + | 1.36013i | −4.68697 | − | 12.7360i | 4.96344 | − | 2.79536i |
16.12 | −3.70875 | − | 0.238110i | 5.81579 | − | 8.33737i | 5.76384 | + | 0.743165i | −14.4885 | + | 9.43098i | −23.5546 | + | 29.5365i | 15.8184 | − | 1.01557i | 7.98313 | + | 1.55471i | −26.3635 | − | 71.6382i | 55.9800 | − | 31.5273i |
16.13 | −2.99065 | − | 0.192006i | −1.86534 | + | 2.67411i | 0.972802 | + | 0.125429i | 10.2745 | − | 6.68798i | 6.09203 | − | 7.63916i | −26.7473 | + | 1.71723i | 20.6471 | + | 4.02103i | 5.65350 | + | 15.3624i | −32.0116 | + | 18.0286i |
16.14 | −2.58467 | − | 0.165941i | 4.03463 | − | 5.78395i | −1.28136 | − | 0.165212i | −0.871393 | + | 0.567214i | −11.3880 | + | 14.2801i | −0.270413 | + | 0.0173611i | 23.6223 | + | 4.60044i | −7.85095 | − | 21.3336i | 2.34638 | − | 1.32146i |
16.15 | −2.49414 | − | 0.160129i | 3.29572 | − | 4.72466i | −1.73924 | − | 0.224250i | −1.21612 | + | 0.791603i | −8.97654 | + | 11.2562i | −20.1994 | + | 1.29684i | 23.9275 | + | 4.65987i | −2.13581 | − | 5.80370i | 3.15992 | − | 1.77963i |
16.16 | −2.34806 | − | 0.150751i | −0.632213 | + | 0.906324i | −2.44364 | − | 0.315072i | −8.66853 | + | 5.64259i | 1.62111 | − | 2.03280i | 6.62437 | − | 0.425298i | 24.1664 | + | 4.70641i | 8.90313 | + | 24.1927i | 21.2049 | − | 11.9424i |
16.17 | −2.27370 | − | 0.145976i | −5.59996 | + | 8.02796i | −2.78591 | − | 0.359203i | 1.36479 | − | 0.888378i | 13.9045 | − | 17.4357i | −24.8008 | + | 1.59227i | 24.1728 | + | 4.70766i | −23.7638 | − | 64.5739i | −3.23280 | + | 1.82068i |
16.18 | −2.15260 | − | 0.138202i | 2.56671 | − | 3.67957i | −3.31972 | − | 0.428031i | 10.8326 | − | 7.05122i | −6.03363 | + | 7.56593i | 33.2091 | − | 2.13210i | 24.0249 | + | 4.67886i | 2.37361 | + | 6.44986i | −24.2927 | + | 13.6814i |
16.19 | −1.84830 | − | 0.118665i | −3.90867 | + | 5.60337i | −4.53219 | − | 0.584361i | −3.25835 | + | 2.12095i | 7.88932 | − | 9.89289i | 29.1744 | − | 1.87306i | 22.8511 | + | 4.45025i | −6.79524 | − | 18.4649i | 6.27408 | − | 3.53350i |
16.20 | −1.27364 | − | 0.0817702i | 0.0894625 | − | 0.128251i | −6.31886 | − | 0.814726i | 15.2502 | − | 9.92680i | −0.124430 | + | 0.156030i | −5.68391 | + | 0.364919i | 18.0031 | + | 3.50610i | 9.31641 | + | 25.3157i | −20.2350 | + | 11.3961i |
See next 80 embeddings (of 2058 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
197.g | even | 49 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 197.4.g.a | ✓ | 2058 |
197.g | even | 49 | 1 | inner | 197.4.g.a | ✓ | 2058 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
197.4.g.a | ✓ | 2058 | 1.a | even | 1 | 1 | trivial |
197.4.g.a | ✓ | 2058 | 197.g | even | 49 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(197, [\chi])\).