Properties

Label 197.4.e.a.33.18
Level $197$
Weight $4$
Character 197.33
Analytic conductor $11.623$
Analytic rank $0$
Dimension $288$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,4,Mod(6,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([13]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.6");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 197.e (of order \(14\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.6233762711\)
Analytic rank: \(0\)
Dimension: \(288\)
Relative dimension: \(48\) over \(\Q(\zeta_{14})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{14}]$

Embedding invariants

Embedding label 33.18
Character \(\chi\) \(=\) 197.33
Dual form 197.4.e.a.6.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.77835 - 0.405896i) q^{2} +(3.55906 - 0.812332i) q^{3} +(-4.20998 - 2.02742i) q^{4} +(-2.71301 - 5.63362i) q^{5} -6.65897 q^{6} +(-6.79789 - 29.7835i) q^{7} +(18.0729 + 14.4126i) q^{8} +(-12.3191 + 5.93258i) q^{9} +O(q^{10})\) \(q+(-1.77835 - 0.405896i) q^{2} +(3.55906 - 0.812332i) q^{3} +(-4.20998 - 2.02742i) q^{4} +(-2.71301 - 5.63362i) q^{5} -6.65897 q^{6} +(-6.79789 - 29.7835i) q^{7} +(18.0729 + 14.4126i) q^{8} +(-12.3191 + 5.93258i) q^{9} +(2.53801 + 11.1197i) q^{10} +(1.46669 + 0.334762i) q^{11} +(-16.6305 - 3.79581i) q^{12} +(4.27585 - 3.40988i) q^{13} +55.7247i q^{14} +(-14.2321 - 17.8465i) q^{15} +(-2.98266 - 3.74013i) q^{16} +(49.8853 + 103.588i) q^{17} +(24.3157 - 5.54991i) q^{18} -149.144 q^{19} +29.2178i q^{20} +(-48.3882 - 100.479i) q^{21} +(-2.47240 - 1.19065i) q^{22} +(-5.84219 + 25.5963i) q^{23} +(76.0303 + 36.6143i) q^{24} +(53.5590 - 67.1608i) q^{25} +(-8.98801 + 4.32840i) q^{26} +(-116.087 + 92.5765i) q^{27} +(-31.7647 + 139.170i) q^{28} +(3.12361 - 13.6854i) q^{29} +(18.0658 + 37.5141i) q^{30} +(-90.6296 - 20.6856i) q^{31} +(-76.4515 - 158.753i) q^{32} +5.49197 q^{33} +(-46.6675 - 204.464i) q^{34} +(-149.346 + 119.100i) q^{35} +63.8912 q^{36} +(28.4364 - 35.6581i) q^{37} +(265.230 + 60.5369i) q^{38} +(12.4481 - 15.6094i) q^{39} +(32.1635 - 140.917i) q^{40} +(-153.112 + 73.7348i) q^{41} +(45.2670 + 198.328i) q^{42} +(-123.951 + 543.067i) q^{43} +(-5.49603 - 4.38294i) q^{44} +(66.8438 + 53.3062i) q^{45} +(20.7789 - 43.1478i) q^{46} +(-36.0545 + 45.2109i) q^{47} +(-13.6537 - 10.8885i) q^{48} +(-531.814 + 256.108i) q^{49} +(-122.507 + 97.6959i) q^{50} +(261.693 + 328.152i) q^{51} +(-24.9145 + 5.68658i) q^{52} +(-519.476 - 250.167i) q^{53} +(244.020 - 117.514i) q^{54} +(-2.09321 - 9.17097i) q^{55} +(306.402 - 636.250i) q^{56} +(-530.812 + 121.154i) q^{57} +(-11.1097 + 23.0696i) q^{58} +(-35.7291 + 156.539i) q^{59} +(23.7346 + 103.988i) q^{60} +(170.408 - 746.605i) q^{61} +(152.775 + 73.5725i) q^{62} +(260.437 + 326.578i) q^{63} +(80.0360 + 350.661i) q^{64} +(-30.8104 - 14.8375i) q^{65} +(-9.76663 - 2.22917i) q^{66} +(-383.617 - 305.925i) q^{67} -537.241i q^{68} +95.8446i q^{69} +(313.932 - 151.182i) q^{70} +(-3.27513 - 6.80087i) q^{71} +(-308.147 - 70.3324i) q^{72} +(378.975 + 302.223i) q^{73} +(-65.0433 + 51.8703i) q^{74} +(136.063 - 282.537i) q^{75} +(627.893 + 302.377i) q^{76} -45.9588i q^{77} +(-28.4728 + 22.7063i) q^{78} +(284.213 - 590.173i) q^{79} +(-12.9785 + 26.9502i) q^{80} +(-107.781 + 135.153i) q^{81} +(302.215 - 68.9786i) q^{82} +548.302 q^{83} +521.119i q^{84} +(448.235 - 562.069i) q^{85} +(440.857 - 915.450i) q^{86} -51.2447i q^{87} +(21.6825 + 27.1890i) q^{88} +(1560.11 - 356.085i) q^{89} +(-97.2348 - 121.929i) q^{90} +(-130.625 - 104.170i) q^{91} +(76.4900 - 95.9154i) q^{92} -339.360 q^{93} +(82.4684 - 65.7664i) q^{94} +(404.628 + 840.220i) q^{95} +(-401.056 - 502.908i) q^{96} +(82.9077 - 39.9262i) q^{97} +(1049.70 - 239.588i) q^{98} +(-20.0543 + 4.57727i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 288 q - 7 q^{2} - 7 q^{3} + 159 q^{4} - 7 q^{5} + 26 q^{6} - 53 q^{7} + 49 q^{8} + 391 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 288 q - 7 q^{2} - 7 q^{3} + 159 q^{4} - 7 q^{5} + 26 q^{6} - 53 q^{7} + 49 q^{8} + 391 q^{9} + 149 q^{10} + 91 q^{11} - 63 q^{12} - 7 q^{13} - 473 q^{15} - 1113 q^{16} - 7 q^{17} - 196 q^{18} + 464 q^{19} - 7 q^{21} + 807 q^{22} + 413 q^{23} - 1425 q^{24} + 1195 q^{25} - 543 q^{26} + 455 q^{27} + 174 q^{28} - 906 q^{29} + 798 q^{30} + 917 q^{31} + 945 q^{32} + 894 q^{33} - 219 q^{34} - 7 q^{35} + 3250 q^{36} + 1734 q^{37} - 63 q^{38} - 825 q^{39} + 141 q^{40} + 563 q^{41} + 432 q^{42} - 423 q^{43} + 2149 q^{44} - 3808 q^{45} - 2569 q^{46} - 289 q^{47} - 3703 q^{48} - 3747 q^{49} - 4963 q^{50} - 87 q^{51} + 3654 q^{52} - 1573 q^{53} - 1228 q^{54} + 2825 q^{55} + 98 q^{56} - 518 q^{57} - 5103 q^{58} + 2045 q^{59} + 3375 q^{60} + 287 q^{61} - 2547 q^{62} + 1453 q^{63} + 6475 q^{64} + 1268 q^{65} + 4634 q^{66} - 3577 q^{67} - 814 q^{70} - 273 q^{71} - 1008 q^{72} - 679 q^{73} - 315 q^{74} - 1281 q^{75} + 6078 q^{76} + 4739 q^{78} + 1463 q^{79} + 441 q^{80} - 4427 q^{81} - 7 q^{82} + 4900 q^{83} - 3351 q^{85} + 3472 q^{86} + 3738 q^{88} + 147 q^{89} + 7133 q^{90} - 14133 q^{91} - 803 q^{92} - 4894 q^{93} - 7833 q^{94} - 7700 q^{95} - 16450 q^{96} + 1233 q^{97} - 2030 q^{98} + 2464 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/197\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{14}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.77835 0.405896i −0.628741 0.143506i −0.103736 0.994605i \(-0.533080\pi\)
−0.525005 + 0.851099i \(0.675937\pi\)
\(3\) 3.55906 0.812332i 0.684941 0.156333i 0.134131 0.990964i \(-0.457176\pi\)
0.550811 + 0.834630i \(0.314319\pi\)
\(4\) −4.20998 2.02742i −0.526248 0.253428i
\(5\) −2.71301 5.63362i −0.242659 0.503886i 0.743696 0.668518i \(-0.233071\pi\)
−0.986355 + 0.164631i \(0.947357\pi\)
\(6\) −6.65897 −0.453085
\(7\) −6.79789 29.7835i −0.367052 1.60816i −0.734834 0.678247i \(-0.762740\pi\)
0.367782 0.929912i \(-0.380117\pi\)
\(8\) 18.0729 + 14.4126i 0.798716 + 0.636955i
\(9\) −12.3191 + 5.93258i −0.456264 + 0.219725i
\(10\) 2.53801 + 11.1197i 0.0802588 + 0.351637i
\(11\) 1.46669 + 0.334762i 0.0402021 + 0.00917587i 0.242575 0.970133i \(-0.422008\pi\)
−0.202373 + 0.979309i \(0.564865\pi\)
\(12\) −16.6305 3.79581i −0.400068 0.0913129i
\(13\) 4.27585 3.40988i 0.0912237 0.0727485i −0.576816 0.816874i \(-0.695705\pi\)
0.668040 + 0.744126i \(0.267134\pi\)
\(14\) 55.7247i 1.06379i
\(15\) −14.2321 17.8465i −0.244981 0.307197i
\(16\) −2.98266 3.74013i −0.0466040 0.0584396i
\(17\) 49.8853 + 103.588i 0.711704 + 1.47787i 0.871334 + 0.490691i \(0.163256\pi\)
−0.159630 + 0.987177i \(0.551030\pi\)
\(18\) 24.3157 5.54991i 0.318404 0.0726736i
\(19\) −149.144 −1.80084 −0.900420 0.435022i \(-0.856740\pi\)
−0.900420 + 0.435022i \(0.856740\pi\)
\(20\) 29.2178i 0.326665i
\(21\) −48.3882 100.479i −0.502818 1.04411i
\(22\) −2.47240 1.19065i −0.0239599 0.0115385i
\(23\) −5.84219 + 25.5963i −0.0529644 + 0.232052i −0.994481 0.104913i \(-0.966543\pi\)
0.941517 + 0.336966i \(0.109401\pi\)
\(24\) 76.0303 + 36.6143i 0.646651 + 0.311411i
\(25\) 53.5590 67.1608i 0.428472 0.537287i
\(26\) −8.98801 + 4.32840i −0.0677959 + 0.0326488i
\(27\) −116.087 + 92.5765i −0.827444 + 0.659865i
\(28\) −31.7647 + 139.170i −0.214392 + 0.939311i
\(29\) 3.12361 13.6854i 0.0200014 0.0876318i −0.963942 0.266112i \(-0.914261\pi\)
0.983944 + 0.178480i \(0.0571180\pi\)
\(30\) 18.0658 + 37.5141i 0.109945 + 0.228303i
\(31\) −90.6296 20.6856i −0.525083 0.119847i −0.0482407 0.998836i \(-0.515361\pi\)
−0.476842 + 0.878989i \(0.658219\pi\)
\(32\) −76.4515 158.753i −0.422339 0.876995i
\(33\) 5.49197 0.0289706
\(34\) −46.6675 204.464i −0.235394 1.03133i
\(35\) −149.346 + 119.100i −0.721261 + 0.575186i
\(36\) 63.8912 0.295792
\(37\) 28.4364 35.6581i 0.126349 0.158437i −0.714633 0.699499i \(-0.753406\pi\)
0.840982 + 0.541063i \(0.181978\pi\)
\(38\) 265.230 + 60.5369i 1.13226 + 0.258431i
\(39\) 12.4481 15.6094i 0.0511099 0.0640898i
\(40\) 32.1635 140.917i 0.127137 0.557025i
\(41\) −153.112 + 73.7348i −0.583221 + 0.280864i −0.702139 0.712040i \(-0.747772\pi\)
0.118918 + 0.992904i \(0.462057\pi\)
\(42\) 45.2670 + 198.328i 0.166306 + 0.728633i
\(43\) −123.951 + 543.067i −0.439591 + 1.92597i −0.0676746 + 0.997707i \(0.521558\pi\)
−0.371916 + 0.928266i \(0.621299\pi\)
\(44\) −5.49603 4.38294i −0.0188308 0.0150171i
\(45\) 66.8438 + 53.3062i 0.221433 + 0.176587i
\(46\) 20.7789 43.1478i 0.0666017 0.138300i
\(47\) −36.0545 + 45.2109i −0.111896 + 0.140313i −0.834625 0.550818i \(-0.814316\pi\)
0.722730 + 0.691131i \(0.242887\pi\)
\(48\) −13.6537 10.8885i −0.0410571 0.0327419i
\(49\) −531.814 + 256.108i −1.55048 + 0.746671i
\(50\) −122.507 + 97.6959i −0.346502 + 0.276326i
\(51\) 261.693 + 328.152i 0.718515 + 0.900990i
\(52\) −24.9145 + 5.68658i −0.0664427 + 0.0151651i
\(53\) −519.476 250.167i −1.34633 0.648359i −0.384786 0.923006i \(-0.625725\pi\)
−0.961545 + 0.274647i \(0.911439\pi\)
\(54\) 244.020 117.514i 0.614943 0.296141i
\(55\) −2.09321 9.17097i −0.00513180 0.0224839i
\(56\) 306.402 636.250i 0.731154 1.51826i
\(57\) −530.812 + 121.154i −1.23347 + 0.281531i
\(58\) −11.1097 + 23.0696i −0.0251514 + 0.0522274i
\(59\) −35.7291 + 156.539i −0.0788395 + 0.345418i −0.998928 0.0462922i \(-0.985259\pi\)
0.920088 + 0.391711i \(0.128117\pi\)
\(60\) 23.7346 + 103.988i 0.0510687 + 0.223747i
\(61\) 170.408 746.605i 0.357680 1.56710i −0.401277 0.915957i \(-0.631434\pi\)
0.758957 0.651141i \(-0.225709\pi\)
\(62\) 152.775 + 73.5725i 0.312942 + 0.150705i
\(63\) 260.437 + 326.578i 0.520826 + 0.653095i
\(64\) 80.0360 + 350.661i 0.156320 + 0.684884i
\(65\) −30.8104 14.8375i −0.0587932 0.0283133i
\(66\) −9.76663 2.22917i −0.0182150 0.00415745i
\(67\) −383.617 305.925i −0.699497 0.557830i 0.207877 0.978155i \(-0.433345\pi\)
−0.907374 + 0.420325i \(0.861916\pi\)
\(68\) 537.241i 0.958090i
\(69\) 95.8446i 0.167222i
\(70\) 313.932 151.182i 0.536029 0.258138i
\(71\) −3.27513 6.80087i −0.00547445 0.0113678i 0.898214 0.439559i \(-0.144865\pi\)
−0.903688 + 0.428191i \(0.859151\pi\)
\(72\) −308.147 70.3324i −0.504381 0.115122i
\(73\) 378.975 + 302.223i 0.607613 + 0.484555i 0.878298 0.478113i \(-0.158679\pi\)
−0.270686 + 0.962668i \(0.587250\pi\)
\(74\) −65.0433 + 51.8703i −0.102177 + 0.0814838i
\(75\) 136.063 282.537i 0.209482 0.434994i
\(76\) 627.893 + 302.377i 0.947688 + 0.456382i
\(77\) 45.9588i 0.0680194i
\(78\) −28.4728 + 22.7063i −0.0413321 + 0.0329613i
\(79\) 284.213 590.173i 0.404765 0.840503i −0.594570 0.804044i \(-0.702678\pi\)
0.999335 0.0364591i \(-0.0116079\pi\)
\(80\) −12.9785 + 26.9502i −0.0181380 + 0.0376640i
\(81\) −107.781 + 135.153i −0.147847 + 0.185395i
\(82\) 302.215 68.9786i 0.407001 0.0928952i
\(83\) 548.302 0.725108 0.362554 0.931963i \(-0.381905\pi\)
0.362554 + 0.931963i \(0.381905\pi\)
\(84\) 521.119i 0.676889i
\(85\) 448.235 562.069i 0.571976 0.717235i
\(86\) 440.857 915.450i 0.552778 1.14785i
\(87\) 51.2447i 0.0631495i
\(88\) 21.6825 + 27.1890i 0.0262655 + 0.0329358i
\(89\) 1560.11 356.085i 1.85811 0.424101i 0.861599 0.507590i \(-0.169463\pi\)
0.996509 + 0.0834889i \(0.0266063\pi\)
\(90\) −97.2348 121.929i −0.113883 0.142804i
\(91\) −130.625 104.170i −0.150475 0.120000i
\(92\) 76.4900 95.9154i 0.0866808 0.108694i
\(93\) −339.360 −0.378387
\(94\) 82.4684 65.7664i 0.0904890 0.0721626i
\(95\) 404.628 + 840.220i 0.436989 + 0.907418i
\(96\) −401.056 502.908i −0.426381 0.534665i
\(97\) 82.9077 39.9262i 0.0867835 0.0417927i −0.389989 0.920820i \(-0.627521\pi\)
0.476772 + 0.879027i \(0.341807\pi\)
\(98\) 1049.70 239.588i 1.08200 0.246960i
\(99\) −20.0543 + 4.57727i −0.0203590 + 0.00464680i
\(100\) −361.646 + 174.159i −0.361646 + 0.174159i
\(101\) −819.672 1027.84i −0.807529 1.01261i −0.999513 0.0312111i \(-0.990064\pi\)
0.191984 0.981398i \(-0.438508\pi\)
\(102\) −332.185 689.789i −0.322463 0.669600i
\(103\) −252.290 + 201.194i −0.241348 + 0.192469i −0.736692 0.676228i \(-0.763613\pi\)
0.495344 + 0.868697i \(0.335042\pi\)
\(104\) 126.422 0.119199
\(105\) −434.784 + 545.202i −0.404100 + 0.506726i
\(106\) 822.268 + 655.737i 0.753450 + 0.600857i
\(107\) −1144.70 1435.41i −1.03423 1.29689i −0.953902 0.300117i \(-0.902974\pi\)
−0.0803293 0.996768i \(-0.525597\pi\)
\(108\) 676.416 154.388i 0.602668 0.137555i
\(109\) 2.87545 + 3.60570i 0.00252677 + 0.00316847i 0.783093 0.621904i \(-0.213641\pi\)
−0.780566 + 0.625073i \(0.785069\pi\)
\(110\) 17.1588i 0.0148730i
\(111\) 72.2406 150.009i 0.0617727 0.128272i
\(112\) −91.1185 + 114.259i −0.0768740 + 0.0963970i
\(113\) 95.9501i 0.0798781i 0.999202 + 0.0399391i \(0.0127164\pi\)
−0.999202 + 0.0399391i \(0.987284\pi\)
\(114\) 993.144 0.815934
\(115\) 160.050 36.5303i 0.129780 0.0296215i
\(116\) −40.8965 + 51.2826i −0.0327340 + 0.0410471i
\(117\) −32.4454 + 67.3736i −0.0256374 + 0.0532367i
\(118\) 127.078 263.879i 0.0991393 0.205865i
\(119\) 2746.10 2189.94i 2.11541 1.68699i
\(120\) 527.661i 0.401405i
\(121\) −1197.15 576.517i −0.899437 0.433146i
\(122\) −606.088 + 1258.56i −0.449776 + 0.933969i
\(123\) −485.037 + 386.804i −0.355564 + 0.283553i
\(124\) 339.611 + 270.830i 0.245951 + 0.196139i
\(125\) −1285.67 293.447i −0.919953 0.209973i
\(126\) −330.591 686.480i −0.233741 0.485369i
\(127\) −198.387 + 95.5383i −0.138614 + 0.0667532i −0.501905 0.864923i \(-0.667367\pi\)
0.363291 + 0.931676i \(0.381653\pi\)
\(128\) 753.538i 0.520344i
\(129\) 2033.50i 1.38790i
\(130\) 48.7691 + 38.8921i 0.0329026 + 0.0262389i
\(131\) −2144.57 489.483i −1.43032 0.326461i −0.563926 0.825826i \(-0.690710\pi\)
−0.866392 + 0.499365i \(0.833567\pi\)
\(132\) −23.1211 11.1345i −0.0152457 0.00734194i
\(133\) 1013.86 + 4442.03i 0.661001 + 2.89604i
\(134\) 558.031 + 699.749i 0.359751 + 0.451113i
\(135\) 836.486 + 402.830i 0.533283 + 0.256816i
\(136\) −591.404 + 2591.11i −0.372886 + 1.63372i
\(137\) −435.631 1908.62i −0.271668 1.19025i −0.908044 0.418875i \(-0.862425\pi\)
0.636376 0.771379i \(-0.280433\pi\)
\(138\) 38.9030 170.445i 0.0239974 0.105139i
\(139\) −549.477 + 1141.00i −0.335295 + 0.696247i −0.998644 0.0520630i \(-0.983420\pi\)
0.663349 + 0.748310i \(0.269135\pi\)
\(140\) 870.210 198.620i 0.525330 0.119903i
\(141\) −91.5939 + 190.197i −0.0547064 + 0.113599i
\(142\) 3.06387 + 13.4237i 0.00181066 + 0.00793303i
\(143\) 7.41284 3.56984i 0.00433492 0.00208759i
\(144\) 58.9324 + 28.3804i 0.0341044 + 0.0164238i
\(145\) −85.5729 + 19.5315i −0.0490100 + 0.0111862i
\(146\) −551.279 691.282i −0.312494 0.391856i
\(147\) −1684.71 + 1343.51i −0.945257 + 0.753818i
\(148\) −192.011 + 92.4675i −0.106643 + 0.0513566i
\(149\) −550.826 439.269i −0.302855 0.241519i 0.460256 0.887786i \(-0.347758\pi\)
−0.763111 + 0.646267i \(0.776329\pi\)
\(150\) −356.648 + 447.222i −0.194134 + 0.243437i
\(151\) −762.611 + 1583.58i −0.410996 + 0.853443i 0.588009 + 0.808854i \(0.299912\pi\)
−0.999005 + 0.0445883i \(0.985802\pi\)
\(152\) −2695.46 2149.56i −1.43836 1.14705i
\(153\) −1229.09 980.164i −0.649450 0.517919i
\(154\) −18.6545 + 81.7308i −0.00976119 + 0.0427666i
\(155\) 129.344 + 566.693i 0.0670268 + 0.293664i
\(156\) −84.0529 + 40.4777i −0.0431386 + 0.0207744i
\(157\) 312.786 1370.40i 0.159000 0.696625i −0.831084 0.556147i \(-0.812279\pi\)
0.990084 0.140478i \(-0.0448638\pi\)
\(158\) −744.978 + 934.173i −0.375109 + 0.470372i
\(159\) −2052.07 468.371i −1.02352 0.233611i
\(160\) −686.941 + 861.397i −0.339422 + 0.425621i
\(161\) 802.062 0.392617
\(162\) 246.529 196.601i 0.119563 0.0953482i
\(163\) 470.520 + 2061.48i 0.226098 + 0.990600i 0.952788 + 0.303635i \(0.0982003\pi\)
−0.726690 + 0.686965i \(0.758943\pi\)
\(164\) 794.090 0.378097
\(165\) −14.8998 30.9397i −0.00702997 0.0145979i
\(166\) −975.071 222.554i −0.455905 0.104057i
\(167\) 676.218 + 1404.18i 0.313337 + 0.650652i 0.996852 0.0792851i \(-0.0252638\pi\)
−0.683515 + 0.729937i \(0.739549\pi\)
\(168\) 573.656 2513.35i 0.263444 1.15422i
\(169\) −482.223 + 2112.76i −0.219492 + 0.961655i
\(170\) −1025.26 + 817.618i −0.462552 + 0.368873i
\(171\) 1837.32 884.808i 0.821659 0.395690i
\(172\) 1622.86 2035.00i 0.719428 0.902135i
\(173\) 2727.28 + 1313.39i 1.19856 + 0.577197i 0.923266 0.384162i \(-0.125510\pi\)
0.275296 + 0.961359i \(0.411224\pi\)
\(174\) −20.8000 + 91.1309i −0.00906234 + 0.0397047i
\(175\) −2364.37 1138.62i −1.02131 0.491839i
\(176\) −3.12257 6.48409i −0.00133735 0.00277703i
\(177\) 586.157i 0.248917i
\(178\) −2918.96 −1.22913
\(179\) −1397.52 + 318.976i −0.583552 + 0.133192i −0.504098 0.863647i \(-0.668175\pi\)
−0.0794543 + 0.996839i \(0.525318\pi\)
\(180\) −173.337 359.938i −0.0717766 0.149046i
\(181\) −1122.88 1408.04i −0.461121 0.578227i 0.495851 0.868408i \(-0.334856\pi\)
−0.956972 + 0.290180i \(0.906285\pi\)
\(182\) 190.015 + 238.271i 0.0773891 + 0.0970428i
\(183\) 2795.64i 1.12929i
\(184\) −474.496 + 378.398i −0.190110 + 0.151608i
\(185\) −278.032 63.4591i −0.110494 0.0252195i
\(186\) 603.500 + 137.745i 0.237907 + 0.0543008i
\(187\) 38.4889 + 168.631i 0.0150513 + 0.0659439i
\(188\) 243.450 117.240i 0.0944439 0.0454818i
\(189\) 3546.40 + 2828.16i 1.36488 + 1.08846i
\(190\) −378.528 1658.44i −0.144533 0.633241i
\(191\) 2436.40 0.922995 0.461497 0.887142i \(-0.347312\pi\)
0.461497 + 0.887142i \(0.347312\pi\)
\(192\) 569.706 + 1183.01i 0.214140 + 0.444667i
\(193\) 749.780 + 361.075i 0.279639 + 0.134667i 0.568447 0.822720i \(-0.307545\pi\)
−0.288808 + 0.957387i \(0.593259\pi\)
\(194\) −163.645 + 37.3508i −0.0605618 + 0.0138228i
\(195\) −121.709 27.7793i −0.0446962 0.0102016i
\(196\) 2758.17 1.00516
\(197\) 285.292 2750.27i 0.103179 0.994663i
\(198\) 37.5215 0.0134674
\(199\) −3897.88 889.665i −1.38851 0.316918i −0.538029 0.842926i \(-0.680831\pi\)
−0.850480 + 0.526008i \(0.823688\pi\)
\(200\) 1935.93 441.864i 0.684455 0.156222i
\(201\) −1613.83 777.179i −0.566322 0.272726i
\(202\) 1040.47 + 2160.55i 0.362411 + 0.752554i
\(203\) −428.835 −0.148267
\(204\) −436.419 1912.07i −0.149781 0.656235i
\(205\) 830.787 + 662.531i 0.283047 + 0.225723i
\(206\) 530.323 255.390i 0.179366 0.0863781i
\(207\) −79.8815 349.984i −0.0268220 0.117515i
\(208\) −25.5068 5.82176i −0.00850278 0.00194070i
\(209\) −218.748 49.9277i −0.0723975 0.0165243i
\(210\) 994.492 793.081i 0.326793 0.260608i
\(211\) 1189.73i 0.388172i −0.980985 0.194086i \(-0.937826\pi\)
0.980985 0.194086i \(-0.0621740\pi\)
\(212\) 1679.79 + 2106.39i 0.544192 + 0.682395i
\(213\) −17.1809 21.5442i −0.00552685 0.00693045i
\(214\) 1453.05 + 3017.30i 0.464153 + 0.963823i
\(215\) 3395.71 775.049i 1.07714 0.245851i
\(216\) −3432.30 −1.08120
\(217\) 2839.89i 0.888406i
\(218\) −3.65001 7.57932i −0.00113399 0.00235475i
\(219\) 1594.30 + 767.775i 0.491931 + 0.236902i
\(220\) −9.78102 + 42.8535i −0.00299744 + 0.0131326i
\(221\) 566.524 + 272.824i 0.172437 + 0.0830412i
\(222\) −189.357 + 237.446i −0.0572469 + 0.0717854i
\(223\) −21.0561 + 10.1401i −0.00632296 + 0.00304498i −0.437043 0.899441i \(-0.643974\pi\)
0.430720 + 0.902486i \(0.358260\pi\)
\(224\) −4208.52 + 3356.18i −1.25533 + 1.00109i
\(225\) −261.363 + 1145.11i −0.0774409 + 0.339291i
\(226\) 38.9458 170.633i 0.0114630 0.0502226i
\(227\) 1358.46 + 2820.87i 0.397199 + 0.824791i 0.999645 + 0.0266323i \(0.00847832\pi\)
−0.602447 + 0.798159i \(0.705807\pi\)
\(228\) 2480.34 + 566.121i 0.720458 + 0.164440i
\(229\) −2764.04 5739.58i −0.797610 1.65625i −0.753700 0.657218i \(-0.771733\pi\)
−0.0439097 0.999036i \(-0.513981\pi\)
\(230\) −299.452 −0.0858489
\(231\) −37.3338 163.570i −0.0106337 0.0465893i
\(232\) 253.696 202.316i 0.0717930 0.0572530i
\(233\) −4696.79 −1.32059 −0.660293 0.751008i \(-0.729568\pi\)
−0.660293 + 0.751008i \(0.729568\pi\)
\(234\) 85.0460 106.644i 0.0237591 0.0297930i
\(235\) 352.517 + 80.4598i 0.0978540 + 0.0223345i
\(236\) 467.790 586.590i 0.129028 0.161796i
\(237\) 532.113 2331.34i 0.145841 0.638973i
\(238\) −5772.40 + 2779.84i −1.57214 + 0.757103i
\(239\) −1063.42 4659.13i −0.287810 1.26098i −0.887523 0.460764i \(-0.847576\pi\)
0.599713 0.800215i \(-0.295282\pi\)
\(240\) −24.2988 + 106.460i −0.00653534 + 0.0286332i
\(241\) −3220.91 2568.59i −0.860902 0.686546i 0.0900328 0.995939i \(-0.471303\pi\)
−0.950934 + 0.309393i \(0.899874\pi\)
\(242\) 1894.94 + 1511.17i 0.503354 + 0.401411i
\(243\) 1465.63 3043.41i 0.386914 0.803434i
\(244\) −2231.09 + 2797.70i −0.585374 + 0.734035i
\(245\) 2885.63 + 2301.21i 0.752475 + 0.600078i
\(246\) 1019.57 490.998i 0.264249 0.127256i
\(247\) −637.717 + 508.563i −0.164279 + 0.131008i
\(248\) −1339.80 1680.06i −0.343055 0.430177i
\(249\) 1951.44 445.403i 0.496656 0.113359i
\(250\) 2167.27 + 1043.70i 0.548280 + 0.264038i
\(251\) −403.007 + 194.078i −0.101345 + 0.0488052i −0.483869 0.875140i \(-0.660769\pi\)
0.382524 + 0.923945i \(0.375055\pi\)
\(252\) −434.325 1902.90i −0.108571 0.475681i
\(253\) −17.1373 + 35.5861i −0.00425856 + 0.00884299i
\(254\) 391.580 89.3757i 0.0967320 0.0220785i
\(255\) 1138.71 2364.55i 0.279642 0.580683i
\(256\) 946.146 4145.34i 0.230993 1.01205i
\(257\) −505.071 2212.86i −0.122589 0.537099i −0.998506 0.0546373i \(-0.982600\pi\)
0.875917 0.482462i \(-0.160257\pi\)
\(258\) 825.389 3616.26i 0.199172 0.872631i
\(259\) −1255.33 604.536i −0.301168 0.145035i
\(260\) 99.6293 + 124.931i 0.0237644 + 0.0297996i
\(261\) 42.7098 + 187.124i 0.0101290 + 0.0443781i
\(262\) 3615.10 + 1740.94i 0.852450 + 0.410518i
\(263\) −3066.47 699.902i −0.718960 0.164098i −0.152638 0.988282i \(-0.548777\pi\)
−0.566322 + 0.824184i \(0.691634\pi\)
\(264\) 99.2557 + 79.1538i 0.0231393 + 0.0184530i
\(265\) 3605.24i 0.835728i
\(266\) 8311.00i 1.91571i
\(267\) 5263.27 2534.66i 1.20639 0.580969i
\(268\) 994.784 + 2065.69i 0.226739 + 0.470829i
\(269\) 5467.12 + 1247.83i 1.23917 + 0.282832i 0.791389 0.611313i \(-0.209358\pi\)
0.447778 + 0.894145i \(0.352215\pi\)
\(270\) −1324.06 1055.90i −0.298442 0.238000i
\(271\) −3032.81 + 2418.59i −0.679817 + 0.542136i −0.901390 0.433008i \(-0.857452\pi\)
0.221573 + 0.975144i \(0.428881\pi\)
\(272\) 238.642 495.545i 0.0531977 0.110466i
\(273\) −549.523 264.636i −0.121827 0.0586686i
\(274\) 3571.02i 0.787347i
\(275\) 101.037 80.5745i 0.0221555 0.0176685i
\(276\) 194.317 403.504i 0.0423787 0.0880003i
\(277\) −967.872 + 2009.81i −0.209941 + 0.435948i −0.979174 0.203020i \(-0.934924\pi\)
0.769233 + 0.638968i \(0.220638\pi\)
\(278\) 1440.29 1806.07i 0.310729 0.389642i
\(279\) 1239.20 282.839i 0.265910 0.0606922i
\(280\) −4415.66 −0.942450
\(281\) 855.546i 0.181628i −0.995868 0.0908142i \(-0.971053\pi\)
0.995868 0.0908142i \(-0.0289470\pi\)
\(282\) 240.086 301.058i 0.0506983 0.0635736i
\(283\) −4023.17 + 8354.19i −0.845062 + 1.75479i −0.217778 + 0.975998i \(0.569881\pi\)
−0.627284 + 0.778791i \(0.715833\pi\)
\(284\) 35.2716i 0.00736966i
\(285\) 2122.63 + 2661.70i 0.441172 + 0.553212i
\(286\) −14.6316 + 3.33957i −0.00302512 + 0.000690464i
\(287\) 3236.92 + 4058.97i 0.665747 + 0.834820i
\(288\) 1883.63 + 1502.15i 0.385396 + 0.307343i
\(289\) −5178.70 + 6493.88i −1.05408 + 1.32178i
\(290\) 160.106 0.0324199
\(291\) 262.640 209.448i 0.0529080 0.0421927i
\(292\) −982.747 2040.70i −0.196955 0.408982i
\(293\) 3318.57 + 4161.35i 0.661682 + 0.829722i 0.993525 0.113612i \(-0.0362421\pi\)
−0.331844 + 0.943334i \(0.607671\pi\)
\(294\) 3541.33 1705.42i 0.702499 0.338306i
\(295\) 978.816 223.408i 0.193183 0.0440927i
\(296\) 1027.86 234.601i 0.201834 0.0460673i
\(297\) −201.255 + 96.9192i −0.0393198 + 0.0189354i
\(298\) 801.262 + 1004.75i 0.155758 + 0.195314i
\(299\) 62.3000 + 129.367i 0.0120498 + 0.0250217i
\(300\) −1145.64 + 913.620i −0.220479 + 0.175826i
\(301\) 17017.0 3.25862
\(302\) 1998.96 2506.61i 0.380884 0.477614i
\(303\) −3752.21 2992.28i −0.711415 0.567334i
\(304\) 444.845 + 557.818i 0.0839263 + 0.105240i
\(305\) −4668.40 + 1065.53i −0.876433 + 0.200040i
\(306\) 1787.90 + 2241.96i 0.334011 + 0.418837i
\(307\) 6373.49i 1.18487i −0.805619 0.592433i \(-0.798167\pi\)
0.805619 0.592433i \(-0.201833\pi\)
\(308\) −93.1778 + 193.486i −0.0172380 + 0.0357950i
\(309\) −734.478 + 921.006i −0.135220 + 0.169561i
\(310\) 1060.28i 0.194257i
\(311\) 457.326 0.0833844 0.0416922 0.999131i \(-0.486725\pi\)
0.0416922 + 0.999131i \(0.486725\pi\)
\(312\) 449.945 102.697i 0.0816446 0.0186348i
\(313\) 4027.94 5050.88i 0.727388 0.912116i −0.271342 0.962483i \(-0.587468\pi\)
0.998731 + 0.0503667i \(0.0160390\pi\)
\(314\) −1112.48 + 2310.10i −0.199940 + 0.415179i
\(315\) 1133.25 2353.21i 0.202702 0.420916i
\(316\) −2393.06 + 1908.40i −0.426013 + 0.339734i
\(317\) 4778.63i 0.846670i −0.905973 0.423335i \(-0.860859\pi\)
0.905973 0.423335i \(-0.139141\pi\)
\(318\) 3459.18 + 1665.85i 0.610003 + 0.293762i
\(319\) 9.16273 19.0266i 0.00160820 0.00333945i
\(320\) 1758.35 1402.24i 0.307171 0.244961i
\(321\) −5240.11 4178.85i −0.911135 0.726606i
\(322\) −1426.35 325.554i −0.246855 0.0563429i
\(323\) −7440.08 15449.5i −1.28166 2.66140i
\(324\) 727.766 350.473i 0.124788 0.0600949i
\(325\) 469.800i 0.0801840i
\(326\) 3857.02i 0.655277i
\(327\) 13.1629 + 10.4971i 0.00222603 + 0.00177520i
\(328\) −3829.89 874.147i −0.644726 0.147154i
\(329\) 1591.64 + 766.491i 0.266716 + 0.128444i
\(330\) 13.9387 + 61.0692i 0.00232514 + 0.0101871i
\(331\) 5443.98 + 6826.53i 0.904012 + 1.13360i 0.990523 + 0.137345i \(0.0438568\pi\)
−0.0865110 + 0.996251i \(0.527572\pi\)
\(332\) −2308.34 1111.64i −0.381586 0.183762i
\(333\) −138.767 + 607.978i −0.0228360 + 0.100051i
\(334\) −632.599 2771.60i −0.103636 0.454057i
\(335\) −682.706 + 2991.13i −0.111344 + 0.487829i
\(336\) −231.480 + 480.673i −0.0375841 + 0.0780443i
\(337\) 6381.70 1456.58i 1.03155 0.235445i 0.326946 0.945043i \(-0.393981\pi\)
0.704607 + 0.709598i \(0.251123\pi\)
\(338\) 1715.12 3561.48i 0.276007 0.573134i
\(339\) 77.9434 + 341.492i 0.0124876 + 0.0547118i
\(340\) −3026.61 + 1457.54i −0.482768 + 0.232489i
\(341\) −126.001 60.6787i −0.0200097 0.00963618i
\(342\) −3626.54 + 827.734i −0.573394 + 0.130874i
\(343\) 4709.81 + 5905.91i 0.741416 + 0.929706i
\(344\) −10067.2 + 8028.31i −1.57787 + 1.25831i
\(345\) 539.952 260.027i 0.0842609 0.0405779i
\(346\) −4316.95 3442.65i −0.670754 0.534908i
\(347\) 4233.98 5309.24i 0.655020 0.821369i −0.337771 0.941228i \(-0.609673\pi\)
0.992791 + 0.119860i \(0.0382445\pi\)
\(348\) −103.895 + 215.739i −0.0160038 + 0.0332323i
\(349\) −1541.65 1229.43i −0.236455 0.188567i 0.498092 0.867124i \(-0.334034\pi\)
−0.734547 + 0.678557i \(0.762606\pi\)
\(350\) 3742.52 + 2984.56i 0.571560 + 0.455804i
\(351\) −180.697 + 791.687i −0.0274784 + 0.120391i
\(352\) −58.9859 258.434i −0.00893171 0.0391324i
\(353\) 1833.30 882.872i 0.276422 0.133118i −0.290537 0.956864i \(-0.593834\pi\)
0.566959 + 0.823746i \(0.308120\pi\)
\(354\) 237.919 1042.39i 0.0357210 0.156504i
\(355\) −29.4281 + 36.9016i −0.00439966 + 0.00551700i
\(356\) −7289.98 1663.89i −1.08530 0.247713i
\(357\) 7994.56 10024.9i 1.18520 1.48620i
\(358\) 2614.76 0.386017
\(359\) −3722.25 + 2968.39i −0.547222 + 0.436395i −0.857674 0.514194i \(-0.828091\pi\)
0.310452 + 0.950589i \(0.399520\pi\)
\(360\) 439.778 + 1926.79i 0.0643842 + 0.282086i
\(361\) 15384.9 2.24302
\(362\) 1425.35 + 2959.77i 0.206947 + 0.429729i
\(363\) −4729.05 1079.38i −0.683777 0.156068i
\(364\) 338.733 + 703.385i 0.0487759 + 0.101284i
\(365\) 674.445 2954.94i 0.0967180 0.423749i
\(366\) −1134.74 + 4971.62i −0.162060 + 0.710029i
\(367\) −6430.74 + 5128.34i −0.914664 + 0.729421i −0.963026 0.269409i \(-0.913172\pi\)
0.0483613 + 0.998830i \(0.484600\pi\)
\(368\) 113.159 54.4944i 0.0160294 0.00771934i
\(369\) 1448.77 1816.70i 0.204390 0.256297i
\(370\) 468.680 + 225.705i 0.0658528 + 0.0317130i
\(371\) −3919.50 + 17172.4i −0.548491 + 2.40310i
\(372\) 1428.70 + 688.025i 0.199125 + 0.0958937i
\(373\) −2835.66 5888.31i −0.393633 0.817387i −0.999758 0.0220172i \(-0.992991\pi\)
0.606125 0.795369i \(-0.292723\pi\)
\(374\) 315.507i 0.0436216i
\(375\) −4814.17 −0.662940
\(376\) −1303.22 + 297.451i −0.178746 + 0.0407975i
\(377\) −33.3096 69.1681i −0.00455048 0.00944917i
\(378\) −5158.80 6468.92i −0.701957 0.880226i
\(379\) 7480.86 + 9380.70i 1.01389 + 1.27138i 0.962092 + 0.272726i \(0.0879253\pi\)
0.0518028 + 0.998657i \(0.483503\pi\)
\(380\) 4357.66i 0.588272i
\(381\) −628.464 + 501.183i −0.0845070 + 0.0673921i
\(382\) −4332.77 988.927i −0.580325 0.132455i
\(383\) −10505.2 2397.74i −1.40154 0.319893i −0.546069 0.837740i \(-0.683876\pi\)
−0.855473 + 0.517847i \(0.826733\pi\)
\(384\) 612.123 + 2681.89i 0.0813471 + 0.356405i
\(385\) −258.914 + 124.687i −0.0342740 + 0.0165055i
\(386\) −1186.81 946.450i −0.156495 0.124801i
\(387\) −1694.81 7425.46i −0.222616 0.975342i
\(388\) −429.987 −0.0562610
\(389\) 4813.24 + 9994.79i 0.627354 + 1.30271i 0.936155 + 0.351588i \(0.114358\pi\)
−0.308801 + 0.951127i \(0.599928\pi\)
\(390\) 205.165 + 98.8024i 0.0266383 + 0.0128283i
\(391\) −2942.91 + 671.699i −0.380637 + 0.0868780i
\(392\) −13302.6 3036.23i −1.71399 0.391207i
\(393\) −8030.26 −1.03072
\(394\) −1623.67 + 4775.14i −0.207613 + 0.610578i
\(395\) −4095.88 −0.521737
\(396\) 93.7084 + 21.3883i 0.0118915 + 0.00271415i
\(397\) 8275.27 1888.78i 1.04616 0.238778i 0.335297 0.942113i \(-0.391163\pi\)
0.710859 + 0.703334i \(0.248306\pi\)
\(398\) 6570.67 + 3164.27i 0.827533 + 0.398519i
\(399\) 7216.81 + 14985.9i 0.905494 + 1.88028i
\(400\) −410.939 −0.0513673
\(401\) −626.310 2744.05i −0.0779961 0.341723i 0.920841 0.389939i \(-0.127504\pi\)
−0.998837 + 0.0482153i \(0.984647\pi\)
\(402\) 2554.50 + 2037.14i 0.316932 + 0.252745i
\(403\) −458.055 + 220.587i −0.0566187 + 0.0272661i
\(404\) 1366.95 + 5988.99i 0.168337 + 0.737533i
\(405\) 1053.81 + 240.525i 0.129294 + 0.0295106i
\(406\) 762.617 + 174.062i 0.0932218 + 0.0212773i
\(407\) 53.6443 42.7799i 0.00653329 0.00521013i
\(408\) 9702.33i 1.17730i
\(409\) 6862.61 + 8605.44i 0.829668 + 1.04037i 0.998501 + 0.0547257i \(0.0174284\pi\)
−0.168834 + 0.985645i \(0.554000\pi\)
\(410\) −1208.51 1515.42i −0.145571 0.182540i
\(411\) −3100.87 6439.03i −0.372153 0.772783i
\(412\) 1470.04 335.527i 0.175786 0.0401220i
\(413\) 4905.18 0.584426
\(414\) 654.816i 0.0777354i
\(415\) −1487.55 3088.92i −0.175954 0.365372i
\(416\) −868.224 418.115i −0.102327 0.0492783i
\(417\) −1028.75 + 4507.25i −0.120811 + 0.529307i
\(418\) 368.744 + 177.578i 0.0431480 + 0.0207790i
\(419\) −2024.65 + 2538.83i −0.236063 + 0.296014i −0.885726 0.464209i \(-0.846339\pi\)
0.649663 + 0.760223i \(0.274910\pi\)
\(420\) 2935.78 1413.80i 0.341075 0.164253i
\(421\) −5532.41 + 4411.95i −0.640459 + 0.510749i −0.889021 0.457867i \(-0.848613\pi\)
0.248562 + 0.968616i \(0.420042\pi\)
\(422\) −482.906 + 2115.75i −0.0557050 + 0.244059i
\(423\) 175.943 770.856i 0.0202237 0.0886059i
\(424\) −5782.87 12008.3i −0.662361 1.37541i
\(425\) 9628.85 + 2197.72i 1.09898 + 0.250836i
\(426\) 21.8090 + 45.2868i 0.00248039 + 0.00515059i
\(427\) −23394.9 −2.65143
\(428\) 1909.00 + 8363.87i 0.215596 + 0.944586i
\(429\) 23.4829 18.7270i 0.00264280 0.00210757i
\(430\) −6353.34 −0.712524
\(431\) 3202.44 4015.73i 0.357903 0.448796i −0.569985 0.821655i \(-0.693051\pi\)
0.927888 + 0.372859i \(0.121622\pi\)
\(432\) 692.497 + 158.058i 0.0771244 + 0.0176032i
\(433\) 6457.56 8097.52i 0.716698 0.898711i −0.281448 0.959577i \(-0.590815\pi\)
0.998146 + 0.0608654i \(0.0193861\pi\)
\(434\) 1152.70 5050.31i 0.127492 0.558577i
\(435\) −288.693 + 139.027i −0.0318202 + 0.0153238i
\(436\) −4.79532 21.0097i −0.000526729 0.00230775i
\(437\) 871.327 3817.53i 0.0953803 0.417889i
\(438\) −2523.59 2012.49i −0.275300 0.219545i
\(439\) −6211.44 4953.46i −0.675298 0.538532i 0.224699 0.974428i \(-0.427860\pi\)
−0.899997 + 0.435896i \(0.856432\pi\)
\(440\) 94.3475 195.915i 0.0102224 0.0212270i
\(441\) 5032.11 6310.06i 0.543366 0.681359i
\(442\) −896.739 715.126i −0.0965012 0.0769572i
\(443\) 942.268 453.773i 0.101058 0.0486668i −0.382672 0.923884i \(-0.624996\pi\)
0.483730 + 0.875217i \(0.339282\pi\)
\(444\) −608.263 + 485.074i −0.0650155 + 0.0518482i
\(445\) −6238.65 7823.01i −0.664585 0.833363i
\(446\) 41.5609 9.48600i 0.00441248 0.00100712i
\(447\) −2317.25 1115.93i −0.245196 0.118080i
\(448\) 9899.83 4767.51i 1.04402 0.502776i
\(449\) −93.4208 409.303i −0.00981915 0.0430205i 0.969781 0.243977i \(-0.0784521\pi\)
−0.979600 + 0.200957i \(0.935595\pi\)
\(450\) 929.589 1930.31i 0.0973806 0.202213i
\(451\) −249.251 + 56.8899i −0.0260239 + 0.00593978i
\(452\) 194.531 403.948i 0.0202433 0.0420357i
\(453\) −1427.79 + 6255.55i −0.148087 + 0.648811i
\(454\) −1270.83 5567.88i −0.131372 0.575581i
\(455\) −232.467 + 1018.51i −0.0239522 + 0.104941i
\(456\) −11339.5 5460.79i −1.16451 0.560801i
\(457\) −9884.62 12394.9i −1.01178 1.26873i −0.962881 0.269927i \(-0.913000\pi\)
−0.0488981 0.998804i \(-0.515571\pi\)
\(458\) 2585.74 + 11328.9i 0.263808 + 1.15582i
\(459\) −15380.8 7407.02i −1.56409 0.753225i
\(460\) −747.868 170.696i −0.0758034 0.0173016i
\(461\) 14274.5 + 11383.6i 1.44215 + 1.15008i 0.962053 + 0.272861i \(0.0879700\pi\)
0.480097 + 0.877215i \(0.340601\pi\)
\(462\) 306.038i 0.0308186i
\(463\) 756.377i 0.0759219i 0.999279 + 0.0379609i \(0.0120862\pi\)
−0.999279 + 0.0379609i \(0.987914\pi\)
\(464\) −60.5020 + 29.1362i −0.00605331 + 0.00291512i
\(465\) 920.686 + 1911.82i 0.0918189 + 0.190664i
\(466\) 8352.52 + 1906.41i 0.830307 + 0.189512i
\(467\) −988.228 788.085i −0.0979223 0.0780904i 0.573305 0.819342i \(-0.305661\pi\)
−0.671227 + 0.741252i \(0.734232\pi\)
\(468\) 273.189 217.861i 0.0269833 0.0215185i
\(469\) −6503.72 + 13505.1i −0.640328 + 1.32966i
\(470\) −594.240 286.171i −0.0583197 0.0280853i
\(471\) 5131.44i 0.502004i
\(472\) −2901.87 + 2314.17i −0.282986 + 0.225674i
\(473\) −363.596 + 755.015i −0.0353450 + 0.0733946i
\(474\) −1892.56 + 3929.95i −0.183393 + 0.380820i
\(475\) −7987.99 + 10016.6i −0.771609 + 0.967567i
\(476\) −16000.9 + 3652.11i −1.54076 + 0.351668i
\(477\) 7883.64 0.756744
\(478\) 8717.19i 0.834132i
\(479\) 4159.45 5215.78i 0.396764 0.497526i −0.542818 0.839850i \(-0.682643\pi\)
0.939582 + 0.342324i \(0.111214\pi\)
\(480\) −1745.12 + 3623.79i −0.165945 + 0.344588i
\(481\) 249.434i 0.0236449i
\(482\) 4685.32 + 5875.21i 0.442761 + 0.555204i
\(483\) 2854.59 651.541i 0.268920 0.0613792i
\(484\) 3871.14 + 4854.25i 0.363555 + 0.455884i
\(485\) −449.858 358.750i −0.0421175 0.0335876i
\(486\) −3841.70 + 4817.34i −0.358566 + 0.449628i
\(487\) 13899.8 1.29335 0.646674 0.762767i \(-0.276160\pi\)
0.646674 + 0.762767i \(0.276160\pi\)
\(488\) 13840.3 11037.3i 1.28385 1.02384i
\(489\) 3349.22 + 6954.72i 0.309728 + 0.643156i
\(490\) −4197.60 5263.63i −0.386997 0.485278i
\(491\) 132.858 63.9812i 0.0122114 0.00588072i −0.427768 0.903889i \(-0.640700\pi\)
0.439979 + 0.898008i \(0.354986\pi\)
\(492\) 2826.21 645.064i 0.258975 0.0591093i
\(493\) 1573.47 359.134i 0.143743 0.0328085i
\(494\) 1340.51 645.554i 0.122090 0.0587953i
\(495\) 80.1942 + 100.560i 0.00728174 + 0.00913101i
\(496\) 192.950 + 400.665i 0.0174672 + 0.0362709i
\(497\) −180.290 + 143.776i −0.0162718 + 0.0129764i
\(498\) −3651.12 −0.328536
\(499\) 1368.84 1716.47i 0.122801 0.153987i −0.716631 0.697453i \(-0.754317\pi\)
0.839432 + 0.543465i \(0.182888\pi\)
\(500\) 4817.72 + 3842.01i 0.430910 + 0.343639i
\(501\) 3547.36 + 4448.25i 0.316336 + 0.396673i
\(502\) 795.463 181.559i 0.0707236 0.0161422i
\(503\) 4857.50 + 6091.11i 0.430587 + 0.539939i 0.949035 0.315170i \(-0.102062\pi\)
−0.518448 + 0.855109i \(0.673490\pi\)
\(504\) 9655.80i 0.853380i
\(505\) −3566.66 + 7406.25i −0.314286 + 0.652621i
\(506\) 44.9204 56.3284i 0.00394655 0.00494882i
\(507\) 7911.15i 0.692991i
\(508\) 1028.90 0.0898626
\(509\) −12163.6 + 2776.27i −1.05922 + 0.241760i −0.716435 0.697653i \(-0.754228\pi\)
−0.342786 + 0.939414i \(0.611370\pi\)
\(510\) −2984.79 + 3742.80i −0.259154 + 0.324969i
\(511\) 6425.02 13341.7i 0.556216 1.15499i
\(512\) −749.570 + 1556.50i −0.0647005 + 0.134352i
\(513\) 17313.7 13807.2i 1.49009 1.18831i
\(514\) 4140.25i 0.355289i
\(515\) 1817.92 + 875.463i 0.155548 + 0.0749078i
\(516\) 4122.75 8560.98i 0.351733 0.730380i
\(517\) −68.0157 + 54.2407i −0.00578593 + 0.00461412i
\(518\) 1987.04 + 1584.61i 0.168543 + 0.134409i
\(519\) 10773.5 + 2458.97i 0.911180 + 0.207971i
\(520\) −342.985 712.215i −0.0289248 0.0600629i
\(521\) −19005.2 + 9152.41i −1.59814 + 0.769625i −0.999507 0.0313973i \(-0.990004\pi\)
−0.598635 + 0.801022i \(0.704290\pi\)
\(522\) 350.107i 0.0293559i
\(523\) 12159.4i 1.01662i −0.861175 0.508309i \(-0.830271\pi\)
0.861175 0.508309i \(-0.169729\pi\)
\(524\) 8036.19 + 6408.65i 0.669967 + 0.534281i
\(525\) −9339.89 2131.77i −0.776431 0.177215i
\(526\) 5169.16 + 2489.34i 0.428491 + 0.206350i
\(527\) −2378.31 10420.0i −0.196586 0.861298i
\(528\) −16.3807 20.5407i −0.00135015 0.00169303i
\(529\) 10341.0 + 4979.99i 0.849926 + 0.409303i
\(530\) 1463.35 6411.36i 0.119932 0.525456i
\(531\) −488.531 2140.40i −0.0399255 0.174925i
\(532\) 4737.51 20756.4i 0.386085 1.69155i
\(533\) −403.257 + 837.372i −0.0327711 + 0.0680499i
\(534\) −10388.7 + 2371.16i −0.841882 + 0.192154i
\(535\) −4980.98 + 10343.1i −0.402517 + 0.835836i
\(536\) −2523.89 11057.9i −0.203387 0.891096i
\(537\) −4714.76 + 2270.51i −0.378877 + 0.182457i
\(538\) −9215.95 4438.17i −0.738527 0.355656i
\(539\) −865.741 + 197.600i −0.0691839 + 0.0157908i
\(540\) −2704.88 3391.82i −0.215555 0.270297i
\(541\) 13524.1 10785.1i 1.07477 0.857097i 0.0845184 0.996422i \(-0.473065\pi\)
0.990247 + 0.139325i \(0.0444934\pi\)
\(542\) 6375.09 3070.08i 0.505228 0.243305i
\(543\) −5140.19 4099.17i −0.406237 0.323963i
\(544\) 12631.1 15838.9i 0.995503 1.24832i
\(545\) 12.5120 25.9814i 0.000983404 0.00204206i
\(546\) 869.828 + 693.665i 0.0681780 + 0.0543702i
\(547\) −7202.12 5743.50i −0.562963 0.448948i 0.300198 0.953877i \(-0.402947\pi\)
−0.863161 + 0.504929i \(0.831519\pi\)
\(548\) −2035.58 + 8918.48i −0.158679 + 0.695216i
\(549\) 2330.02 + 10208.5i 0.181134 + 0.793602i
\(550\) −212.384 + 102.279i −0.0164656 + 0.00792943i
\(551\) −465.868 + 2041.10i −0.0360193 + 0.157811i
\(552\) −1381.37 + 1732.19i −0.106513 + 0.133563i
\(553\) −19509.5 4452.91i −1.50023 0.342418i
\(554\) 2536.99 3181.28i 0.194560 0.243970i
\(555\) −1041.08 −0.0796244
\(556\) 4626.57 3689.57i 0.352897 0.281426i
\(557\) 4843.51 + 21220.8i 0.368449 + 1.61428i 0.731041 + 0.682334i \(0.239035\pi\)
−0.362592 + 0.931948i \(0.618108\pi\)
\(558\) −2318.53 −0.175898
\(559\) 1321.79 + 2744.73i 0.100011 + 0.207674i
\(560\) 890.897 + 203.341i 0.0672273 + 0.0153442i
\(561\) 273.969 + 568.901i 0.0206185 + 0.0428147i
\(562\) −347.263 + 1521.46i −0.0260648 + 0.114197i
\(563\) 2921.72 12800.9i 0.218714 0.958247i −0.739716 0.672919i \(-0.765040\pi\)
0.958430 0.285328i \(-0.0921025\pi\)
\(564\) 771.217 615.025i 0.0575782 0.0459171i
\(565\) 540.546 260.313i 0.0402495 0.0193831i
\(566\) 10545.5 13223.7i 0.783148 0.982036i
\(567\) 4758.00 + 2291.33i 0.352412 + 0.169712i
\(568\) 38.8275 170.115i 0.00286825 0.0125666i
\(569\) 19815.2 + 9542.52i 1.45993 + 0.703063i 0.984287 0.176577i \(-0.0565024\pi\)
0.475639 + 0.879640i \(0.342217\pi\)
\(570\) −2694.41 5595.00i −0.197994 0.411138i
\(571\) 9875.06i 0.723745i −0.932228 0.361872i \(-0.882138\pi\)
0.932228 0.361872i \(-0.117862\pi\)
\(572\) −38.4455 −0.00281029
\(573\) 8671.31 1979.17i 0.632197 0.144295i
\(574\) −4108.85 8532.11i −0.298781 0.620424i
\(575\) 1406.17 + 1763.28i 0.101985 + 0.127885i
\(576\) −3066.30 3845.01i −0.221810 0.278141i
\(577\) 5663.40i 0.408614i 0.978907 + 0.204307i \(0.0654941\pi\)
−0.978907 + 0.204307i \(0.934506\pi\)
\(578\) 11845.4 9446.37i 0.852427 0.679788i
\(579\) 2961.83 + 676.017i 0.212589 + 0.0485221i
\(580\) 399.859 + 91.2652i 0.0286263 + 0.00653376i
\(581\) −3727.30 16330.4i −0.266152 1.16609i
\(582\) −552.080 + 265.867i −0.0393203 + 0.0189357i
\(583\) −678.164 540.818i −0.0481761 0.0384192i
\(584\) 2493.35 + 10924.1i 0.176670 + 0.774044i
\(585\) 467.582 0.0330464
\(586\) −4212.49 8747.32i −0.296956 0.616636i
\(587\) −16438.7 7916.48i −1.15588 0.556641i −0.245083 0.969502i \(-0.578815\pi\)
−0.910794 + 0.412861i \(0.864529\pi\)
\(588\) 9816.48 2240.55i 0.688478 0.157141i
\(589\) 13516.9 + 3085.13i 0.945590 + 0.215825i
\(590\) −1831.36 −0.127789
\(591\) −1218.76 10020.1i −0.0848277 0.697416i
\(592\) −218.182 −0.0151473
\(593\) 10834.4 + 2472.88i 0.750278 + 0.171246i 0.580527 0.814241i \(-0.302847\pi\)
0.169751 + 0.985487i \(0.445704\pi\)
\(594\) 397.240 90.6675i 0.0274393 0.00626285i
\(595\) −19787.5 9529.14i −1.36337 0.656566i
\(596\) 1428.38 + 2966.07i 0.0981693 + 0.203851i
\(597\) −14595.5 −1.00059
\(598\) −58.2813 255.347i −0.00398545 0.0174614i
\(599\) −1286.50 1025.95i −0.0877542 0.0699816i 0.578630 0.815590i \(-0.303588\pi\)
−0.666384 + 0.745608i \(0.732159\pi\)
\(600\) 6531.15 3145.24i 0.444389 0.214006i
\(601\) 952.024 + 4171.09i 0.0646154 + 0.283099i 0.996905 0.0786137i \(-0.0250494\pi\)
−0.932290 + 0.361712i \(0.882192\pi\)
\(602\) −30262.2 6907.15i −2.04883 0.467632i
\(603\) 6540.76 + 1492.89i 0.441725 + 0.100821i
\(604\) 6421.16 5120.70i 0.432572 0.344964i
\(605\) 8308.38i 0.558320i
\(606\) 5458.17 + 6844.33i 0.365880 + 0.458799i
\(607\) 18101.2 + 22698.2i 1.21039 + 1.51778i 0.793198 + 0.608963i \(0.208414\pi\)
0.417192 + 0.908818i \(0.363014\pi\)
\(608\) 11402.3 + 23677.0i 0.760564 + 1.57933i
\(609\) −1526.25 + 348.356i −0.101554 + 0.0231792i
\(610\) 8734.54 0.579756
\(611\) 316.257i 0.0209401i
\(612\) 3187.23 + 6618.35i 0.210517 + 0.437142i
\(613\) −10412.9 5014.59i −0.686091 0.330404i 0.0581572 0.998307i \(-0.481478\pi\)
−0.744248 + 0.667904i \(0.767192\pi\)
\(614\) −2586.97 + 11334.3i −0.170036 + 0.744974i
\(615\) 3495.02 + 1683.11i 0.229159 + 0.110357i
\(616\) 662.388 830.608i 0.0433253 0.0543282i
\(617\) 15325.4 7380.32i 0.999963 0.481557i 0.139037 0.990287i \(-0.455599\pi\)
0.860926 + 0.508730i \(0.169885\pi\)
\(618\) 1679.99 1339.75i 0.109351 0.0872048i
\(619\) 1797.68 7876.15i 0.116728 0.511421i −0.882432 0.470441i \(-0.844095\pi\)
0.999160 0.0409798i \(-0.0130479\pi\)
\(620\) 604.389 2648.00i 0.0391498 0.171526i
\(621\) −1691.41 3512.25i −0.109298 0.226959i
\(622\) −813.284 185.627i −0.0524272 0.0119662i
\(623\) −21211.0 44045.0i −1.36404 2.83246i
\(624\) −95.5095 −0.00612731
\(625\) −554.497 2429.41i −0.0354878 0.155482i
\(626\) −9213.21 + 7347.29i −0.588233 + 0.469100i
\(627\) −819.094 −0.0521714
\(628\) −4095.21 + 5135.23i −0.260217 + 0.326302i
\(629\) 5112.31 + 1166.85i 0.324072 + 0.0739672i
\(630\) −2970.47 + 3724.85i −0.187851 + 0.235558i
\(631\) 2714.03 11890.9i 0.171226 0.750191i −0.814269 0.580488i \(-0.802862\pi\)
0.985495 0.169703i \(-0.0542809\pi\)
\(632\) 13642.5 6569.88i 0.858654 0.413506i
\(633\) −966.454 4234.31i −0.0606842 0.265875i
\(634\) −1939.63 + 8498.06i −0.121502 + 0.532336i
\(635\) 1076.45 + 858.442i 0.0672720 + 0.0536476i
\(636\) 7689.58 + 6132.23i 0.479421 + 0.382325i
\(637\) −1400.66 + 2908.50i −0.0871212 + 0.180909i
\(638\) −24.0174 + 30.1168i −0.00149037 + 0.00186887i
\(639\) 80.6935 + 64.3509i 0.00499559 + 0.00398385i
\(640\) 4245.15 2044.35i 0.262194 0.126266i
\(641\) −21301.6 + 16987.5i −1.31258 + 1.04675i −0.317437 + 0.948279i \(0.602822\pi\)
−0.995140 + 0.0984666i \(0.968606\pi\)
\(642\) 7622.55 + 9558.38i 0.468595 + 0.587600i
\(643\) 10050.5 2293.96i 0.616411 0.140692i 0.0970964 0.995275i \(-0.469044\pi\)
0.519314 + 0.854583i \(0.326187\pi\)
\(644\) −3376.67 1626.12i −0.206614 0.0995000i
\(645\) 11455.9 5516.89i 0.699344 0.336787i
\(646\) 6960.17 + 30494.5i 0.423907 + 1.85726i
\(647\) 6898.48 14324.8i 0.419176 0.870429i −0.579293 0.815119i \(-0.696671\pi\)
0.998469 0.0553092i \(-0.0176144\pi\)
\(648\) −3895.81 + 889.194i −0.236176 + 0.0539056i
\(649\) −104.807 + 217.634i −0.00633903 + 0.0131631i
\(650\) −190.690 + 835.467i −0.0115069 + 0.0504150i
\(651\) 2306.93 + 10107.3i 0.138888 + 0.608506i
\(652\) 2198.61 9632.75i 0.132062 0.578600i
\(653\) −4302.63 2072.04i −0.257848 0.124173i 0.300495 0.953784i \(-0.402848\pi\)
−0.558343 + 0.829610i \(0.688563\pi\)
\(654\) −19.1475 24.0102i −0.00114484 0.00143559i
\(655\) 3060.66 + 13409.6i 0.182580 + 0.799936i
\(656\) 732.458 + 352.733i 0.0435940 + 0.0209938i
\(657\) −6461.61 1474.82i −0.383701 0.0875772i
\(658\) −2519.37 2009.13i −0.149263 0.119033i
\(659\) 17762.0i 1.04994i −0.851121 0.524970i \(-0.824077\pi\)
0.851121 0.524970i \(-0.175923\pi\)
\(660\) 160.463i 0.00946368i
\(661\) 10005.2 4818.26i 0.588741 0.283523i −0.115701 0.993284i \(-0.536911\pi\)
0.704442 + 0.709761i \(0.251197\pi\)
\(662\) −6910.42 14349.6i −0.405712 0.842469i
\(663\) 2237.92 + 510.790i 0.131091 + 0.0299207i
\(664\) 9909.39 + 7902.48i 0.579155 + 0.461861i
\(665\) 22274.1 17763.0i 1.29887 1.03582i
\(666\) 493.552 1024.87i 0.0287159 0.0596291i
\(667\) 332.048 + 159.906i 0.0192758 + 0.00928273i
\(668\) 7282.56i 0.421812i
\(669\) −66.7028 + 53.1937i −0.00385483 + 0.00307412i
\(670\) 2428.18 5042.16i 0.140013 0.290740i
\(671\) 499.870 1037.99i 0.0287590 0.0597186i
\(672\) −12252.0 + 15363.6i −0.703322 + 0.881938i
\(673\) 1811.94 413.564i 0.103782 0.0236875i −0.170315 0.985390i \(-0.554478\pi\)
0.274096 + 0.961702i \(0.411621\pi\)
\(674\) −11940.1 −0.682367
\(675\) 12754.8i 0.727308i
\(676\) 6313.59 7917.00i 0.359217 0.450444i
\(677\) 246.699 512.275i 0.0140050 0.0290817i −0.893849 0.448368i \(-0.852005\pi\)
0.907854 + 0.419286i \(0.137720\pi\)
\(678\) 638.929i 0.0361916i
\(679\) −1752.74 2197.87i −0.0990633 0.124222i
\(680\) 16201.8 3697.96i 0.913693 0.208544i
\(681\) 7126.32 + 8936.12i 0.401000 + 0.502838i
\(682\) 199.444 + 159.051i 0.0111981 + 0.00893018i
\(683\) 1856.71 2328.24i 0.104019 0.130436i −0.727097 0.686535i \(-0.759131\pi\)
0.831116 + 0.556099i \(0.187702\pi\)
\(684\) −9528.98 −0.532675
\(685\) −9570.59 + 7632.29i −0.533830 + 0.425715i
\(686\) −5978.49 12414.5i −0.332740 0.690942i
\(687\) −14499.8 18182.2i −0.805244 1.00974i
\(688\) 2400.85 1156.19i 0.133040 0.0640686i
\(689\) −3074.24 + 701.676i −0.169985 + 0.0387979i
\(690\) −1065.77 + 243.254i −0.0588015 + 0.0134211i
\(691\) −16362.4 + 7879.70i −0.900801 + 0.433803i −0.826178 0.563409i \(-0.809490\pi\)
−0.0746227 + 0.997212i \(0.523775\pi\)
\(692\) −8819.01 11058.7i −0.484463 0.607497i
\(693\) 272.654 + 566.173i 0.0149456 + 0.0310348i
\(694\) −9684.48 + 7723.12i −0.529709 + 0.422429i
\(695\) 7918.70 0.432192
\(696\) 738.572 926.140i 0.0402234 0.0504386i
\(697\) −15276.1 12182.3i −0.830161 0.662031i
\(698\) 2242.58 + 2812.10i 0.121609 + 0.152492i
\(699\) −16716.1 + 3815.35i −0.904525 + 0.206452i
\(700\) 7645.51 + 9587.16i 0.412818 + 0.517658i
\(701\) 21293.0i 1.14726i 0.819115 + 0.573629i \(0.194465\pi\)
−0.819115 + 0.573629i \(0.805535\pi\)
\(702\) 642.686 1334.55i 0.0345536 0.0717512i
\(703\) −4241.11 + 5318.19i −0.227534 + 0.285319i
\(704\) 541.103i 0.0289681i
\(705\) 1319.99 0.0705159
\(706\) −3618.60 + 825.923i −0.192901 + 0.0440284i
\(707\) −25040.5 + 31399.8i −1.33203 + 1.67031i
\(708\) 1188.39 2467.71i 0.0630823 0.130992i
\(709\) −5211.48 + 10821.7i −0.276052 + 0.573228i −0.992191 0.124730i \(-0.960194\pi\)
0.716138 + 0.697958i \(0.245908\pi\)
\(710\) 67.3116 53.6792i 0.00355797 0.00283739i
\(711\) 8956.54i 0.472428i
\(712\) 33327.9 + 16049.9i 1.75423 + 0.844794i
\(713\) 1058.95 2198.93i 0.0556213 0.115499i
\(714\) −18286.2 + 14582.7i −0.958463 + 0.764349i
\(715\) −40.2222 32.0761i −0.00210381 0.00167773i
\(716\) 6530.25 + 1490.49i 0.340848 + 0.0777962i
\(717\) −7569.52 15718.3i −0.394266 0.818702i
\(718\) 7824.31 3767.99i 0.406686 0.195850i
\(719\) 13572.9i 0.704011i 0.935998 + 0.352005i \(0.114500\pi\)
−0.935998 + 0.352005i \(0.885500\pi\)
\(720\) 408.999i 0.0211701i
\(721\) 7707.32 + 6146.38i 0.398108 + 0.317480i
\(722\) −27359.7 6244.67i −1.41028 0.321887i
\(723\) −13550.0 6525.32i −0.696997 0.335656i
\(724\) 1872.60 + 8204.39i 0.0961251 + 0.421152i
\(725\) −751.828 942.763i −0.0385134 0.0482943i
\(726\) 7971.79 + 3839.01i 0.407522 + 0.196252i
\(727\) −4219.47 + 18486.7i −0.215256 + 0.943100i 0.745674 + 0.666311i \(0.232127\pi\)
−0.960931 + 0.276789i \(0.910730\pi\)
\(728\) −859.406 3765.30i −0.0437523 0.191692i
\(729\) 3782.59 16572.6i 0.192176 0.841976i
\(730\) −2398.80 + 4981.15i −0.121621 + 0.252549i
\(731\) −62438.5 + 14251.2i −3.15919 + 0.721065i
\(732\) −5667.93 + 11769.6i −0.286192 + 0.594285i
\(733\) 560.625 + 2456.26i 0.0282499 + 0.123771i 0.987087 0.160187i \(-0.0512097\pi\)
−0.958837 + 0.283958i \(0.908353\pi\)
\(734\) 13517.7 6509.77i 0.679763 0.327357i
\(735\) 12139.5 + 5846.07i 0.609213 + 0.293382i
\(736\) 4510.14 1029.41i 0.225877 0.0515551i
\(737\) −460.235 577.117i −0.0230027 0.0288445i
\(738\) −3313.80 + 2642.67i −0.165288 + 0.131813i
\(739\) 25197.3 12134.4i 1.25426 0.604020i 0.315609 0.948889i \(-0.397791\pi\)
0.938651 + 0.344870i \(0.112077\pi\)
\(740\) 1041.85 + 830.850i 0.0517558 + 0.0412739i
\(741\) −1856.55 + 2328.04i −0.0920407 + 0.115415i
\(742\) 13940.5 28947.7i 0.689718 1.43221i
\(743\) 16580.2 + 13222.2i 0.818664 + 0.652862i 0.940540 0.339683i \(-0.110320\pi\)
−0.121876 + 0.992545i \(0.538891\pi\)
\(744\) −6133.21 4891.07i −0.302224 0.241015i
\(745\) −980.279 + 4294.88i −0.0482076 + 0.211211i
\(746\) 2652.75 + 11622.5i 0.130193 + 0.570413i
\(747\) −6754.60 + 3252.85i −0.330841 + 0.159324i
\(748\) 179.848 787.966i 0.00879130 0.0385172i
\(749\) −34970.1 + 43851.1i −1.70598 + 2.13923i
\(750\) 8561.26 + 1954.05i 0.416817 + 0.0951358i
\(751\) −22728.6 + 28500.8i −1.10437 + 1.38483i −0.189111 + 0.981956i \(0.560561\pi\)
−0.915255 + 0.402875i \(0.868011\pi\)
\(752\) 276.633 0.0134146
\(753\) −1276.67 + 1018.11i −0.0617855 + 0.0492723i
\(754\) 31.1610 + 136.525i 0.00150506 + 0.00659410i
\(755\) 10990.2 0.529770
\(756\) −9196.41 19096.5i −0.442421 0.918697i
\(757\) −32640.3 7449.94i −1.56715 0.357692i −0.651175 0.758927i \(-0.725724\pi\)
−0.915975 + 0.401235i \(0.868581\pi\)
\(758\) −9495.98 19718.6i −0.455026 0.944871i
\(759\) −32.0851 + 140.574i −0.00153441 + 0.00672268i
\(760\) −4796.98 + 21017.0i −0.228954 + 1.00311i
\(761\) 18511.9 14762.7i 0.881808 0.703218i −0.0739851 0.997259i \(-0.523572\pi\)
0.955793 + 0.294041i \(0.0950003\pi\)
\(762\) 1321.06 636.187i 0.0628042 0.0302449i
\(763\) 87.8433 110.152i 0.00416794 0.00522644i
\(764\) −10257.2 4939.61i −0.485724 0.233912i
\(765\) −2187.35 + 9583.40i −0.103377 + 0.452926i
\(766\) 17708.7 + 8528.04i 0.835300 + 0.402259i <