Properties

Label 197.4.a.a
Level $197$
Weight $4$
Character orbit 197.a
Self dual yes
Analytic conductor $11.623$
Analytic rank $1$
Dimension $22$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,4,Mod(1,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 197.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.6233762711\)
Analytic rank: \(1\)
Dimension: \(22\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 22 q - 6 q^{2} - 34 q^{3} + 68 q^{4} - 31 q^{5} - 24 q^{6} - 102 q^{7} - 93 q^{8} + 152 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 22 q - 6 q^{2} - 34 q^{3} + 68 q^{4} - 31 q^{5} - 24 q^{6} - 102 q^{7} - 93 q^{8} + 152 q^{9} - 133 q^{10} - 100 q^{11} - 272 q^{12} - 223 q^{13} - 55 q^{14} - 166 q^{15} + 112 q^{16} - 114 q^{17} - 389 q^{18} - 529 q^{19} - 441 q^{20} - 148 q^{21} - 671 q^{22} - 208 q^{23} - 555 q^{24} + 35 q^{25} - 408 q^{26} - 994 q^{27} - 1202 q^{28} - 2 q^{29} - 365 q^{30} - 1261 q^{31} - 1020 q^{32} - 790 q^{33} - 814 q^{34} - 968 q^{35} + 94 q^{36} - 792 q^{37} - 184 q^{38} - 368 q^{39} - 1914 q^{40} - 271 q^{41} - 1157 q^{42} - 1349 q^{43} - 998 q^{44} - 1533 q^{45} - 1371 q^{46} - 986 q^{47} - 1966 q^{48} - 40 q^{49} + 1631 q^{50} - 36 q^{51} - 1382 q^{52} + 248 q^{53} + 2903 q^{54} - 566 q^{55} + 4800 q^{56} + 914 q^{57} + 351 q^{58} - 1281 q^{59} + 5149 q^{60} + 510 q^{61} + 2237 q^{62} + 120 q^{63} + 3185 q^{64} + 2558 q^{65} + 8308 q^{66} - 3070 q^{67} + 4625 q^{68} + 302 q^{69} + 2087 q^{70} + 101 q^{71} + 4511 q^{72} - 3352 q^{73} + 4501 q^{74} - 752 q^{75} - 334 q^{76} - 492 q^{77} + 7825 q^{78} - 1313 q^{79} + 3098 q^{80} + 2078 q^{81} - 1243 q^{82} - 2631 q^{83} + 7518 q^{84} + 84 q^{85} + 7448 q^{86} - 1046 q^{87} - 3285 q^{88} + 798 q^{89} + 6009 q^{90} - 3992 q^{91} + 5966 q^{92} + 1978 q^{93} + 3517 q^{94} + 284 q^{95} + 10181 q^{96} - 3693 q^{97} + 2932 q^{98} - 502 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1 −5.55450 −7.58749 22.8525 −2.05060 42.1447 −31.5579 −82.4982 30.5700 11.3901
1.2 −5.05368 2.19389 17.5397 16.4586 −11.0872 −13.1699 −48.2106 −22.1869 −83.1765
1.3 −4.89168 1.98437 15.9285 3.25325 −9.70688 −2.13592 −38.7836 −23.0623 −15.9139
1.4 −3.99259 7.91622 7.94077 −8.81975 −31.6062 2.31327 0.236468 35.6665 35.2137
1.5 −3.51341 −5.88377 4.34403 −3.63670 20.6721 −4.62984 12.8449 7.61880 12.7772
1.6 −3.25705 −0.297531 2.60839 −8.26136 0.969073 15.5528 17.5608 −26.9115 26.9077
1.7 −3.10465 −9.85776 1.63883 −19.1154 30.6049 8.54659 19.7492 70.1754 59.3466
1.8 −1.77551 7.37778 −4.84756 −10.0693 −13.0993 −1.88753 22.8110 27.4316 17.8781
1.9 −1.76902 2.15212 −4.87057 12.0580 −3.80715 −14.2747 22.7683 −22.3684 −21.3308
1.10 −1.44472 −9.83891 −5.91279 14.8390 14.2144 −21.5448 20.1001 69.8042 −21.4381
1.11 −0.906472 −8.01793 −7.17831 3.79100 7.26803 26.0997 13.7587 37.2872 −3.43644
1.12 −0.567396 −4.62395 −7.67806 2.48244 2.62361 27.3890 8.89567 −5.61907 −1.40853
1.13 0.887037 2.87223 −7.21316 −0.0802046 2.54777 9.14732 −13.4946 −18.7503 −0.0711445
1.14 1.28043 5.48907 −6.36049 3.36905 7.02839 −33.5513 −18.3876 3.12992 4.31384
1.15 2.32035 6.85995 −2.61598 −20.6548 15.9175 −15.9478 −24.6328 20.0590 −47.9264
1.16 2.44630 −3.77168 −2.01559 19.5805 −9.22669 −29.7228 −24.5012 −12.7744 47.8998
1.17 2.52805 −1.15089 −1.60896 −0.582279 −2.90951 11.2805 −24.2919 −25.6755 −1.47203
1.18 3.21645 1.35507 2.34554 −13.0467 4.35850 1.96440 −18.1873 −25.1638 −41.9641
1.19 3.48860 −8.28964 4.17032 8.64850 −28.9192 6.87715 −13.3602 41.7181 30.1711
1.20 4.11340 −2.85529 8.92002 −0.445853 −11.7449 −30.9976 3.78443 −18.8473 −1.83397
See all 22 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.22
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(197\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 197.4.a.a 22
3.b odd 2 1 1773.4.a.c 22
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
197.4.a.a 22 1.a even 1 1 trivial
1773.4.a.c 22 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{22} + 6 T_{2}^{21} - 104 T_{2}^{20} - 633 T_{2}^{19} + 4538 T_{2}^{18} + 28116 T_{2}^{17} + \cdots + 772688448 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(197))\). Copy content Toggle raw display