Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [197,4,Mod(1,197)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(197, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("197.1");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 197 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 197.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(11.6233762711\) |
Analytic rank: | \(1\) |
Dimension: | \(22\) |
Twist minimal: | yes |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −5.55450 | −7.58749 | 22.8525 | −2.05060 | 42.1447 | −31.5579 | −82.4982 | 30.5700 | 11.3901 | ||||||||||||||||||
1.2 | −5.05368 | 2.19389 | 17.5397 | 16.4586 | −11.0872 | −13.1699 | −48.2106 | −22.1869 | −83.1765 | ||||||||||||||||||
1.3 | −4.89168 | 1.98437 | 15.9285 | 3.25325 | −9.70688 | −2.13592 | −38.7836 | −23.0623 | −15.9139 | ||||||||||||||||||
1.4 | −3.99259 | 7.91622 | 7.94077 | −8.81975 | −31.6062 | 2.31327 | 0.236468 | 35.6665 | 35.2137 | ||||||||||||||||||
1.5 | −3.51341 | −5.88377 | 4.34403 | −3.63670 | 20.6721 | −4.62984 | 12.8449 | 7.61880 | 12.7772 | ||||||||||||||||||
1.6 | −3.25705 | −0.297531 | 2.60839 | −8.26136 | 0.969073 | 15.5528 | 17.5608 | −26.9115 | 26.9077 | ||||||||||||||||||
1.7 | −3.10465 | −9.85776 | 1.63883 | −19.1154 | 30.6049 | 8.54659 | 19.7492 | 70.1754 | 59.3466 | ||||||||||||||||||
1.8 | −1.77551 | 7.37778 | −4.84756 | −10.0693 | −13.0993 | −1.88753 | 22.8110 | 27.4316 | 17.8781 | ||||||||||||||||||
1.9 | −1.76902 | 2.15212 | −4.87057 | 12.0580 | −3.80715 | −14.2747 | 22.7683 | −22.3684 | −21.3308 | ||||||||||||||||||
1.10 | −1.44472 | −9.83891 | −5.91279 | 14.8390 | 14.2144 | −21.5448 | 20.1001 | 69.8042 | −21.4381 | ||||||||||||||||||
1.11 | −0.906472 | −8.01793 | −7.17831 | 3.79100 | 7.26803 | 26.0997 | 13.7587 | 37.2872 | −3.43644 | ||||||||||||||||||
1.12 | −0.567396 | −4.62395 | −7.67806 | 2.48244 | 2.62361 | 27.3890 | 8.89567 | −5.61907 | −1.40853 | ||||||||||||||||||
1.13 | 0.887037 | 2.87223 | −7.21316 | −0.0802046 | 2.54777 | 9.14732 | −13.4946 | −18.7503 | −0.0711445 | ||||||||||||||||||
1.14 | 1.28043 | 5.48907 | −6.36049 | 3.36905 | 7.02839 | −33.5513 | −18.3876 | 3.12992 | 4.31384 | ||||||||||||||||||
1.15 | 2.32035 | 6.85995 | −2.61598 | −20.6548 | 15.9175 | −15.9478 | −24.6328 | 20.0590 | −47.9264 | ||||||||||||||||||
1.16 | 2.44630 | −3.77168 | −2.01559 | 19.5805 | −9.22669 | −29.7228 | −24.5012 | −12.7744 | 47.8998 | ||||||||||||||||||
1.17 | 2.52805 | −1.15089 | −1.60896 | −0.582279 | −2.90951 | 11.2805 | −24.2919 | −25.6755 | −1.47203 | ||||||||||||||||||
1.18 | 3.21645 | 1.35507 | 2.34554 | −13.0467 | 4.35850 | 1.96440 | −18.1873 | −25.1638 | −41.9641 | ||||||||||||||||||
1.19 | 3.48860 | −8.28964 | 4.17032 | 8.64850 | −28.9192 | 6.87715 | −13.3602 | 41.7181 | 30.1711 | ||||||||||||||||||
1.20 | 4.11340 | −2.85529 | 8.92002 | −0.445853 | −11.7449 | −30.9976 | 3.78443 | −18.8473 | −1.83397 | ||||||||||||||||||
See all 22 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(197\) | \( -1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 197.4.a.a | ✓ | 22 |
3.b | odd | 2 | 1 | 1773.4.a.c | 22 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
197.4.a.a | ✓ | 22 | 1.a | even | 1 | 1 | trivial |
1773.4.a.c | 22 | 3.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{22} + 6 T_{2}^{21} - 104 T_{2}^{20} - 633 T_{2}^{19} + 4538 T_{2}^{18} + 28116 T_{2}^{17} + \cdots + 772688448 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(197))\).