Properties

Label 197.3.i.a.2.6
Level $197$
Weight $3$
Character 197.2
Analytic conductor $5.368$
Analytic rank $0$
Dimension $2688$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,3,Mod(2,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(196))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.2");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 197.i (of order \(196\), degree \(84\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.36786120790\)
Analytic rank: \(0\)
Dimension: \(2688\)
Relative dimension: \(32\) over \(\Q(\zeta_{196})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{196}]$

Embedding invariants

Embedding label 2.6
Character \(\chi\) \(=\) 197.2
Dual form 197.3.i.a.99.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.90099 - 0.0465026i) q^{2} +(-0.438834 + 0.107589i) q^{3} +(4.41565 + 0.141601i) q^{4} +(-1.33348 - 9.17958i) q^{5} +(1.27806 - 0.291708i) q^{6} +(6.15258 - 6.35304i) q^{7} +(-1.21114 - 0.0582831i) q^{8} +(-7.79839 + 4.06842i) q^{9} +O(q^{10})\) \(q+(-2.90099 - 0.0465026i) q^{2} +(-0.438834 + 0.107589i) q^{3} +(4.41565 + 0.141601i) q^{4} +(-1.33348 - 9.17958i) q^{5} +(1.27806 - 0.291708i) q^{6} +(6.15258 - 6.35304i) q^{7} +(-1.21114 - 0.0582831i) q^{8} +(-7.79839 + 4.06842i) q^{9} +(3.44154 + 26.6919i) q^{10} +(15.1946 + 7.61973i) q^{11} +(-1.95297 + 0.412936i) q^{12} +(-17.2282 - 7.29847i) q^{13} +(-18.1440 + 18.1440i) q^{14} +(1.57280 + 3.88484i) q^{15} +(-14.1246 - 0.906828i) q^{16} +(12.9627 - 8.73674i) q^{17} +(22.8123 - 11.4398i) q^{18} +(4.74138 - 3.78112i) q^{19} +(-4.58834 - 40.7226i) q^{20} +(-2.01644 + 3.44988i) q^{21} +(-43.7251 - 22.8114i) q^{22} +(6.08495 - 16.5348i) q^{23} +(0.537758 - 0.104728i) q^{24} +(-58.5198 + 17.3684i) q^{25} +(49.6396 + 21.9740i) q^{26} +(6.03823 - 5.30967i) q^{27} +(28.0672 - 27.1816i) q^{28} +(-33.2570 - 21.6479i) q^{29} +(-4.38202 - 11.3430i) q^{30} +(-19.0625 + 23.1330i) q^{31} +(45.7677 + 3.67582i) q^{32} +(-7.48771 - 1.70902i) q^{33} +(-38.0110 + 24.7424i) q^{34} +(-66.5226 - 48.0064i) q^{35} +(-35.0111 + 16.8604i) q^{36} +(-50.1136 + 3.21740i) q^{37} +(-13.9305 + 10.7485i) q^{38} +(8.34557 + 1.34925i) q^{39} +(1.08001 + 11.1954i) q^{40} +(8.45826 - 43.4314i) q^{41} +(6.01011 - 9.91430i) q^{42} +(12.7732 + 38.4710i) q^{43} +(66.0151 + 35.7976i) q^{44} +(47.7453 + 66.1608i) q^{45} +(-18.4213 + 47.6843i) q^{46} +(12.8822 + 22.8736i) q^{47} +(6.29591 - 1.12170i) q^{48} +(-0.936398 - 29.2003i) q^{49} +(170.573 - 47.6642i) q^{50} +(-4.74850 + 5.22862i) q^{51} +(-75.0404 - 34.6670i) q^{52} +(9.32717 + 21.0702i) q^{53} +(-17.7638 + 15.1225i) q^{54} +(49.6842 - 149.641i) q^{55} +(-7.82188 + 7.33581i) q^{56} +(-1.67387 + 2.16940i) q^{57} +(95.4717 + 64.3470i) q^{58} +(-60.4494 - 7.79409i) q^{59} +(6.39483 + 17.3768i) q^{60} +(-4.06681 - 6.70863i) q^{61} +(56.3758 - 66.2222i) q^{62} +(-22.1334 + 74.5748i) q^{63} +(-76.2478 - 7.35554i) q^{64} +(-44.0234 + 167.880i) q^{65} +(21.6423 + 5.30605i) q^{66} +(38.0471 + 10.6317i) q^{67} +(58.4759 - 36.7428i) q^{68} +(-0.891322 + 7.91070i) q^{69} +(190.749 + 142.360i) q^{70} +(-34.9925 - 10.9988i) q^{71} +(9.68204 - 4.47289i) q^{72} +(-33.6462 - 29.5865i) q^{73} +(145.529 - 7.00324i) q^{74} +(23.8118 - 13.9179i) q^{75} +(21.4717 - 16.0247i) q^{76} +(141.894 - 49.6510i) q^{77} +(-24.1477 - 4.30225i) q^{78} +(9.25861 - 63.7356i) q^{79} +(10.5105 + 130.867i) q^{80} +(43.2118 - 61.9473i) q^{81} +(-26.5570 + 125.601i) q^{82} +(24.6037 + 19.6208i) q^{83} +(-9.39241 + 14.9479i) q^{84} +(-97.4851 - 107.342i) q^{85} +(-35.2661 - 112.198i) q^{86} +(16.9234 + 5.92175i) q^{87} +(-17.9586 - 10.1141i) q^{88} +(55.7211 + 67.6197i) q^{89} +(-135.432 - 194.152i) q^{90} +(-152.366 + 64.5473i) q^{91} +(29.2104 - 72.1502i) q^{92} +(5.87639 - 12.2025i) q^{93} +(-36.3075 - 66.9553i) q^{94} +(-41.0316 - 38.4818i) q^{95} +(-20.4799 + 3.31103i) q^{96} +(9.92086 + 37.8325i) q^{97} +(1.35859 + 84.7535i) q^{98} +(-149.494 + 2.39637i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2688 q - 84 q^{2} - 84 q^{3} - 84 q^{4} - 84 q^{5} - 98 q^{6} - 84 q^{7} - 140 q^{8} - 84 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2688 q - 84 q^{2} - 84 q^{3} - 84 q^{4} - 84 q^{5} - 98 q^{6} - 84 q^{7} - 140 q^{8} - 84 q^{9} - 84 q^{10} - 140 q^{11} - 140 q^{12} - 84 q^{13} - 28 q^{14} - 84 q^{15} + 112 q^{16} - 84 q^{17} - 210 q^{18} - 98 q^{19} - 84 q^{20} - 84 q^{21} - 84 q^{22} - 84 q^{23} - 308 q^{24} - 84 q^{25} + 70 q^{26} - 126 q^{27} - 910 q^{28} - 294 q^{29} + 70 q^{30} - 84 q^{31} - 84 q^{32} - 98 q^{33} - 84 q^{34} - 84 q^{35} + 2198 q^{36} + 126 q^{37} - 140 q^{38} - 84 q^{39} + 476 q^{40} + 28 q^{41} - 588 q^{42} - 84 q^{43} - 84 q^{44} - 966 q^{45} - 448 q^{46} + 266 q^{47} - 1428 q^{48} + 756 q^{49} - 84 q^{50} - 84 q^{51} + 126 q^{52} - 84 q^{53} - 588 q^{54} - 84 q^{55} - 84 q^{56} - 672 q^{57} + 532 q^{58} + 616 q^{59} - 378 q^{60} - 364 q^{61} - 854 q^{62} + 1036 q^{63} - 1428 q^{64} + 28 q^{65} + 406 q^{66} - 84 q^{67} - 966 q^{68} - 504 q^{69} - 84 q^{70} + 434 q^{71} - 532 q^{72} - 84 q^{73} + 546 q^{74} - 84 q^{75} - 308 q^{76} + 700 q^{77} + 2310 q^{78} - 1400 q^{79} - 84 q^{80} - 700 q^{81} - 84 q^{82} - 98 q^{83} - 588 q^{84} + 1666 q^{85} - 84 q^{86} - 84 q^{87} + 420 q^{88} + 868 q^{89} - 1890 q^{90} + 1260 q^{91} + 924 q^{92} - 98 q^{93} - 420 q^{94} - 1834 q^{95} + 364 q^{96} + 504 q^{97} - 980 q^{98} + 630 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/197\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{196}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.90099 0.0465026i −1.45050 0.0232513i −0.714215 0.699927i \(-0.753216\pi\)
−0.736282 + 0.676675i \(0.763420\pi\)
\(3\) −0.438834 + 0.107589i −0.146278 + 0.0358630i −0.310581 0.950547i \(-0.600524\pi\)
0.164303 + 0.986410i \(0.447462\pi\)
\(4\) 4.41565 + 0.141601i 1.10391 + 0.0354003i
\(5\) −1.33348 9.17958i −0.266696 1.83592i −0.503061 0.864251i \(-0.667793\pi\)
0.236365 0.971664i \(-0.424044\pi\)
\(6\) 1.27806 0.291708i 0.213009 0.0486180i
\(7\) 6.15258 6.35304i 0.878940 0.907577i −0.117398 0.993085i \(-0.537455\pi\)
0.996338 + 0.0855076i \(0.0272512\pi\)
\(8\) −1.21114 0.0582831i −0.151392 0.00728539i
\(9\) −7.79839 + 4.06842i −0.866488 + 0.452046i
\(10\) 3.44154 + 26.6919i 0.344154 + 2.66919i
\(11\) 15.1946 + 7.61973i 1.38133 + 0.692703i 0.975244 0.221133i \(-0.0709755\pi\)
0.406085 + 0.913836i \(0.366894\pi\)
\(12\) −1.95297 + 0.412936i −0.162748 + 0.0344113i
\(13\) −17.2282 7.29847i −1.32525 0.561421i −0.391773 0.920062i \(-0.628138\pi\)
−0.933476 + 0.358641i \(0.883240\pi\)
\(14\) −18.1440 + 18.1440i −1.29600 + 1.29600i
\(15\) 1.57280 + 3.88484i 0.104853 + 0.258989i
\(16\) −14.1246 0.906828i −0.882787 0.0566768i
\(17\) 12.9627 8.73674i 0.762512 0.513926i −0.115067 0.993358i \(-0.536708\pi\)
0.877579 + 0.479432i \(0.159157\pi\)
\(18\) 22.8123 11.4398i 1.26735 0.635545i
\(19\) 4.74138 3.78112i 0.249546 0.199006i −0.490726 0.871314i \(-0.663268\pi\)
0.740272 + 0.672308i \(0.234697\pi\)
\(20\) −4.58834 40.7226i −0.229417 2.03613i
\(21\) −2.01644 + 3.44988i −0.0960210 + 0.164280i
\(22\) −43.7251 22.8114i −1.98751 1.03688i
\(23\) 6.08495 16.5348i 0.264563 0.718904i −0.734619 0.678479i \(-0.762639\pi\)
0.999183 0.0404243i \(-0.0128710\pi\)
\(24\) 0.537758 0.104728i 0.0224066 0.00436368i
\(25\) −58.5198 + 17.3684i −2.34079 + 0.694735i
\(26\) 49.6396 + 21.9740i 1.90921 + 0.845153i
\(27\) 6.03823 5.30967i 0.223638 0.196655i
\(28\) 28.0672 27.1816i 1.00240 0.970771i
\(29\) −33.2570 21.6479i −1.14679 0.746480i −0.175528 0.984474i \(-0.556163\pi\)
−0.971267 + 0.237994i \(0.923510\pi\)
\(30\) −4.38202 11.3430i −0.146067 0.378101i
\(31\) −19.0625 + 23.1330i −0.614918 + 0.746226i −0.983008 0.183564i \(-0.941236\pi\)
0.368090 + 0.929790i \(0.380012\pi\)
\(32\) 45.7677 + 3.67582i 1.43024 + 0.114869i
\(33\) −7.48771 1.70902i −0.226900 0.0517885i
\(34\) −38.0110 + 24.7424i −1.11797 + 0.727718i
\(35\) −66.5226 48.0064i −1.90064 1.37161i
\(36\) −35.0111 + 16.8604i −0.972530 + 0.468346i
\(37\) −50.1136 + 3.21740i −1.35442 + 0.0869568i −0.724271 0.689515i \(-0.757824\pi\)
−0.630151 + 0.776472i \(0.717007\pi\)
\(38\) −13.9305 + 10.7485i −0.366593 + 0.282856i
\(39\) 8.34557 + 1.34925i 0.213989 + 0.0345961i
\(40\) 1.08001 + 11.1954i 0.0270003 + 0.279886i
\(41\) 8.45826 43.4314i 0.206299 1.05930i −0.723245 0.690591i \(-0.757350\pi\)
0.929544 0.368711i \(-0.120201\pi\)
\(42\) 6.01011 9.91430i 0.143098 0.236055i
\(43\) 12.7732 + 38.4710i 0.297052 + 0.894674i 0.985542 + 0.169428i \(0.0541922\pi\)
−0.688490 + 0.725246i \(0.741726\pi\)
\(44\) 66.0151 + 35.7976i 1.50034 + 0.813582i
\(45\) 47.7453 + 66.1608i 1.06101 + 1.47024i
\(46\) −18.4213 + 47.6843i −0.400463 + 1.03662i
\(47\) 12.8822 + 22.8736i 0.274089 + 0.486673i 0.973695 0.227856i \(-0.0731716\pi\)
−0.699606 + 0.714529i \(0.746641\pi\)
\(48\) 6.29591 1.12170i 0.131165 0.0233688i
\(49\) −0.936398 29.2003i −0.0191102 0.595925i
\(50\) 170.573 47.6642i 3.41146 0.953283i
\(51\) −4.74850 + 5.22862i −0.0931078 + 0.102522i
\(52\) −75.0404 34.6670i −1.44308 0.666674i
\(53\) 9.32717 + 21.0702i 0.175984 + 0.397551i 0.980538 0.196328i \(-0.0629017\pi\)
−0.804554 + 0.593879i \(0.797596\pi\)
\(54\) −17.7638 + 15.1225i −0.328959 + 0.280047i
\(55\) 49.6842 149.641i 0.903349 2.72074i
\(56\) −7.82188 + 7.33581i −0.139676 + 0.130997i
\(57\) −1.67387 + 2.16940i −0.0293661 + 0.0380597i
\(58\) 95.4717 + 64.3470i 1.64606 + 1.10943i
\(59\) −60.4494 7.79409i −1.02457 0.132103i −0.402785 0.915295i \(-0.631958\pi\)
−0.621781 + 0.783191i \(0.713591\pi\)
\(60\) 6.39483 + 17.3768i 0.106580 + 0.289613i
\(61\) −4.06681 6.70863i −0.0666691 0.109978i 0.820038 0.572308i \(-0.193952\pi\)
−0.886707 + 0.462331i \(0.847013\pi\)
\(62\) 56.3758 66.2222i 0.909287 1.06810i
\(63\) −22.1334 + 74.5748i −0.351324 + 1.18373i
\(64\) −76.2478 7.35554i −1.19137 0.114930i
\(65\) −44.0234 + 167.880i −0.677283 + 2.58277i
\(66\) 21.6423 + 5.30605i 0.327914 + 0.0803948i
\(67\) 38.0471 + 10.6317i 0.567867 + 0.158682i 0.541098 0.840960i \(-0.318009\pi\)
0.0267688 + 0.999642i \(0.491478\pi\)
\(68\) 58.4759 36.7428i 0.859940 0.540336i
\(69\) −0.891322 + 7.91070i −0.0129177 + 0.114648i
\(70\) 190.749 + 142.360i 2.72499 + 2.03371i
\(71\) −34.9925 10.9988i −0.492852 0.154913i 0.0432539 0.999064i \(-0.486228\pi\)
−0.536106 + 0.844151i \(0.680105\pi\)
\(72\) 9.68204 4.47289i 0.134473 0.0621235i
\(73\) −33.6462 29.5865i −0.460907 0.405295i 0.398033 0.917371i \(-0.369693\pi\)
−0.858940 + 0.512076i \(0.828877\pi\)
\(74\) 145.529 7.00324i 1.96661 0.0946384i
\(75\) 23.8118 13.9179i 0.317491 0.185572i
\(76\) 21.4717 16.0247i 0.282522 0.210852i
\(77\) 141.894 49.6510i 1.84279 0.644818i
\(78\) −24.1477 4.30225i −0.309586 0.0551570i
\(79\) 9.25861 63.7356i 0.117198 0.806780i −0.845066 0.534662i \(-0.820439\pi\)
0.962264 0.272118i \(-0.0877242\pi\)
\(80\) 10.5105 + 130.867i 0.131382 + 1.63584i
\(81\) 43.2118 61.9473i 0.533478 0.764781i
\(82\) −26.5570 + 125.601i −0.323866 + 1.53172i
\(83\) 24.6037 + 19.6208i 0.296430 + 0.236395i 0.760399 0.649457i \(-0.225004\pi\)
−0.463969 + 0.885852i \(0.653575\pi\)
\(84\) −9.39241 + 14.9479i −0.111814 + 0.177952i
\(85\) −97.4851 107.342i −1.14688 1.26285i
\(86\) −35.2661 112.198i −0.410071 1.30463i
\(87\) 16.9234 + 5.92175i 0.194522 + 0.0680661i
\(88\) −17.9586 10.1141i −0.204075 0.114933i
\(89\) 55.7211 + 67.6197i 0.626080 + 0.759771i 0.984803 0.173672i \(-0.0555634\pi\)
−0.358723 + 0.933444i \(0.616788\pi\)
\(90\) −135.432 194.152i −1.50480 2.15725i
\(91\) −152.366 + 64.5473i −1.67435 + 0.709311i
\(92\) 29.2104 72.1502i 0.317504 0.784241i
\(93\) 5.87639 12.2025i 0.0631870 0.131209i
\(94\) −36.3075 66.9553i −0.386249 0.712290i
\(95\) −41.0316 38.4818i −0.431912 0.405071i
\(96\) −20.4799 + 3.31103i −0.213332 + 0.0344899i
\(97\) 9.92086 + 37.8325i 0.102277 + 0.390026i 0.998571 0.0534331i \(-0.0170164\pi\)
−0.896295 + 0.443459i \(0.853751\pi\)
\(98\) 1.35859 + 84.7535i 0.0138632 + 0.864832i
\(99\) −149.494 + 2.39637i −1.51004 + 0.0242058i
\(100\) −260.862 + 68.4061i −2.60862 + 0.684061i
\(101\) 8.97185 + 55.4940i 0.0888301 + 0.549446i 0.992600 + 0.121428i \(0.0387473\pi\)
−0.903770 + 0.428018i \(0.859212\pi\)
\(102\) 14.0185 14.9474i 0.137436 0.146543i
\(103\) 114.885 62.2979i 1.11539 0.604834i 0.189215 0.981936i \(-0.439406\pi\)
0.926172 + 0.377102i \(0.123079\pi\)
\(104\) 20.4404 + 9.84356i 0.196542 + 0.0946496i
\(105\) 34.3573 + 13.9097i 0.327213 + 0.132474i
\(106\) −26.0782 61.5583i −0.246021 0.580739i
\(107\) −15.2314 + 10.6248i −0.142349 + 0.0992968i −0.641133 0.767430i \(-0.721535\pi\)
0.498784 + 0.866727i \(0.333780\pi\)
\(108\) 27.4146 22.5906i 0.253839 0.209173i
\(109\) 34.1773 60.6853i 0.313554 0.556746i −0.668877 0.743373i \(-0.733225\pi\)
0.982431 + 0.186627i \(0.0597555\pi\)
\(110\) −151.092 + 431.797i −1.37356 + 3.92542i
\(111\) 21.6454 6.80358i 0.195004 0.0612935i
\(112\) −92.6637 + 84.1547i −0.827355 + 0.751382i
\(113\) −186.040 116.897i −1.64637 1.03448i −0.947763 0.318977i \(-0.896661\pi\)
−0.698607 0.715506i \(-0.746196\pi\)
\(114\) 4.95676 6.21558i 0.0434804 0.0545227i
\(115\) −159.897 33.8085i −1.39040 0.293987i
\(116\) −143.786 100.299i −1.23954 0.864646i
\(117\) 164.046 13.1753i 1.40210 0.112609i
\(118\) 175.001 + 25.4216i 1.48306 + 0.215438i
\(119\) 24.2492 136.106i 0.203775 1.14375i
\(120\) −1.67845 4.79674i −0.0139871 0.0399728i
\(121\) 100.445 + 134.587i 0.830120 + 1.11229i
\(122\) 11.4858 + 19.6508i 0.0941461 + 0.161072i
\(123\) 0.960971 + 19.9692i 0.00781277 + 0.162351i
\(124\) −87.4488 + 99.4480i −0.705232 + 0.802000i
\(125\) 140.214 + 303.508i 1.12171 + 2.42806i
\(126\) 67.6768 215.312i 0.537117 1.70882i
\(127\) 77.4290 103.748i 0.609677 0.816912i −0.384674 0.923052i \(-0.625686\pi\)
0.994351 + 0.106141i \(0.0338494\pi\)
\(128\) 38.3468 + 4.32064i 0.299584 + 0.0337550i
\(129\) −9.74439 15.5081i −0.0755379 0.120218i
\(130\) 135.518 484.972i 1.04245 3.73056i
\(131\) 28.6126 116.705i 0.218416 0.890876i −0.753859 0.657037i \(-0.771810\pi\)
0.972275 0.233840i \(-0.0751291\pi\)
\(132\) −32.8211 8.60671i −0.248645 0.0652023i
\(133\) 5.15006 53.3858i 0.0387223 0.401397i
\(134\) −109.880 32.6118i −0.819999 0.243371i
\(135\) −56.7924 48.3481i −0.420685 0.358134i
\(136\) −16.2088 + 9.82587i −0.119182 + 0.0722490i
\(137\) 203.166 74.7670i 1.48296 0.545745i 0.529781 0.848135i \(-0.322274\pi\)
0.953184 + 0.302390i \(0.0977845\pi\)
\(138\) 2.95359 22.9074i 0.0214028 0.165996i
\(139\) −120.884 + 179.355i −0.869668 + 1.29033i 0.0861245 + 0.996284i \(0.472552\pi\)
−0.955792 + 0.294042i \(0.904999\pi\)
\(140\) −286.943 221.399i −2.04959 1.58142i
\(141\) −8.11409 8.65174i −0.0575468 0.0613599i
\(142\) 101.001 + 33.5348i 0.711278 + 0.236160i
\(143\) −206.164 242.172i −1.44171 1.69351i
\(144\) 113.838 50.3929i 0.790545 0.349951i
\(145\) −154.371 + 334.153i −1.06463 + 2.30450i
\(146\) 96.2315 + 87.3949i 0.659120 + 0.598595i
\(147\) 3.55256 + 12.7134i 0.0241671 + 0.0864854i
\(148\) −221.740 + 7.11076i −1.49824 + 0.0480457i
\(149\) −13.1914 74.0406i −0.0885326 0.496917i −0.996896 0.0787343i \(-0.974912\pi\)
0.908363 0.418183i \(-0.137333\pi\)
\(150\) −69.7251 + 39.2684i −0.464834 + 0.261790i
\(151\) 41.6942 + 16.1072i 0.276121 + 0.106670i 0.494454 0.869204i \(-0.335368\pi\)
−0.218333 + 0.975874i \(0.570062\pi\)
\(152\) −5.96283 + 4.30311i −0.0392291 + 0.0283099i
\(153\) −65.5436 + 120.870i −0.428389 + 0.790001i
\(154\) −413.944 + 137.439i −2.68795 + 0.892460i
\(155\) 237.771 + 144.138i 1.53400 + 0.929922i
\(156\) 36.6601 + 7.13954i 0.235000 + 0.0457663i
\(157\) 258.650 24.9516i 1.64745 0.158928i 0.769819 0.638262i \(-0.220347\pi\)
0.877632 + 0.479335i \(0.159122\pi\)
\(158\) −29.8230 + 184.466i −0.188753 + 1.16751i
\(159\) −6.36000 8.24283i −0.0400000 0.0518417i
\(160\) −27.2878 425.030i −0.170549 2.65644i
\(161\) −67.6080 140.390i −0.419926 0.871985i
\(162\) −128.238 + 177.699i −0.791591 + 1.09691i
\(163\) −40.5463 62.2900i −0.248750 0.382147i 0.691641 0.722241i \(-0.256888\pi\)
−0.940391 + 0.340094i \(0.889541\pi\)
\(164\) 43.4987 190.580i 0.265236 1.16207i
\(165\) −5.70338 + 71.0129i −0.0345660 + 0.430381i
\(166\) −70.4627 58.0639i −0.424474 0.349782i
\(167\) 207.189 80.0410i 1.24066 0.479288i 0.351196 0.936302i \(-0.385775\pi\)
0.889459 + 0.457015i \(0.151081\pi\)
\(168\) 2.64325 4.06075i 0.0157337 0.0241711i
\(169\) 125.974 + 130.079i 0.745409 + 0.769696i
\(170\) 277.812 + 315.931i 1.63419 + 1.85842i
\(171\) −21.5919 + 48.7766i −0.126269 + 0.285243i
\(172\) 50.9546 + 171.683i 0.296248 + 0.998158i
\(173\) −0.839333 4.30980i −0.00485164 0.0249121i 0.979054 0.203599i \(-0.0652640\pi\)
−0.983906 + 0.178687i \(0.942815\pi\)
\(174\) −48.8193 17.9659i −0.280570 0.103253i
\(175\) −249.706 + 478.639i −1.42689 + 2.73508i
\(176\) −207.708 121.404i −1.18016 0.689798i
\(177\) 27.3658 3.08338i 0.154609 0.0174203i
\(178\) −158.502 198.755i −0.890461 1.11660i
\(179\) −127.054 253.360i −0.709798 1.41542i −0.900979 0.433863i \(-0.857150\pi\)
0.191181 0.981555i \(-0.438768\pi\)
\(180\) 201.458 + 298.904i 1.11921 + 1.66058i
\(181\) 14.9242 232.457i 0.0824543 1.28429i −0.722673 0.691190i \(-0.757087\pi\)
0.805127 0.593102i \(-0.202097\pi\)
\(182\) 445.013 180.166i 2.44513 0.989922i
\(183\) 2.50643 + 2.50643i 0.0136963 + 0.0136963i
\(184\) −8.33341 + 19.6712i −0.0452902 + 0.106909i
\(185\) 96.3599 + 455.732i 0.520864 + 2.46341i
\(186\) −17.6148 + 35.1260i −0.0947033 + 0.188849i
\(187\) 263.535 33.9791i 1.40928 0.181706i
\(188\) 53.6443 + 102.826i 0.285342 + 0.546947i
\(189\) 3.41812 71.0293i 0.0180853 0.375817i
\(190\) 117.243 + 113.543i 0.617068 + 0.597597i
\(191\) 50.2370 + 220.103i 0.263021 + 1.15237i 0.917955 + 0.396684i \(0.129839\pi\)
−0.654934 + 0.755686i \(0.727304\pi\)
\(192\) 34.2515 4.97557i 0.178393 0.0259145i
\(193\) 7.86891 245.382i 0.0407715 1.27141i −0.750882 0.660436i \(-0.770371\pi\)
0.791653 0.610970i \(-0.209221\pi\)
\(194\) −27.0210 110.213i −0.139284 0.568110i
\(195\) 1.25687 78.4080i 0.00644550 0.402092i
\(196\) 129.071i 0.658526i
\(197\) 77.8456 180.967i 0.395155 0.918614i
\(198\) 433.792 2.19087
\(199\) 36.8008 + 0.589913i 0.184929 + 0.00296439i 0.108423 0.994105i \(-0.465420\pi\)
0.0765051 + 0.997069i \(0.475624\pi\)
\(200\) 71.8877 17.6247i 0.359438 0.0881237i
\(201\) −17.8402 0.572100i −0.0887572 0.00284627i
\(202\) −23.4466 161.405i −0.116072 0.799035i
\(203\) −342.147 + 78.0928i −1.68545 + 0.384693i
\(204\) −21.7081 + 22.4154i −0.106412 + 0.109879i
\(205\) −409.961 19.7284i −1.99981 0.0962362i
\(206\) −336.177 + 175.383i −1.63193 + 0.851375i
\(207\) 19.8175 + 153.701i 0.0957369 + 0.742516i
\(208\) 236.723 + 118.711i 1.13809 + 0.570726i
\(209\) 100.854 21.3247i 0.482557 0.102032i
\(210\) −99.0235 41.9497i −0.471540 0.199761i
\(211\) −145.026 + 145.026i −0.687327 + 0.687327i −0.961640 0.274314i \(-0.911549\pi\)
0.274314 + 0.961640i \(0.411549\pi\)
\(212\) 38.2019 + 94.3595i 0.180198 + 0.445092i
\(213\) 16.5392 + 1.06185i 0.0776490 + 0.00498523i
\(214\) 44.6802 30.1140i 0.208786 0.140720i
\(215\) 336.115 168.553i 1.56332 0.783969i
\(216\) −7.62259 + 6.07881i −0.0352897 + 0.0281426i
\(217\) 29.6817 + 263.432i 0.136782 + 1.21397i
\(218\) −101.970 + 174.458i −0.467753 + 0.800268i
\(219\) 17.9483 + 9.36360i 0.0819556 + 0.0427562i
\(220\) 240.577 653.726i 1.09353 2.97148i
\(221\) −287.089 + 55.9107i −1.29905 + 0.252989i
\(222\) −63.1095 + 18.7306i −0.284277 + 0.0843720i
\(223\) −48.5475 21.4905i −0.217702 0.0963701i 0.293054 0.956096i \(-0.405328\pi\)
−0.510756 + 0.859726i \(0.670634\pi\)
\(224\) 304.942 268.148i 1.36135 1.19709i
\(225\) 385.699 373.528i 1.71422 1.66013i
\(226\) 534.264 + 347.767i 2.36400 + 1.53879i
\(227\) 152.059 + 393.612i 0.669865 + 1.73397i 0.679132 + 0.734016i \(0.262356\pi\)
−0.00926681 + 0.999957i \(0.502950\pi\)
\(228\) −7.69841 + 9.34231i −0.0337649 + 0.0409750i
\(229\) −121.691 9.77355i −0.531400 0.0426793i −0.188540 0.982066i \(-0.560375\pi\)
−0.342861 + 0.939386i \(0.611396\pi\)
\(230\) 462.286 + 105.514i 2.00994 + 0.458756i
\(231\) −56.9262 + 37.0548i −0.246434 + 0.160411i
\(232\) 39.0171 + 28.1569i 0.168177 + 0.121366i
\(233\) 230.442 110.975i 0.989022 0.476288i 0.131823 0.991273i \(-0.457917\pi\)
0.857199 + 0.514985i \(0.172203\pi\)
\(234\) −476.508 + 30.5929i −2.03636 + 0.130739i
\(235\) 192.792 148.755i 0.820392 0.632998i
\(236\) −265.820 42.9757i −1.12635 0.182100i
\(237\) 2.79426 + 28.9655i 0.0117901 + 0.122217i
\(238\) −76.6760 + 393.715i −0.322168 + 1.65426i
\(239\) 104.017 171.586i 0.435216 0.717934i −0.558544 0.829475i \(-0.688640\pi\)
0.993760 + 0.111541i \(0.0355786\pi\)
\(240\) −18.6922 56.2980i −0.0778843 0.234575i
\(241\) −165.304 89.6387i −0.685911 0.371945i 0.0959603 0.995385i \(-0.469408\pi\)
−0.781871 + 0.623440i \(0.785734\pi\)
\(242\) −285.130 395.106i −1.17822 1.63267i
\(243\) −38.3760 + 99.3379i −0.157926 + 0.408798i
\(244\) −17.0077 30.1988i −0.0697036 0.123766i
\(245\) −266.798 + 47.5338i −1.08897 + 0.194015i
\(246\) −1.85915 57.9751i −0.00755752 0.235671i
\(247\) −109.282 + 30.5372i −0.442437 + 0.123633i
\(248\) 24.4355 26.9062i 0.0985302 0.108493i
\(249\) −12.9079 5.96317i −0.0518390 0.0239485i
\(250\) −392.646 886.994i −1.57058 3.54797i
\(251\) 62.3496 53.0790i 0.248405 0.211470i −0.515344 0.856983i \(-0.672336\pi\)
0.763749 + 0.645513i \(0.223356\pi\)
\(252\) −108.293 + 326.162i −0.429735 + 1.29429i
\(253\) 218.449 204.874i 0.863435 0.809778i
\(254\) −229.445 + 297.371i −0.903328 + 1.17075i
\(255\) 54.3286 + 36.6169i 0.213053 + 0.143596i
\(256\) 192.849 + 24.8651i 0.753316 + 0.0971293i
\(257\) −68.5363 186.235i −0.266678 0.724650i −0.999043 0.0437381i \(-0.986073\pi\)
0.732365 0.680912i \(-0.238417\pi\)
\(258\) 27.5472 + 45.4420i 0.106772 + 0.176132i
\(259\) −287.888 + 338.169i −1.11154 + 1.30567i
\(260\) −218.164 + 735.067i −0.839092 + 2.82718i
\(261\) 347.424 + 33.5156i 1.33113 + 0.128412i
\(262\) −88.4319 + 337.229i −0.337526 + 1.28713i
\(263\) −250.220 61.3465i −0.951407 0.233257i −0.268102 0.963390i \(-0.586397\pi\)
−0.683304 + 0.730134i \(0.739458\pi\)
\(264\) 8.96903 + 2.50626i 0.0339736 + 0.00949342i
\(265\) 180.978 113.716i 0.682937 0.429118i
\(266\) −17.4229 + 154.632i −0.0654995 + 0.581324i
\(267\) −31.7274 23.6788i −0.118829 0.0886847i
\(268\) 166.497 + 52.3334i 0.621258 + 0.195274i
\(269\) 47.1284 21.7723i 0.175199 0.0809380i −0.329831 0.944040i \(-0.606992\pi\)
0.505030 + 0.863102i \(0.331482\pi\)
\(270\) 162.506 + 142.898i 0.601874 + 0.529253i
\(271\) 199.217 9.58687i 0.735119 0.0353759i 0.322865 0.946445i \(-0.395354\pi\)
0.412254 + 0.911069i \(0.364742\pi\)
\(272\) −191.016 + 111.648i −0.702263 + 0.410470i
\(273\) 59.9186 44.7184i 0.219482 0.163804i
\(274\) −592.860 + 207.451i −2.16372 + 0.757120i
\(275\) −1021.53 181.999i −3.71465 0.661816i
\(276\) −5.05593 + 34.8047i −0.0183186 + 0.126104i
\(277\) −13.1132 163.273i −0.0473401 0.589432i −0.975896 0.218238i \(-0.929969\pi\)
0.928555 0.371194i \(-0.121051\pi\)
\(278\) 359.024 514.687i 1.29145 1.85139i
\(279\) 54.5418 257.954i 0.195490 0.924567i
\(280\) 77.7699 + 62.0194i 0.277750 + 0.221498i
\(281\) 33.4940 53.3054i 0.119196 0.189699i −0.781797 0.623533i \(-0.785697\pi\)
0.900993 + 0.433834i \(0.142840\pi\)
\(282\) 23.1366 + 25.4760i 0.0820447 + 0.0903403i
\(283\) 69.1301 + 219.935i 0.244276 + 0.777156i 0.993397 + 0.114724i \(0.0365983\pi\)
−0.749122 + 0.662433i \(0.769524\pi\)
\(284\) −152.957 53.5220i −0.538581 0.188458i
\(285\) 22.1463 + 12.4726i 0.0777062 + 0.0437633i
\(286\) 586.818 + 712.126i 2.05181 + 2.48995i
\(287\) −223.881 320.951i −0.780074 1.11829i
\(288\) −371.870 + 157.537i −1.29121 + 0.547002i
\(289\) −16.7511 + 41.3754i −0.0579621 + 0.143168i
\(290\) 463.369 962.196i 1.59782 3.31792i
\(291\) −8.42398 15.5348i −0.0289484 0.0533843i
\(292\) −144.380 135.408i −0.494453 0.463726i
\(293\) −83.2864 + 13.4651i −0.284254 + 0.0459560i −0.300064 0.953919i \(-0.597008\pi\)
0.0158102 + 0.999875i \(0.494967\pi\)
\(294\) −9.71475 37.0465i −0.0330434 0.126009i
\(295\) 9.06160 + 565.293i 0.0307173 + 1.91625i
\(296\) 60.8819 0.975932i 0.205682 0.00329707i
\(297\) 132.207 34.6687i 0.445141 0.116730i
\(298\) 34.8250 + 215.405i 0.116862 + 0.722835i
\(299\) −225.512 + 240.454i −0.754220 + 0.804195i
\(300\) 107.115 58.0848i 0.357051 0.193616i
\(301\) 322.996 + 155.547i 1.07308 + 0.516767i
\(302\) −120.206 48.6658i −0.398032 0.161145i
\(303\) −9.90770 23.3874i −0.0326987 0.0771861i
\(304\) −70.3988 + 49.1071i −0.231575 + 0.161537i
\(305\) −56.1594 + 46.2774i −0.184129 + 0.151729i
\(306\) 195.762 347.596i 0.639746 1.13593i
\(307\) −21.9304 + 62.6736i −0.0714346 + 0.204148i −0.974065 0.226268i \(-0.927348\pi\)
0.902630 + 0.430416i \(0.141633\pi\)
\(308\) 633.587 199.149i 2.05710 0.646588i
\(309\) −43.7128 + 39.6988i −0.141465 + 0.128475i
\(310\) −683.068 429.200i −2.20344 1.38452i
\(311\) 281.109 352.500i 0.903888 1.13344i −0.0866550 0.996238i \(-0.527618\pi\)
0.990543 0.137202i \(-0.0438108\pi\)
\(312\) −10.0290 2.12053i −0.0321442 0.00679656i
\(313\) 54.7905 + 38.2195i 0.175049 + 0.122107i 0.656374 0.754435i \(-0.272089\pi\)
−0.481325 + 0.876542i \(0.659844\pi\)
\(314\) −751.501 + 60.3566i −2.39332 + 0.192219i
\(315\) 714.079 + 103.731i 2.26692 + 0.329306i
\(316\) 49.9078 280.123i 0.157936 0.886466i
\(317\) 6.85023 + 19.5768i 0.0216096 + 0.0617566i 0.954183 0.299224i \(-0.0967278\pi\)
−0.932573 + 0.360981i \(0.882442\pi\)
\(318\) 18.0670 + 24.2081i 0.0568145 + 0.0761262i
\(319\) −340.376 582.342i −1.06701 1.82552i
\(320\) 34.1542 + 709.731i 0.106732 + 2.21791i
\(321\) 5.54094 6.30123i 0.0172615 0.0196300i
\(322\) 189.602 + 410.413i 0.588826 + 1.27457i
\(323\) 28.4264 90.4377i 0.0880074 0.279993i
\(324\) 199.580 267.419i 0.615987 0.825366i
\(325\) 1134.96 + 127.879i 3.49217 + 0.393473i
\(326\) 114.728 + 182.588i 0.351926 + 0.560087i
\(327\) −8.46909 + 30.3079i −0.0258994 + 0.0926846i
\(328\) −12.7754 + 52.1083i −0.0389495 + 0.158867i
\(329\) 224.576 + 58.8907i 0.682601 + 0.178999i
\(330\) 19.8478 205.743i 0.0601447 0.623463i
\(331\) −448.298 133.052i −1.35437 0.401971i −0.475790 0.879559i \(-0.657838\pi\)
−0.878584 + 0.477587i \(0.841511\pi\)
\(332\) 105.863 + 90.1224i 0.318864 + 0.271453i
\(333\) 377.716 228.974i 1.13428 0.687609i
\(334\) −604.777 + 222.564i −1.81071 + 0.666358i
\(335\) 46.8595 363.433i 0.139879 1.08488i
\(336\) 31.6098 46.8995i 0.0940769 0.139582i
\(337\) 190.362 + 146.880i 0.564873 + 0.435845i 0.853123 0.521710i \(-0.174706\pi\)
−0.288249 + 0.957555i \(0.593073\pi\)
\(338\) −359.401 383.215i −1.06332 1.13377i
\(339\) 94.2173 + 31.2823i 0.277927 + 0.0922782i
\(340\) −415.260 487.788i −1.22135 1.43467i
\(341\) −465.914 + 206.246i −1.36632 + 0.604828i
\(342\) 64.9063 140.496i 0.189784 0.410808i
\(343\) 129.530 + 117.635i 0.377637 + 0.342960i
\(344\) −13.2279 47.3381i −0.0384533 0.137611i
\(345\) 73.8054 2.36680i 0.213929 0.00686028i
\(346\) 2.23448 + 12.5417i 0.00645804 + 0.0362478i
\(347\) −148.060 + 83.3857i −0.426685 + 0.240305i −0.689123 0.724644i \(-0.742004\pi\)
0.262438 + 0.964949i \(0.415474\pi\)
\(348\) 73.8893 + 28.5448i 0.212325 + 0.0820252i
\(349\) −517.773 + 373.654i −1.48359 + 1.07064i −0.505410 + 0.862879i \(0.668659\pi\)
−0.978179 + 0.207762i \(0.933382\pi\)
\(350\) 746.652 1376.92i 2.13329 3.93404i
\(351\) −142.781 + 47.4064i −0.406782 + 0.135061i
\(352\) 667.414 + 404.590i 1.89606 + 1.14940i
\(353\) 234.587 + 45.6857i 0.664551 + 0.129421i 0.512148 0.858897i \(-0.328850\pi\)
0.152403 + 0.988318i \(0.451299\pi\)
\(354\) −79.5314 + 7.67229i −0.224665 + 0.0216731i
\(355\) −54.3029 + 335.883i −0.152966 + 0.946149i
\(356\) 236.470 + 306.475i 0.664241 + 0.860885i
\(357\) 4.00216 + 62.3369i 0.0112105 + 0.174613i
\(358\) 356.800 + 740.903i 0.996649 + 2.06956i
\(359\) −33.7330 + 46.7439i −0.0939639 + 0.130206i −0.855261 0.518197i \(-0.826603\pi\)
0.761298 + 0.648403i \(0.224563\pi\)
\(360\) −53.9700 82.9125i −0.149917 0.230312i
\(361\) −72.1463 + 316.094i −0.199851 + 0.875605i
\(362\) −54.1049 + 673.661i −0.149461 + 1.86094i
\(363\) −58.5585 48.2544i −0.161318 0.132932i
\(364\) −681.933 + 263.443i −1.87344 + 0.723745i
\(365\) −226.725 + 348.311i −0.621165 + 0.954276i
\(366\) −7.15458 7.38769i −0.0195480 0.0201850i
\(367\) 48.5825 + 55.2487i 0.132377 + 0.150541i 0.813365 0.581753i \(-0.197633\pi\)
−0.680988 + 0.732295i \(0.738449\pi\)
\(368\) −100.942 + 228.029i −0.274298 + 0.619644i
\(369\) 110.736 + 373.107i 0.300098 + 1.01113i
\(370\) −258.347 1326.55i −0.698234 3.58528i
\(371\) 191.246 + 70.3804i 0.515488 + 0.189704i
\(372\) 27.6760 53.0497i 0.0743978 0.142607i
\(373\) −66.0000 38.5768i −0.176944 0.103423i 0.413491 0.910508i \(-0.364309\pi\)
−0.590435 + 0.807085i \(0.701044\pi\)
\(374\) −766.093 + 86.3179i −2.04838 + 0.230797i
\(375\) −94.1847 118.104i −0.251159 0.314944i
\(376\) −14.2689 28.4539i −0.0379493 0.0756752i
\(377\) 414.963 + 615.681i 1.10070 + 1.63311i
\(378\) −13.2190 + 205.897i −0.0349709 + 0.544700i
\(379\) 173.054 70.0620i 0.456608 0.184860i −0.135402 0.990791i \(-0.543233\pi\)
0.592010 + 0.805931i \(0.298335\pi\)
\(380\) −175.732 175.732i −0.462453 0.462453i
\(381\) −22.8163 + 53.8585i −0.0598854 + 0.141361i
\(382\) −135.502 640.852i −0.354717 1.67762i
\(383\) 21.9978 43.8661i 0.0574355 0.114533i −0.863345 0.504614i \(-0.831635\pi\)
0.920780 + 0.390081i \(0.127553\pi\)
\(384\) −17.2927 + 2.22965i −0.0450331 + 0.00580638i
\(385\) −644.989 1236.32i −1.67530 3.21123i
\(386\) −34.2385 + 711.484i −0.0887009 + 1.84322i
\(387\) −256.127 248.045i −0.661826 0.640943i
\(388\) 38.4499 + 168.460i 0.0990977 + 0.434175i
\(389\) −663.179 + 96.3373i −1.70483 + 0.247654i −0.925442 0.378888i \(-0.876306\pi\)
−0.779388 + 0.626542i \(0.784470\pi\)
\(390\) −7.29236 + 227.403i −0.0186983 + 0.583083i
\(391\) −65.5826 267.498i −0.167731 0.684139i
\(392\) −0.567782 + 35.4202i −0.00144842 + 0.0903575i
\(393\) 54.2924i 0.138149i
\(394\) −234.245 + 521.364i −0.594530 + 1.32326i
\(395\) −597.412 −1.51244
\(396\) −660.452 10.5870i −1.66781 0.0267348i
\(397\) −237.047 + 58.1168i −0.597095 + 0.146390i −0.525137 0.851018i \(-0.675986\pi\)
−0.0719579 + 0.997408i \(0.522925\pi\)
\(398\) −106.731 3.42267i −0.268169 0.00859966i
\(399\) 3.48371 + 23.9816i 0.00873109 + 0.0601042i
\(400\) 842.318 192.254i 2.10579 0.480634i
\(401\) −143.844 + 148.531i −0.358713 + 0.370400i −0.873422 0.486965i \(-0.838104\pi\)
0.514709 + 0.857365i \(0.327900\pi\)
\(402\) 51.7277 + 2.48927i 0.128676 + 0.00619223i
\(403\) 497.248 259.414i 1.23387 0.643707i
\(404\) 31.7585 + 246.313i 0.0786101 + 0.609685i
\(405\) −626.272 314.060i −1.54635 0.775457i
\(406\) 996.197 210.636i 2.45369 0.518807i
\(407\) −785.973 332.965i −1.93114 0.818096i
\(408\) 6.05581 6.05581i 0.0148427 0.0148427i
\(409\) −10.3283 25.5110i −0.0252525 0.0623741i 0.913766 0.406242i \(-0.133161\pi\)
−0.939018 + 0.343867i \(0.888263\pi\)
\(410\) 1188.38 + 76.2962i 2.89848 + 0.186088i
\(411\) −81.1121 + 54.6688i −0.197353 + 0.133014i
\(412\) 516.113 258.818i 1.25270 0.628199i
\(413\) −421.436 + 336.084i −1.02043 + 0.813762i
\(414\) −50.3430 446.807i −0.121602 1.07924i
\(415\) 147.302 252.015i 0.354944 0.607266i
\(416\) −761.669 397.362i −1.83094 0.955198i
\(417\) 33.7512 91.7130i 0.0809382 0.219935i
\(418\) −293.570 + 57.1727i −0.702320 + 0.136777i
\(419\) 602.873 178.930i 1.43884 0.427040i 0.531362 0.847145i \(-0.321680\pi\)
0.907475 + 0.420105i \(0.138007\pi\)
\(420\) 149.740 + 66.2856i 0.356524 + 0.157823i
\(421\) 358.417 315.171i 0.851346 0.748625i −0.118341 0.992973i \(-0.537758\pi\)
0.969688 + 0.244348i \(0.0785740\pi\)
\(422\) 427.463 413.975i 1.01295 0.980984i
\(423\) −193.520 125.967i −0.457494 0.297795i
\(424\) −10.0684 26.0625i −0.0237463 0.0614682i
\(425\) −606.832 + 736.413i −1.42784 + 1.73274i
\(426\) −47.9308 3.84955i −0.112514 0.00903650i
\(427\) −67.6416 15.4388i −0.158411 0.0361563i
\(428\) −68.7609 + 44.7584i −0.160656 + 0.104576i
\(429\) 116.527 + 84.0922i 0.271624 + 0.196019i
\(430\) −982.904 + 473.342i −2.28582 + 1.10079i
\(431\) 821.195 52.7225i 1.90532 0.122326i 0.933581 0.358366i \(-0.116666\pi\)
0.971743 + 0.236040i \(0.0758495\pi\)
\(432\) −90.1025 + 69.5213i −0.208571 + 0.160929i
\(433\) −362.578 58.6187i −0.837362 0.135378i −0.274146 0.961688i \(-0.588395\pi\)
−0.563216 + 0.826310i \(0.690436\pi\)
\(434\) −73.8560 765.595i −0.170175 1.76404i
\(435\) 31.7922 163.246i 0.0730855 0.375278i
\(436\) 159.508 263.126i 0.365845 0.603499i
\(437\) −33.6690 101.406i −0.0770457 0.232049i
\(438\) −51.6324 27.9984i −0.117882 0.0639232i
\(439\) 128.450 + 177.994i 0.292598 + 0.405453i 0.931446 0.363879i \(-0.118548\pi\)
−0.638848 + 0.769333i \(0.720589\pi\)
\(440\) −68.8958 + 178.340i −0.156581 + 0.405317i
\(441\) 126.102 + 223.906i 0.285945 + 0.507724i
\(442\) 835.444 148.846i 1.89015 0.336756i
\(443\) −10.2233 318.800i −0.0230774 0.719638i −0.944010 0.329916i \(-0.892979\pi\)
0.920933 0.389722i \(-0.127429\pi\)
\(444\) 96.5419 26.9772i 0.217437 0.0607595i
\(445\) 546.417 601.666i 1.22790 1.35206i
\(446\) 139.837 + 64.6015i 0.313535 + 0.144846i
\(447\) 13.7548 + 31.0723i 0.0307713 + 0.0695129i
\(448\) −515.851 + 439.150i −1.15145 + 0.980246i
\(449\) 9.22619 27.7878i 0.0205483 0.0618882i −0.938277 0.345885i \(-0.887579\pi\)
0.958825 + 0.283997i \(0.0916604\pi\)
\(450\) −1136.28 + 1065.67i −2.52506 + 2.36815i
\(451\) 459.455 595.473i 1.01875 1.32034i
\(452\) −804.934 542.518i −1.78083 1.20026i
\(453\) −20.0298 2.58255i −0.0442159 0.00570100i
\(454\) −422.819 1148.94i −0.931320 2.53070i
\(455\) 795.693 + 1312.58i 1.74878 + 2.88479i
\(456\) 2.15372 2.52988i 0.00472307 0.00554799i
\(457\) 70.0115 235.892i 0.153198 0.516175i −0.846675 0.532110i \(-0.821399\pi\)
0.999873 + 0.0159353i \(0.00507258\pi\)
\(458\) 352.569 + 34.0119i 0.769802 + 0.0742619i
\(459\) 31.8826 121.582i 0.0694610 0.264885i
\(460\) −701.260 171.928i −1.52448 0.373757i
\(461\) 767.347 + 214.424i 1.66453 + 0.465128i 0.967699 0.252109i \(-0.0811243\pi\)
0.696829 + 0.717237i \(0.254594\pi\)
\(462\) 166.866 104.849i 0.361181 0.226945i
\(463\) −18.6088 + 165.157i −0.0401917 + 0.356711i 0.957479 + 0.288502i \(0.0931572\pi\)
−0.997671 + 0.0682094i \(0.978271\pi\)
\(464\) 450.111 + 335.926i 0.970067 + 0.723980i
\(465\) −119.849 37.6711i −0.257741 0.0810131i
\(466\) −673.671 + 311.222i −1.44565 + 0.667858i
\(467\) −222.350 195.522i −0.476124 0.418676i 0.388228 0.921564i \(-0.373087\pi\)
−0.864352 + 0.502887i \(0.832271\pi\)
\(468\) 726.234 34.9484i 1.55178 0.0746760i
\(469\) 301.631 176.302i 0.643137 0.375911i
\(470\) −566.206 + 422.571i −1.20469 + 0.899086i
\(471\) −110.820 + 38.7775i −0.235286 + 0.0823302i
\(472\) 72.7582 + 12.9629i 0.154149 + 0.0274637i
\(473\) −99.0539 + 681.880i −0.209416 + 1.44161i
\(474\) −6.75917 84.1586i −0.0142598 0.177550i
\(475\) −211.792 + 303.620i −0.445879 + 0.639201i
\(476\) 126.349 597.563i 0.265438 1.25538i
\(477\) −158.459 126.367i −0.332200 0.264921i
\(478\) −309.731 + 492.933i −0.647972 + 1.03124i
\(479\) 575.329 + 633.501i 1.20110 + 1.32255i 0.933309 + 0.359074i \(0.116907\pi\)
0.267796 + 0.963476i \(0.413705\pi\)
\(480\) 57.7034 + 183.582i 0.120215 + 0.382462i
\(481\) 886.852 + 310.323i 1.84377 + 0.645162i
\(482\) 475.379 + 267.728i 0.986262 + 0.555453i
\(483\) 44.7731 + 54.3338i 0.0926979 + 0.112492i
\(484\) 424.470 + 608.510i 0.877005 + 1.25725i
\(485\) 334.057 141.518i 0.688778 0.291790i
\(486\) 115.948 286.394i 0.238576 0.589288i
\(487\) 98.8714 205.308i 0.203021 0.421578i −0.774453 0.632631i \(-0.781975\pi\)
0.977475 + 0.211053i \(0.0676893\pi\)
\(488\) 4.53446 + 8.36209i 0.00929193 + 0.0171354i
\(489\) 24.4948 + 22.9726i 0.0500916 + 0.0469787i
\(490\) 776.190 125.488i 1.58406 0.256099i
\(491\) 18.0436 + 68.8080i 0.0367486 + 0.140138i 0.983128 0.182919i \(-0.0585546\pi\)
−0.946379 + 0.323057i \(0.895289\pi\)
\(492\) 1.41565 + 88.3130i 0.00287733 + 0.179498i
\(493\) −620.233 + 9.94228i −1.25808 + 0.0201669i
\(494\) 318.446 83.5064i 0.644628 0.169041i
\(495\) 221.345 + 1369.09i 0.447161 + 2.76585i
\(496\) 290.227 309.458i 0.585135 0.623907i
\(497\) −285.170 + 154.637i −0.573783 + 0.311142i
\(498\) 37.1684 + 17.8994i 0.0746354 + 0.0359425i
\(499\) −400.062 161.967i −0.801727 0.324583i −0.0625048 0.998045i \(-0.519909\pi\)
−0.739223 + 0.673461i \(0.764807\pi\)
\(500\) 576.159 + 1360.04i 1.15232 + 2.72008i
\(501\) −82.3102 + 57.4160i −0.164292 + 0.114603i
\(502\) −183.344 + 151.082i −0.365227 + 0.300961i
\(503\) 467.495 830.084i 0.929413 1.65027i 0.184793 0.982777i \(-0.440839\pi\)
0.744620 0.667489i \(-0.232631\pi\)
\(504\) 31.1530 89.0302i 0.0618115 0.176647i
\(505\) 497.448 156.358i 0.985046 0.309620i
\(506\) −643.246 + 584.179i −1.27124 + 1.15450i
\(507\) −69.2767 43.5294i −0.136640 0.0858569i
\(508\) 356.590 447.150i 0.701949 0.880216i
\(509\) 409.610 + 86.6079i 0.804734 + 0.170153i 0.590929 0.806723i \(-0.298761\pi\)
0.213805 + 0.976876i \(0.431414\pi\)
\(510\) −155.904 108.752i −0.305694 0.213239i
\(511\) −394.975 + 31.7223i −0.772946 + 0.0620789i
\(512\) −711.051 103.291i −1.38877 0.201741i
\(513\) 8.55301 48.0064i 0.0166725 0.0935798i
\(514\) 190.163 + 543.454i 0.369966 + 1.05730i
\(515\) −725.065 971.521i −1.40789 1.88645i
\(516\) −40.8318 69.8582i −0.0791315 0.135384i
\(517\) 21.4490 + 445.715i 0.0414874 + 0.862117i
\(518\) 850.886 967.639i 1.64264 1.86803i
\(519\) 0.832015 + 1.80098i 0.00160311 + 0.00347010i
\(520\) 63.1029 200.760i 0.121352 0.386077i
\(521\) 154.748 207.348i 0.297021 0.397982i −0.627805 0.778370i \(-0.716047\pi\)
0.924827 + 0.380389i \(0.124210\pi\)
\(522\) −1006.32 113.385i −1.92781 0.217212i
\(523\) −193.767 308.378i −0.370490 0.589632i 0.608496 0.793557i \(-0.291773\pi\)
−0.978987 + 0.203925i \(0.934630\pi\)
\(524\) 142.869 511.276i 0.272650 0.975717i
\(525\) 58.0829 236.908i 0.110634 0.451254i
\(526\) 723.033 + 189.602i 1.37459 + 0.360460i
\(527\) −44.9940 + 466.410i −0.0853776 + 0.885028i
\(528\) 104.211 + 30.9293i 0.197369 + 0.0585782i
\(529\) 166.432 + 141.686i 0.314617 + 0.267837i
\(530\) −530.305 + 321.474i −1.00057 + 0.606554i
\(531\) 503.118 185.152i 0.947491 0.348685i
\(532\) 30.3004 235.004i 0.0569556 0.441736i
\(533\) −462.704 + 686.514i −0.868112 + 1.28802i
\(534\) 90.9400 + 70.1675i 0.170300 + 0.131400i
\(535\) 117.842 + 125.650i 0.220264 + 0.234859i
\(536\) −45.4605 15.0939i −0.0848144 0.0281603i
\(537\) 83.0143 + 97.5133i 0.154589 + 0.181589i
\(538\) −137.732 + 60.9697i −0.256007 + 0.113327i
\(539\) 208.270 450.823i 0.386402 0.836406i
\(540\) −243.929 221.530i −0.451721 0.410241i
\(541\) 31.6079 + 113.113i 0.0584249 + 0.209082i 0.986627 0.162995i \(-0.0521153\pi\)
−0.928202 + 0.372076i \(0.878646\pi\)
\(542\) −578.373 + 18.5473i −1.06711 + 0.0342201i
\(543\) 18.4606 + 103.616i 0.0339973 + 0.190821i
\(544\) 625.388 352.212i 1.14961 0.647449i
\(545\) −602.640 232.811i −1.10576 0.427176i
\(546\) −175.903 + 126.941i −0.322166 + 0.232493i
\(547\) 174.783 322.322i 0.319531 0.589253i −0.668463 0.743745i \(-0.733048\pi\)
0.987994 + 0.154492i \(0.0493741\pi\)
\(548\) 907.698 301.376i 1.65638 0.549957i
\(549\) 59.0081 + 35.7711i 0.107483 + 0.0651568i
\(550\) 2954.98 + 575.482i 5.37269 + 1.04633i
\(551\) −239.538 + 23.1079i −0.434732 + 0.0419381i
\(552\) 1.54057 9.52898i 0.00279089 0.0172626i
\(553\) −347.951 450.959i −0.629206 0.815477i
\(554\) 30.4487 + 474.263i 0.0549615 + 0.856070i
\(555\) −91.3177 189.623i −0.164536 0.341663i
\(556\) −559.178 + 774.853i −1.00572 + 1.39362i
\(557\) 260.279 + 399.858i 0.467287 + 0.717879i 0.990977 0.134030i \(-0.0427920\pi\)
−0.523690 + 0.851909i \(0.675445\pi\)
\(558\) −170.221 + 745.787i −0.305056 + 1.33654i
\(559\) 60.7189 756.012i 0.108621 1.35244i
\(560\) 896.070 + 738.395i 1.60013 + 1.31856i
\(561\) −111.992 + 43.2646i −0.199630 + 0.0771205i
\(562\) −99.6448 + 153.081i −0.177304 + 0.272386i
\(563\) −420.934 434.649i −0.747663 0.772024i 0.231991 0.972718i \(-0.425476\pi\)
−0.979654 + 0.200694i \(0.935680\pi\)
\(564\) −34.6039 39.3520i −0.0613544 0.0697731i
\(565\) −824.980 + 1863.65i −1.46014 + 3.29849i
\(566\) −190.318 641.245i −0.336251 1.13294i
\(567\) −127.690 655.662i −0.225203 1.15637i
\(568\) 41.7396 + 15.3606i 0.0734852 + 0.0270432i
\(569\) −52.3875 + 100.417i −0.0920694 + 0.176480i −0.928232 0.372002i \(-0.878671\pi\)
0.836163 + 0.548482i \(0.184794\pi\)
\(570\) −63.6662 37.2126i −0.111695 0.0652853i
\(571\) 540.494 60.8991i 0.946575 0.106653i 0.374838 0.927090i \(-0.377698\pi\)
0.571737 + 0.820437i \(0.306270\pi\)
\(572\) −876.056 1098.54i −1.53157 1.92052i
\(573\) −45.7263 91.1835i −0.0798016 0.159134i
\(574\) 634.553 + 941.486i 1.10549 + 1.64022i
\(575\) −68.9080 + 1073.30i −0.119840 + 1.86660i
\(576\) 624.536 252.847i 1.08426 0.438970i
\(577\) −171.407 171.407i −0.297066 0.297066i 0.542798 0.839863i \(-0.317365\pi\)
−0.839863 + 0.542798i \(0.817365\pi\)
\(578\) 50.5188 119.251i 0.0874027 0.206316i
\(579\) 22.9472 + 108.528i 0.0396325 + 0.187441i
\(580\) −728.966 + 1453.64i −1.25684 + 2.50628i
\(581\) 276.028 35.5898i 0.475091 0.0612561i
\(582\) 23.7155 + 45.4581i 0.0407483 + 0.0781068i
\(583\) −18.8268 + 391.224i −0.0322929 + 0.671054i
\(584\) 39.0257 + 37.7943i 0.0668249 + 0.0647163i
\(585\) −339.695 1488.30i −0.580676 2.54411i
\(586\) 242.239 35.1891i 0.413378 0.0600497i
\(587\) 16.2161 505.678i 0.0276254 0.861461i −0.888099 0.459653i \(-0.847974\pi\)
0.915724 0.401808i \(-0.131618\pi\)
\(588\) 13.8866 + 56.6408i 0.0236167 + 0.0963278i
\(589\) −2.91359 + 181.760i −0.00494667 + 0.308590i
\(590\) 1640.33i 2.78022i
\(591\) −14.6912 + 87.7898i −0.0248582 + 0.148544i
\(592\) 710.752 1.20059
\(593\) 49.0775 + 0.786707i 0.0827613 + 0.00132666i 0.0573948 0.998352i \(-0.481721\pi\)
0.0253665 + 0.999678i \(0.491925\pi\)
\(594\) −385.143 + 94.4257i −0.648389 + 0.158966i
\(595\) −1281.73 41.1026i −2.15417 0.0690801i
\(596\) −47.7642 328.805i −0.0801413 0.551687i
\(597\) −16.2129 + 3.70049i −0.0271573 + 0.00619847i
\(598\) 665.390 687.069i 1.11269 1.14895i
\(599\) −345.676 16.6348i −0.577088 0.0277710i −0.242526 0.970145i \(-0.577976\pi\)
−0.334562 + 0.942374i \(0.608588\pi\)
\(600\) −29.6505 + 15.4687i −0.0494175 + 0.0257811i
\(601\) 16.0753 + 124.677i 0.0267476 + 0.207449i 0.999725 0.0234513i \(-0.00746547\pi\)
−0.972977 + 0.230900i \(0.925833\pi\)
\(602\) −929.776 466.260i −1.54448 0.774518i
\(603\) −339.960 + 71.8812i −0.563781 + 0.119206i
\(604\) 181.826 + 77.0278i 0.301037 + 0.127529i
\(605\) 1101.51 1101.51i 1.82067 1.82067i
\(606\) 27.6546 + 68.3074i 0.0456346 + 0.112718i
\(607\) −498.628 32.0130i −0.821464 0.0527397i −0.352340 0.935872i \(-0.614614\pi\)
−0.469124 + 0.883132i \(0.655430\pi\)
\(608\) 230.901 155.625i 0.379771 0.255962i
\(609\) 141.744 71.0810i 0.232748 0.116718i
\(610\) 165.070 131.639i 0.270607 0.215802i
\(611\) −54.9948 488.093i −0.0900079 0.798842i
\(612\) −306.533 + 524.439i −0.500871 + 0.856927i
\(613\) −147.779 77.0960i −0.241074 0.125768i 0.337706 0.941251i \(-0.390349\pi\)
−0.578781 + 0.815483i \(0.696471\pi\)
\(614\) 66.5345 180.796i 0.108362 0.294456i
\(615\) 182.027 35.4498i 0.295979 0.0576419i
\(616\) −174.747 + 51.8641i −0.283681 + 0.0841949i
\(617\) −230.715 102.131i −0.373931 0.165528i 0.209266 0.977859i \(-0.432892\pi\)
−0.583197 + 0.812330i \(0.698199\pi\)
\(618\) 128.656 113.133i 0.208182 0.183063i
\(619\) 514.951 498.702i 0.831907 0.805657i −0.151235 0.988498i \(-0.548325\pi\)
0.983143 + 0.182841i \(0.0585292\pi\)
\(620\) 1029.50 + 670.131i 1.66049 + 1.08086i
\(621\) −51.0519 132.150i −0.0822092 0.212802i
\(622\) −831.888 + 1009.53i −1.33744 + 1.62303i
\(623\) 772.419 + 62.0366i 1.23984 + 0.0995772i
\(624\) −116.654 26.6255i −0.186946 0.0426691i
\(625\) 1320.12 859.302i 2.11219 1.37488i
\(626\) −157.169 113.422i −0.251069 0.181186i
\(627\) −41.9641 + 20.2088i −0.0669283 + 0.0322310i
\(628\) 1145.64 73.5525i 1.82427 0.117122i
\(629\) −621.499 + 479.536i −0.988074 + 0.762378i
\(630\) −2066.72 334.130i −3.28050 0.530366i
\(631\) 78.2215 + 810.848i 0.123964 + 1.28502i 0.822219 + 0.569171i \(0.192736\pi\)
−0.698255 + 0.715849i \(0.746040\pi\)
\(632\) −14.9281 + 76.6529i −0.0236205 + 0.121286i
\(633\) 48.0391 79.2455i 0.0758911 0.125190i
\(634\) −18.9621 57.1108i −0.0299087 0.0900801i
\(635\) −1055.61 572.420i −1.66238 0.901448i
\(636\) −26.9163 37.2980i −0.0423213 0.0586447i
\(637\) −196.985 + 509.905i −0.309239 + 0.800478i
\(638\) 960.349 + 1705.20i 1.50525 + 2.67272i
\(639\) 317.633 56.5907i 0.497078 0.0885614i
\(640\) −11.4729 357.769i −0.0179265 0.559014i
\(641\) −182.018 + 50.8622i −0.283959 + 0.0793482i −0.408165 0.912908i \(-0.633831\pi\)
0.124206 + 0.992256i \(0.460362\pi\)
\(642\) −16.3672 + 18.0222i −0.0254942 + 0.0280719i
\(643\) −6.62564 3.06090i −0.0103043 0.00476035i 0.414229 0.910173i \(-0.364051\pi\)
−0.424533 + 0.905413i \(0.639562\pi\)
\(644\) −278.654 629.484i −0.432693 0.977460i
\(645\) −129.364 + 110.129i −0.200564 + 0.170743i
\(646\) −86.6703 + 261.037i −0.134165 + 0.404082i
\(647\) 293.601 275.355i 0.453788 0.425588i −0.423247 0.906014i \(-0.639110\pi\)
0.877035 + 0.480426i \(0.159518\pi\)
\(648\) −55.9458 + 72.5081i −0.0863361 + 0.111895i
\(649\) −859.116 579.036i −1.32375 0.892197i
\(650\) −3286.55 423.754i −5.05623 0.651929i
\(651\) −41.3677 112.410i −0.0635449 0.172672i
\(652\) −170.218 280.792i −0.261070 0.430663i
\(653\) 11.7039 13.7481i 0.0179233 0.0210537i −0.752412 0.658693i \(-0.771109\pi\)
0.770335 + 0.637640i \(0.220089\pi\)
\(654\) 25.9782 87.5291i 0.0397220 0.133837i
\(655\) −1109.45 107.028i −1.69382 0.163401i
\(656\) −158.854 + 605.780i −0.242156 + 0.923445i
\(657\) 382.757 + 93.8406i 0.582582 + 0.142832i
\(658\) −648.754 181.285i −0.985949 0.275509i
\(659\) −264.783 + 166.374i −0.401795 + 0.252465i −0.717738 0.696314i \(-0.754822\pi\)
0.315942 + 0.948778i \(0.397679\pi\)
\(660\) −35.2397 + 312.761i −0.0533934 + 0.473880i
\(661\) −278.156 207.593i −0.420810 0.314059i 0.366724 0.930330i \(-0.380479\pi\)
−0.787534 + 0.616271i \(0.788643\pi\)
\(662\) 1294.32 + 406.831i 1.95517 + 0.614549i
\(663\) 119.969 55.4232i 0.180949 0.0835945i
\(664\) −28.6548 25.1974i −0.0431549 0.0379479i
\(665\) −496.927 + 23.9134i −0.747258 + 0.0359601i
\(666\) −1106.40 + 646.686i −1.66126 + 0.971000i
\(667\) −560.311 + 418.171i −0.840047 + 0.626944i
\(668\) 926.210 324.095i 1.38654 0.485172i
\(669\) 23.6164 + 4.20759i 0.0353011 + 0.00628938i
\(670\) −152.840 + 1052.14i −0.228119 + 1.57035i
\(671\) −10.6757 132.923i −0.0159101 0.198097i
\(672\) −104.969 + 150.481i −0.156204 + 0.223930i
\(673\) −12.9397 + 61.1981i −0.0192269 + 0.0909333i −0.986926 0.161176i \(-0.948471\pi\)
0.967699 + 0.252109i \(0.0811243\pi\)
\(674\) −545.409 434.949i −0.809212 0.645325i
\(675\) −261.136 + 415.595i −0.386868 + 0.615696i
\(676\) 537.838 + 592.220i 0.795619 + 0.876064i
\(677\) −186.980 594.870i −0.276189 0.878686i −0.984891 0.173178i \(-0.944596\pi\)
0.708702 0.705508i \(-0.249281\pi\)
\(678\) −271.869 95.1311i −0.400987 0.140311i
\(679\) 301.391 + 169.740i 0.443874 + 0.249985i
\(680\) 111.811 + 135.687i 0.164429 + 0.199540i
\(681\) −109.077 156.370i −0.160172 0.229619i
\(682\) 1361.20 576.652i 1.99590 0.845531i
\(683\) −93.5910 + 231.171i −0.137029 + 0.338465i −0.979852 0.199727i \(-0.935994\pi\)
0.842822 + 0.538192i \(0.180892\pi\)
\(684\) −102.249 + 212.323i −0.149487 + 0.310413i
\(685\) −957.248 1765.28i −1.39744 2.57705i
\(686\) −370.294 347.283i −0.539787 0.506243i
\(687\) 54.4535 8.80362i 0.0792628 0.0128146i
\(688\) −145.530 554.970i −0.211526 0.806642i
\(689\) −6.91012 431.077i −0.0100292 0.625656i
\(690\) −214.219 + 3.43391i −0.310462 + 0.00497668i
\(691\) −290.388 + 76.1486i −0.420243 + 0.110201i −0.457719 0.889097i \(-0.651333\pi\)
0.0374763 + 0.999298i \(0.488068\pi\)
\(692\) −3.09593 19.1494i −0.00447389 0.0276726i
\(693\) −904.548 + 964.484i −1.30526 + 1.39175i
\(694\) 433.398 235.016i 0.624493 0.338640i
\(695\) 1807.60 + 870.496i 2.60087 + 1.25251i
\(696\) −20.1514 8.15839i −0.0289532 0.0117218i
\(697\) −269.807 636.886i −0.387097 0.913753i
\(698\) 1519.43 1059.89i 2.17684 1.51847i
\(699\) −89.1861 + 73.4927i −0.127591 + 0.105140i
\(700\) −1170.39 + 2078.14i −1.67198 + 2.96878i
\(701\) 382.283 1092.50i 0.545339 1.55849i −0.259958 0.965620i \(-0.583709\pi\)
0.805298 0.592871i \(-0.202005\pi\)
\(702\) 416.410 130.886i 0.593177 0.186447i
\(703\) −225.442 + 204.741i −0.320686 + 0.291238i
\(704\) −1102.51 692.752i −1.56606 0.984023i
\(705\) −68.5994 + 86.0209i −0.0973040 + 0.122015i
\(706\) −678.409 143.443i −0.960920 0.203177i
\(707\) 407.756 + 284.433i 0.576741 + 0.402310i
\(708\) 121.274 9.74011i 0.171292 0.0137572i
\(709\) −1146.93 166.610i −1.61768 0.234993i −0.726009 0.687685i \(-0.758627\pi\)
−0.891667 + 0.452691i \(0.850464\pi\)
\(710\) 173.152 971.868i 0.243876 1.36883i
\(711\) 187.101 + 534.703i 0.263152 + 0.752044i
\(712\) −63.5448 85.1442i −0.0892483 0.119585i
\(713\) 266.505 + 455.957i 0.373780 + 0.639491i
\(714\) −8.71141 181.025i −0.0122009 0.253536i
\(715\) −1948.12 + 2215.43i −2.72464 + 3.09850i
\(716\) −525.149 1136.74i −0.733448 1.58762i
\(717\) −27.1852 + 86.4889i −0.0379152 + 0.120626i
\(718\) 100.033 134.035i 0.139322 0.186678i
\(719\) −77.2640 8.70556i −0.107460 0.0121079i 0.0580705 0.998312i \(-0.481505\pi\)
−0.165531 + 0.986205i \(0.552934\pi\)
\(720\) −614.387 977.791i −0.853315 1.35804i
\(721\) 311.057 1113.16i 0.431424 1.54391i
\(722\) 223.995 913.630i 0.310242 1.26542i
\(723\) 82.1853 + 21.5515i 0.113673 + 0.0298085i
\(724\) 98.8163 1024.33i 0.136487 1.41483i
\(725\) 2322.18 + 689.212i 3.20301 + 0.950637i
\(726\) 167.634 + 142.709i 0.230901 + 0.196569i
\(727\) 147.809 89.6028i 0.203314 0.123250i −0.413060 0.910704i \(-0.635540\pi\)
0.616374 + 0.787454i \(0.288601\pi\)
\(728\) 188.297 69.2952i 0.258650 0.0951857i
\(729\) −80.7736 + 626.464i −0.110801 + 0.859347i
\(730\) 673.925 999.904i 0.923186 1.36973i
\(731\) 501.687 + 387.091i 0.686302 + 0.529537i
\(732\) 10.7126 + 11.4224i 0.0146347 + 0.0156044i
\(733\) −14.6421 4.86150i −0.0199755 0.00663234i 0.305103 0.952319i \(-0.401309\pi\)
−0.325079 + 0.945687i \(0.605391\pi\)
\(734\) −138.368 162.535i −0.188513 0.221438i
\(735\) 111.966 49.5640i 0.152335 0.0674340i
\(736\) 339.273 734.392i 0.460969 0.997816i
\(737\) 497.100 + 451.453i 0.674491 + 0.612555i
\(738\) −303.894 1087.53i −0.411781 1.47362i
\(739\) −996.557 + 31.9577i −1.34852 + 0.0432445i −0.697921 0.716175i \(-0.745891\pi\)
−0.650601 + 0.759420i \(0.725483\pi\)
\(740\) 360.959 + 2026.00i 0.487783 + 2.73783i
\(741\) 44.6711 25.1583i 0.0602849 0.0339518i
\(742\) −551.531 213.066i −0.743303 0.287151i
\(743\) −749.439 + 540.837i −1.00867 + 0.727910i −0.962572 0.271027i \(-0.912637\pi\)
−0.0460944 + 0.998937i \(0.514677\pi\)
\(744\) −7.82831 + 14.4363i −0.0105219 + 0.0194037i
\(745\) −662.071 + 219.823i −0.888686 + 0.295064i
\(746\) 189.672 + 114.980i 0.254252 + 0.154129i
\(747\) −271.695 52.9125i −0.363714 0.0708334i
\(748\) 1168.49 112.723i 1.56215 0.150699i
\(749\) −26.2128 + 162.135i −0.0349970 + 0.216469i
\(750\) 267.737 + 346.998i 0.356983 + 0.462665i
\(751\) 66.0703 + 1029.10i 0.0879765 + 1.37030i 0.769565 + 0.638569i \(0.220473\pi\)
−0.681588 + 0.731736i \(0.738710\pi\)
\(752\) −161.213 334.763i −0.214379 0.445163i
\(753\) −21.6504 + 30.0010i −0.0287522 + 0.0398419i
\(754\) −1175.17 1805.38i −1.55859 2.39441i
\(755\) 92.2592 404.214i 0.122198 0.535382i
\(756\) 25.1511 313.157i 0.0332686 0.414228i
\(757\) 550.623 + 453.733i 0.727375 + 0.599384i 0.924584 0.380978i \(-0.124412\pi\)
−0.197210 + 0.980361i \(0.563188\pi\)
\(758\) −505.288 + 195.202i −0.666607 + 0.257522i
\(759\) −73.8206 + 113.408i −0.0972604 + 0.149418i
\(760\) 47.4520 + 48.9981i 0.0624369 + 0.0644712i
\(761\) −309.286 351.724i −0.406420 0.462186i 0.511307 0.859398i \(-0.329162\pi\)
−0.917727 + 0.397212i \(0.869978\pi\)
\(762\) 68.6946 155.182i 0.0901503 0.203651i
\(763\) −175.258 590.501i −0.229695 0.773920i
\(764\) 190.662 + 979.010i 0.249558 + 1.28143i
\(765\) 1196.94 + 440.484i 1.56463 + 0.575797i
\(766\) −65.8554 + 126.232i −0.0859731