Properties

Label 197.4.g.a
Level $197$
Weight $4$
Character orbit 197.g
Analytic conductor $11.623$
Analytic rank $0$
Dimension $2058$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,4,Mod(16,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(98))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.16");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 197.g (of order \(49\), degree \(42\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.6233762711\)
Analytic rank: \(0\)
Dimension: \(2058\)
Relative dimension: \(49\) over \(\Q(\zeta_{49})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{49}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 2058 q - 42 q^{2} - 42 q^{3} - 84 q^{4} - 42 q^{5} - 119 q^{6} - 84 q^{7} - 98 q^{8} - 42 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 2058 q - 42 q^{2} - 42 q^{3} - 84 q^{4} - 42 q^{5} - 119 q^{6} - 84 q^{7} - 98 q^{8} - 42 q^{9} + 168 q^{10} - 140 q^{11} + 14 q^{12} - 42 q^{13} - 812 q^{14} + 1638 q^{15} + 672 q^{16} - 42 q^{17} + 147 q^{18} - 567 q^{19} - 35 q^{20} - 42 q^{21} + 1302 q^{22} - 42 q^{23} - 434 q^{24} - 42 q^{25} + 364 q^{26} - 1596 q^{27} - 147 q^{28} + 4676 q^{29} - 847 q^{30} + 882 q^{31} + 910 q^{32} - 287 q^{33} - 882 q^{34} - 42 q^{35} - 17787 q^{36} - 1400 q^{37} + 14 q^{38} + 168 q^{39} + 3962 q^{40} - 392 q^{41} + 1764 q^{42} + 294 q^{43} - 12978 q^{44} + 2814 q^{45} + 840 q^{46} + 28 q^{47} + 3654 q^{48} + 1554 q^{49} - 4998 q^{50} - 98 q^{51} - 3703 q^{52} - 42 q^{53} - 1365 q^{54} + 4046 q^{55} - 3073 q^{56} + 14567 q^{57} - 10402 q^{58} + 4004 q^{59} - 4536 q^{60} - 1050 q^{61} + 210 q^{62} + 2254 q^{63} + 3822 q^{64} - 1106 q^{65} - 875 q^{66} - 3612 q^{67} + 819 q^{68} + 4333 q^{69} - 5292 q^{70} + 11424 q^{71} - 1876 q^{72} - 714 q^{73} + 1288 q^{74} - 1316 q^{75} + 8715 q^{76} + 6629 q^{77} + 13986 q^{78} - 1512 q^{79} + 406 q^{80} + 1078 q^{81} - 42 q^{82} - 5999 q^{83} - 7595 q^{84} + 30492 q^{85} + 7749 q^{86} - 35 q^{87} + 8897 q^{88} - 196 q^{89} - 14910 q^{90} - 8232 q^{91} - 7938 q^{92} - 2639 q^{93} - 11116 q^{94} + 3703 q^{95} + 14497 q^{96} - 2674 q^{97} - 10024 q^{98} + 6237 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
16.1 −5.49911 0.353054i −2.78314 + 3.98984i 22.1812 + 2.85995i 3.27206 2.12988i 16.7134 20.9579i −12.3005 + 0.789718i −77.6965 15.1314i 1.15190 + 3.13009i −18.7454 + 10.5572i
16.2 −5.24248 0.336578i 1.28903 1.84793i 19.4359 + 2.50599i −6.80345 + 4.42855i −7.37970 + 9.25385i 25.8222 1.65784i −59.7978 11.6456i 7.57163 + 20.5746i 37.1575 20.9267i
16.3 −4.92908 0.316457i 4.70953 6.75146i 16.2613 + 2.09667i 6.63060 4.31604i −25.3502 + 31.7881i 4.33945 0.278602i −40.7048 7.92726i −14.0777 38.2538i −34.0486 + 19.1758i
16.4 −4.78000 0.306886i 2.41641 3.46411i 14.8199 + 1.91082i −12.6224 + 8.21628i −12.6135 + 15.8169i −32.4079 + 2.08066i −32.6408 6.35680i 3.16387 + 8.59725i 62.8567 35.4002i
16.5 −4.56883 0.293328i 2.48580 3.56358i 12.8538 + 1.65732i 14.1644 9.22000i −12.4025 + 15.5522i −25.2149 + 1.61885i −22.2903 4.34104i 2.80495 + 7.62194i −67.4192 + 37.9698i
16.6 −4.52040 0.290219i −4.67204 + 6.69773i 12.4154 + 1.60079i −14.7302 + 9.58833i 23.0633 28.9205i −1.07991 + 0.0693322i −20.0887 3.91227i −13.7067 37.2455i 69.3692 39.0680i
16.7 −4.37837 0.281101i −5.11136 + 7.32752i 11.1568 + 1.43851i 16.4461 10.7052i 24.4392 30.6458i 21.4024 1.37408i −13.9925 2.72503i −18.2417 49.5685i −75.0164 + 42.2485i
16.8 −4.27791 0.274651i −1.17628 + 1.68628i 10.2908 + 1.32685i 4.43621 2.88765i 5.49515 6.89071i 4.20983 0.270280i −9.99729 1.94697i 7.86494 + 21.3716i −19.7708 + 11.1347i
16.9 −4.01883 0.258017i 0.971817 1.39317i 8.15008 + 1.05084i 10.9750 7.14395i −4.26503 + 5.34818i 23.5076 1.50924i −0.859906 0.167467i 8.32835 + 22.6308i −45.9500 + 25.8785i
16.10 −3.76828 0.241932i 0.210785 0.302176i 6.20707 + 0.800313i −13.3929 + 8.71782i −0.867403 + 1.08769i 11.5033 0.738537i 6.45487 + 1.25709i 9.27798 + 25.2113i 52.5773 29.6110i
16.11 −3.74801 0.240630i −3.64412 + 5.22412i 6.05538 + 0.780755i −1.27116 + 0.827435i 14.9153 18.7032i −8.42351 + 0.540807i 6.98400 + 1.36013i −4.68697 12.7360i 4.96344 2.79536i
16.12 −3.70875 0.238110i 5.81579 8.33737i 5.76384 + 0.743165i −14.4885 + 9.43098i −23.5546 + 29.5365i 15.8184 1.01557i 7.98313 + 1.55471i −26.3635 71.6382i 55.9800 31.5273i
16.13 −2.99065 0.192006i −1.86534 + 2.67411i 0.972802 + 0.125429i 10.2745 6.68798i 6.09203 7.63916i −26.7473 + 1.71723i 20.6471 + 4.02103i 5.65350 + 15.3624i −32.0116 + 18.0286i
16.14 −2.58467 0.165941i 4.03463 5.78395i −1.28136 0.165212i −0.871393 + 0.567214i −11.3880 + 14.2801i −0.270413 + 0.0173611i 23.6223 + 4.60044i −7.85095 21.3336i 2.34638 1.32146i
16.15 −2.49414 0.160129i 3.29572 4.72466i −1.73924 0.224250i −1.21612 + 0.791603i −8.97654 + 11.2562i −20.1994 + 1.29684i 23.9275 + 4.65987i −2.13581 5.80370i 3.15992 1.77963i
16.16 −2.34806 0.150751i −0.632213 + 0.906324i −2.44364 0.315072i −8.66853 + 5.64259i 1.62111 2.03280i 6.62437 0.425298i 24.1664 + 4.70641i 8.90313 + 24.1927i 21.2049 11.9424i
16.17 −2.27370 0.145976i −5.59996 + 8.02796i −2.78591 0.359203i 1.36479 0.888378i 13.9045 17.4357i −24.8008 + 1.59227i 24.1728 + 4.70766i −23.7638 64.5739i −3.23280 + 1.82068i
16.18 −2.15260 0.138202i 2.56671 3.67957i −3.31972 0.428031i 10.8326 7.05122i −6.03363 + 7.56593i 33.2091 2.13210i 24.0249 + 4.67886i 2.37361 + 6.44986i −24.2927 + 13.6814i
16.19 −1.84830 0.118665i −3.90867 + 5.60337i −4.53219 0.584361i −3.25835 + 2.12095i 7.88932 9.89289i 29.1744 1.87306i 22.8511 + 4.45025i −6.79524 18.4649i 6.27408 3.53350i
16.20 −1.27364 0.0817702i 0.0894625 0.128251i −6.31886 0.814726i 15.2502 9.92680i −0.124430 + 0.156030i −5.68391 + 0.364919i 18.0031 + 3.50610i 9.31641 + 25.3157i −20.2350 + 11.3961i
See next 80 embeddings (of 2058 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 16.49
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
197.g even 49 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 197.4.g.a 2058
197.g even 49 1 inner 197.4.g.a 2058
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
197.4.g.a 2058 1.a even 1 1 trivial
197.4.g.a 2058 197.g even 49 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(197, [\chi])\).