Properties

Label 197.3.i.a.2.5
Level $197$
Weight $3$
Character 197.2
Analytic conductor $5.368$
Analytic rank $0$
Dimension $2688$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,3,Mod(2,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(196))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.2");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 197.i (of order \(196\), degree \(84\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.36786120790\)
Analytic rank: \(0\)
Dimension: \(2688\)
Relative dimension: \(32\) over \(\Q(\zeta_{196})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{196}]$

Embedding invariants

Embedding label 2.5
Character \(\chi\) \(=\) 197.2
Dual form 197.3.i.a.99.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.90911 - 0.0466327i) q^{2} +(-3.04003 + 0.745325i) q^{3} +(4.46279 + 0.143113i) q^{4} +(1.10267 + 7.59067i) q^{5} +(8.87853 - 2.02647i) q^{6} +(-1.50854 + 1.55769i) q^{7} +(-1.35160 - 0.0650426i) q^{8} +(0.706873 - 0.368775i) q^{9} +O(q^{10})\) \(q+(-2.90911 - 0.0466327i) q^{2} +(-3.04003 + 0.745325i) q^{3} +(4.46279 + 0.143113i) q^{4} +(1.10267 + 7.59067i) q^{5} +(8.87853 - 2.02647i) q^{6} +(-1.50854 + 1.55769i) q^{7} +(-1.35160 - 0.0650426i) q^{8} +(0.706873 - 0.368775i) q^{9} +(-2.85380 - 22.1335i) q^{10} +(13.1349 + 6.58683i) q^{11} +(-13.6737 + 2.89116i) q^{12} +(14.6914 + 6.22377i) q^{13} +(4.46115 - 4.46115i) q^{14} +(-9.00965 - 22.2540i) q^{15} +(-13.8947 - 0.892072i) q^{16} +(13.1741 - 8.87925i) q^{17} +(-2.07357 + 1.03984i) q^{18} +(-24.5122 + 19.5478i) q^{19} +(3.83464 + 34.0334i) q^{20} +(3.42502 - 5.85978i) q^{21} +(-37.9037 - 19.7743i) q^{22} +(-9.59702 + 26.0782i) q^{23} +(4.15738 - 0.809649i) q^{24} +(-32.4357 + 9.62675i) q^{25} +(-42.4486 - 18.7907i) q^{26} +(19.2809 - 16.9545i) q^{27} +(-6.95523 + 6.73576i) q^{28} +(-31.3115 - 20.3816i) q^{29} +(25.1723 + 65.1595i) q^{30} +(-34.4203 + 41.7703i) q^{31} +(45.7750 + 3.67640i) q^{32} +(-44.8398 - 10.2344i) q^{33} +(-38.7391 + 25.2164i) q^{34} +(-13.4873 - 9.73322i) q^{35} +(3.20741 - 1.54461i) q^{36} +(45.5135 - 2.92207i) q^{37} +(72.2201 - 55.7236i) q^{38} +(-49.3009 - 7.97059i) q^{39} +(-0.996644 - 10.3313i) q^{40} +(8.68344 - 44.5876i) q^{41} +(-10.2370 + 16.8870i) q^{42} +(-12.2630 - 36.9342i) q^{43} +(57.6757 + 31.2754i) q^{44} +(3.57870 + 4.95901i) q^{45} +(29.1349 - 75.4168i) q^{46} +(-9.02239 - 16.0202i) q^{47} +(42.9053 - 7.64417i) q^{48} +(1.41982 + 44.2751i) q^{49} +(94.8079 - 26.4927i) q^{50} +(-33.4319 + 36.8122i) q^{51} +(64.6738 + 29.8779i) q^{52} +(9.66411 + 21.8314i) q^{53} +(-56.8807 + 48.4233i) q^{54} +(-35.5151 + 106.966i) q^{55} +(2.14026 - 2.00725i) q^{56} +(59.9482 - 77.6954i) q^{57} +(90.1382 + 60.7523i) q^{58} +(-14.4458 - 1.86258i) q^{59} +(-37.0234 - 100.604i) q^{60} +(-34.2843 - 56.5556i) q^{61} +(102.080 - 119.909i) q^{62} +(-0.491908 + 1.65740i) q^{63} +(-77.5569 - 7.48182i) q^{64} +(-31.0429 + 118.380i) q^{65} +(129.967 + 31.8640i) q^{66} +(-3.69593 - 1.03277i) q^{67} +(60.0642 - 37.7409i) q^{68} +(9.73848 - 86.4314i) q^{69} +(38.7822 + 28.9439i) q^{70} +(99.0599 + 31.1365i) q^{71} +(-0.979395 + 0.452459i) q^{72} +(-50.6879 - 44.5720i) q^{73} +(-132.540 + 6.37819i) q^{74} +(91.4304 - 53.4407i) q^{75} +(-112.190 + 83.7297i) q^{76} +(-30.0748 + 10.5236i) q^{77} +(143.050 + 25.4864i) q^{78} +(11.0995 - 76.4083i) q^{79} +(-8.54982 - 106.454i) q^{80} +(-50.0830 + 71.7978i) q^{81} +(-27.3403 + 129.305i) q^{82} +(-53.3030 - 42.5077i) q^{83} +(16.1238 - 25.6608i) q^{84} +(81.9261 + 90.2098i) q^{85} +(33.9521 + 108.018i) q^{86} +(110.379 + 38.6232i) q^{87} +(-17.3247 - 9.75708i) q^{88} +(30.6962 + 37.2510i) q^{89} +(-10.1796 - 14.5932i) q^{90} +(-31.8572 + 13.4958i) q^{91} +(-46.5616 + 115.008i) q^{92} +(73.5063 - 152.637i) q^{93} +(25.5001 + 47.0251i) q^{94} +(-175.410 - 164.509i) q^{95} +(-141.897 + 22.9409i) q^{96} +(10.6453 + 40.5951i) q^{97} +(-2.06573 - 128.867i) q^{98} +(11.7138 - 0.187771i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2688 q - 84 q^{2} - 84 q^{3} - 84 q^{4} - 84 q^{5} - 98 q^{6} - 84 q^{7} - 140 q^{8} - 84 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2688 q - 84 q^{2} - 84 q^{3} - 84 q^{4} - 84 q^{5} - 98 q^{6} - 84 q^{7} - 140 q^{8} - 84 q^{9} - 84 q^{10} - 140 q^{11} - 140 q^{12} - 84 q^{13} - 28 q^{14} - 84 q^{15} + 112 q^{16} - 84 q^{17} - 210 q^{18} - 98 q^{19} - 84 q^{20} - 84 q^{21} - 84 q^{22} - 84 q^{23} - 308 q^{24} - 84 q^{25} + 70 q^{26} - 126 q^{27} - 910 q^{28} - 294 q^{29} + 70 q^{30} - 84 q^{31} - 84 q^{32} - 98 q^{33} - 84 q^{34} - 84 q^{35} + 2198 q^{36} + 126 q^{37} - 140 q^{38} - 84 q^{39} + 476 q^{40} + 28 q^{41} - 588 q^{42} - 84 q^{43} - 84 q^{44} - 966 q^{45} - 448 q^{46} + 266 q^{47} - 1428 q^{48} + 756 q^{49} - 84 q^{50} - 84 q^{51} + 126 q^{52} - 84 q^{53} - 588 q^{54} - 84 q^{55} - 84 q^{56} - 672 q^{57} + 532 q^{58} + 616 q^{59} - 378 q^{60} - 364 q^{61} - 854 q^{62} + 1036 q^{63} - 1428 q^{64} + 28 q^{65} + 406 q^{66} - 84 q^{67} - 966 q^{68} - 504 q^{69} - 84 q^{70} + 434 q^{71} - 532 q^{72} - 84 q^{73} + 546 q^{74} - 84 q^{75} - 308 q^{76} + 700 q^{77} + 2310 q^{78} - 1400 q^{79} - 84 q^{80} - 700 q^{81} - 84 q^{82} - 98 q^{83} - 588 q^{84} + 1666 q^{85} - 84 q^{86} - 84 q^{87} + 420 q^{88} + 868 q^{89} - 1890 q^{90} + 1260 q^{91} + 924 q^{92} - 98 q^{93} - 420 q^{94} - 1834 q^{95} + 364 q^{96} + 504 q^{97} - 980 q^{98} + 630 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/197\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{196}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.90911 0.0466327i −1.45455 0.0233164i −0.716278 0.697815i \(-0.754156\pi\)
−0.738276 + 0.674499i \(0.764360\pi\)
\(3\) −3.04003 + 0.745325i −1.01334 + 0.248442i −0.709821 0.704383i \(-0.751224\pi\)
−0.303522 + 0.952824i \(0.598163\pi\)
\(4\) 4.46279 + 0.143113i 1.11570 + 0.0357783i
\(5\) 1.10267 + 7.59067i 0.220533 + 1.51813i 0.745208 + 0.666832i \(0.232350\pi\)
−0.524675 + 0.851302i \(0.675813\pi\)
\(6\) 8.87853 2.02647i 1.47976 0.337744i
\(7\) −1.50854 + 1.55769i −0.215506 + 0.222527i −0.817433 0.576023i \(-0.804604\pi\)
0.601927 + 0.798551i \(0.294400\pi\)
\(8\) −1.35160 0.0650426i −0.168950 0.00813032i
\(9\) 0.706873 0.368775i 0.0785415 0.0409750i
\(10\) −2.85380 22.1335i −0.285380 2.21335i
\(11\) 13.1349 + 6.58683i 1.19408 + 0.598803i 0.930663 0.365879i \(-0.119231\pi\)
0.263419 + 0.964682i \(0.415150\pi\)
\(12\) −13.6737 + 2.89116i −1.13947 + 0.240930i
\(13\) 14.6914 + 6.22377i 1.13011 + 0.478751i 0.873043 0.487643i \(-0.162143\pi\)
0.257062 + 0.966395i \(0.417245\pi\)
\(14\) 4.46115 4.46115i 0.318653 0.318653i
\(15\) −9.00965 22.2540i −0.600643 1.48360i
\(16\) −13.8947 0.892072i −0.868421 0.0557545i
\(17\) 13.1741 8.87925i 0.774950 0.522309i −0.106655 0.994296i \(-0.534014\pi\)
0.881605 + 0.471987i \(0.156463\pi\)
\(18\) −2.07357 + 1.03984i −0.115198 + 0.0577691i
\(19\) −24.5122 + 19.5478i −1.29011 + 1.02883i −0.292755 + 0.956187i \(0.594572\pi\)
−0.997358 + 0.0726437i \(0.976856\pi\)
\(20\) 3.83464 + 34.0334i 0.191732 + 1.70167i
\(21\) 3.42502 5.85978i 0.163096 0.279037i
\(22\) −37.9037 19.7743i −1.72289 0.898833i
\(23\) −9.59702 + 26.0782i −0.417262 + 1.13383i 0.539251 + 0.842145i \(0.318707\pi\)
−0.956513 + 0.291690i \(0.905782\pi\)
\(24\) 4.15738 0.809649i 0.173224 0.0337354i
\(25\) −32.4357 + 9.62675i −1.29743 + 0.385070i
\(26\) −42.4486 18.7907i −1.63264 0.722720i
\(27\) 19.2809 16.9545i 0.714106 0.627943i
\(28\) −6.95523 + 6.73576i −0.248401 + 0.240563i
\(29\) −31.3115 20.3816i −1.07971 0.702812i −0.122575 0.992459i \(-0.539115\pi\)
−0.957134 + 0.289647i \(0.906462\pi\)
\(30\) 25.1723 + 65.1595i 0.839076 + 2.17198i
\(31\) −34.4203 + 41.7703i −1.11033 + 1.34743i −0.178753 + 0.983894i \(0.557206\pi\)
−0.931580 + 0.363536i \(0.881569\pi\)
\(32\) 45.7750 + 3.67640i 1.43047 + 0.114888i
\(33\) −44.8398 10.2344i −1.35878 0.310133i
\(34\) −38.7391 + 25.2164i −1.13939 + 0.741657i
\(35\) −13.4873 9.73322i −0.385352 0.278092i
\(36\) 3.20741 1.54461i 0.0890946 0.0429057i
\(37\) 45.5135 2.92207i 1.23010 0.0789748i 0.564593 0.825370i \(-0.309033\pi\)
0.665503 + 0.746395i \(0.268217\pi\)
\(38\) 72.2201 55.7236i 1.90053 1.46641i
\(39\) −49.3009 7.97059i −1.26413 0.204374i
\(40\) −0.996644 10.3313i −0.0249161 0.258281i
\(41\) 8.68344 44.5876i 0.211791 1.08750i −0.711290 0.702899i \(-0.751889\pi\)
0.923081 0.384605i \(-0.125662\pi\)
\(42\) −10.2370 + 16.8870i −0.243738 + 0.402072i
\(43\) −12.2630 36.9342i −0.285186 0.858936i −0.988917 0.148469i \(-0.952565\pi\)
0.703731 0.710467i \(-0.251516\pi\)
\(44\) 57.6757 + 31.2754i 1.31081 + 0.710806i
\(45\) 3.57870 + 4.95901i 0.0795266 + 0.110200i
\(46\) 29.1349 75.4168i 0.633367 1.63950i
\(47\) −9.02239 16.0202i −0.191966 0.340855i 0.758506 0.651666i \(-0.225930\pi\)
−0.950472 + 0.310812i \(0.899399\pi\)
\(48\) 42.9053 7.64417i 0.893860 0.159254i
\(49\) 1.41982 + 44.2751i 0.0289759 + 0.903574i
\(50\) 94.8079 26.4927i 1.89616 0.529854i
\(51\) −33.4319 + 36.8122i −0.655527 + 0.721808i
\(52\) 64.6738 + 29.8779i 1.24373 + 0.574575i
\(53\) 9.66411 + 21.8314i 0.182342 + 0.411913i 0.982087 0.188426i \(-0.0603385\pi\)
−0.799746 + 0.600339i \(0.795032\pi\)
\(54\) −56.8807 + 48.4233i −1.05335 + 0.896727i
\(55\) −35.5151 + 106.966i −0.645729 + 1.94483i
\(56\) 2.14026 2.00725i 0.0382189 0.0358438i
\(57\) 59.9482 77.6954i 1.05172 1.36308i
\(58\) 90.1382 + 60.7523i 1.55411 + 1.04745i
\(59\) −14.4458 1.86258i −0.244844 0.0315692i 0.00447710 0.999990i \(-0.498575\pi\)
−0.249321 + 0.968421i \(0.580208\pi\)
\(60\) −37.0234 100.604i −0.617056 1.67674i
\(61\) −34.2843 56.5556i −0.562038 0.927140i −0.999609 0.0279566i \(-0.991100\pi\)
0.437571 0.899184i \(-0.355839\pi\)
\(62\) 102.080 119.909i 1.64646 1.93402i
\(63\) −0.491908 + 1.65740i −0.00780807 + 0.0263080i
\(64\) −77.5569 7.48182i −1.21183 0.116903i
\(65\) −31.0429 + 118.380i −0.477583 + 1.82123i
\(66\) 129.967 + 31.8640i 1.96919 + 0.482787i
\(67\) −3.69593 1.03277i −0.0551631 0.0154145i 0.241434 0.970417i \(-0.422382\pi\)
−0.296597 + 0.955003i \(0.595852\pi\)
\(68\) 60.0642 37.7409i 0.883298 0.555013i
\(69\) 9.73848 86.4314i 0.141137 1.25263i
\(70\) 38.7822 + 28.9439i 0.554032 + 0.413485i
\(71\) 99.0599 + 31.1365i 1.39521 + 0.438542i 0.902138 0.431447i \(-0.141997\pi\)
0.493071 + 0.869989i \(0.335874\pi\)
\(72\) −0.979395 + 0.452459i −0.0136027 + 0.00628416i
\(73\) −50.6879 44.5720i −0.694355 0.610575i 0.238366 0.971175i \(-0.423388\pi\)
−0.932721 + 0.360600i \(0.882572\pi\)
\(74\) −132.540 + 6.37819i −1.79108 + 0.0861917i
\(75\) 91.4304 53.4407i 1.21907 0.712543i
\(76\) −112.190 + 83.7297i −1.47619 + 1.10171i
\(77\) −30.0748 + 10.5236i −0.390581 + 0.136670i
\(78\) 143.050 + 25.4864i 1.83397 + 0.326748i
\(79\) 11.0995 76.4083i 0.140500 0.967194i −0.793155 0.609020i \(-0.791563\pi\)
0.933655 0.358174i \(-0.116600\pi\)
\(80\) −8.54982 106.454i −0.106873 1.33068i
\(81\) −50.0830 + 71.7978i −0.618309 + 0.886393i
\(82\) −27.3403 + 129.305i −0.333419 + 1.57689i
\(83\) −53.3030 42.5077i −0.642205 0.512141i 0.247376 0.968920i \(-0.420432\pi\)
−0.889581 + 0.456778i \(0.849003\pi\)
\(84\) 16.1238 25.6608i 0.191950 0.305486i
\(85\) 81.9261 + 90.2098i 0.963837 + 1.06129i
\(86\) 33.9521 + 108.018i 0.394792 + 1.25602i
\(87\) 110.379 + 38.6232i 1.26872 + 0.443945i
\(88\) −17.3247 9.75708i −0.196871 0.110876i
\(89\) 30.6962 + 37.2510i 0.344901 + 0.418551i 0.915272 0.402837i \(-0.131976\pi\)
−0.570370 + 0.821388i \(0.693200\pi\)
\(90\) −10.1796 14.5932i −0.113106 0.162146i
\(91\) −31.8572 + 13.4958i −0.350079 + 0.148306i
\(92\) −46.5616 + 115.008i −0.506105 + 1.25009i
\(93\) 73.5063 152.637i 0.790390 1.64126i
\(94\) 25.5001 + 47.0251i 0.271277 + 0.500268i
\(95\) −175.410 164.509i −1.84642 1.73167i
\(96\) −141.897 + 22.9409i −1.47810 + 0.238967i
\(97\) 10.6453 + 40.5951i 0.109745 + 0.418506i 0.999263 0.0383951i \(-0.0122245\pi\)
−0.889517 + 0.456901i \(0.848959\pi\)
\(98\) −2.06573 128.867i −0.0210789 1.31497i
\(99\) 11.7138 0.187771i 0.118321 0.00189667i
\(100\) −146.132 + 38.3202i −1.46132 + 0.383202i
\(101\) −7.93039 49.0523i −0.0785187 0.485666i −0.996108 0.0881371i \(-0.971909\pi\)
0.917590 0.397529i \(-0.130132\pi\)
\(102\) 98.9736 105.532i 0.970329 1.03462i
\(103\) −170.421 + 92.4134i −1.65458 + 0.897217i −0.666096 + 0.745866i \(0.732036\pi\)
−0.988480 + 0.151351i \(0.951638\pi\)
\(104\) −19.4520 9.36760i −0.187039 0.0900731i
\(105\) 48.2563 + 19.5368i 0.459584 + 0.186065i
\(106\) −27.0959 63.9605i −0.255622 0.603401i
\(107\) −15.8448 + 11.0526i −0.148082 + 0.103296i −0.643822 0.765176i \(-0.722652\pi\)
0.495740 + 0.868471i \(0.334897\pi\)
\(108\) 88.4729 72.9050i 0.819193 0.675046i
\(109\) 8.63140 15.3259i 0.0791871 0.140605i −0.828884 0.559420i \(-0.811024\pi\)
0.908071 + 0.418815i \(0.137555\pi\)
\(110\) 108.305 309.519i 0.984594 2.81381i
\(111\) −136.185 + 42.8056i −1.22689 + 0.385636i
\(112\) 22.3503 20.2980i 0.199557 0.181232i
\(113\) 121.955 + 76.6297i 1.07925 + 0.678139i 0.949614 0.313422i \(-0.101476\pi\)
0.129638 + 0.991561i \(0.458618\pi\)
\(114\) −178.019 + 223.229i −1.56157 + 1.95815i
\(115\) −208.533 44.0923i −1.81333 0.383411i
\(116\) −136.820 95.4397i −1.17948 0.822756i
\(117\) 12.6801 1.01840i 0.108377 0.00870427i
\(118\) 41.9376 + 6.09210i 0.355403 + 0.0516280i
\(119\) −6.04260 + 33.9160i −0.0507781 + 0.285008i
\(120\) 10.7300 + 30.6645i 0.0894165 + 0.255538i
\(121\) 56.7678 + 76.0637i 0.469155 + 0.628625i
\(122\) 97.0995 + 166.125i 0.795897 + 1.36168i
\(123\) 6.83437 + 142.020i 0.0555640 + 1.15463i
\(124\) −159.589 + 181.486i −1.28701 + 1.46360i
\(125\) −28.4181 61.5139i −0.227345 0.492111i
\(126\) 1.50830 4.79863i 0.0119707 0.0380843i
\(127\) −85.1018 + 114.029i −0.670093 + 0.897863i −0.998917 0.0465281i \(-0.985184\pi\)
0.328824 + 0.944391i \(0.393348\pi\)
\(128\) 42.7381 + 4.81543i 0.333891 + 0.0376205i
\(129\) 64.8079 + 103.141i 0.502387 + 0.799544i
\(130\) 95.8276 342.933i 0.737135 2.63795i
\(131\) −20.5128 + 83.6674i −0.156586 + 0.638683i 0.838942 + 0.544220i \(0.183174\pi\)
−0.995528 + 0.0944624i \(0.969887\pi\)
\(132\) −198.646 52.0911i −1.50489 0.394630i
\(133\) 6.52814 67.6710i 0.0490838 0.508804i
\(134\) 10.7037 + 3.17680i 0.0798784 + 0.0237075i
\(135\) 149.956 + 127.660i 1.11079 + 0.945626i
\(136\) −18.3837 + 11.1443i −0.135174 + 0.0819434i
\(137\) 146.532 53.9252i 1.06958 0.393615i 0.250986 0.967991i \(-0.419245\pi\)
0.818592 + 0.574376i \(0.194755\pi\)
\(138\) −32.3608 + 250.984i −0.234499 + 1.81873i
\(139\) 60.3677 89.5676i 0.434300 0.644371i −0.546938 0.837173i \(-0.684207\pi\)
0.981238 + 0.192802i \(0.0617575\pi\)
\(140\) −58.7982 45.3675i −0.419987 0.324054i
\(141\) 39.3686 + 41.9772i 0.279210 + 0.297710i
\(142\) −286.724 95.1989i −2.01918 0.670415i
\(143\) 151.975 + 178.518i 1.06276 + 1.24838i
\(144\) −10.1508 + 4.49346i −0.0704916 + 0.0312046i
\(145\) 120.184 260.150i 0.828852 1.79414i
\(146\) 145.378 + 132.029i 0.995740 + 0.904305i
\(147\) −37.3157 133.540i −0.253848 0.908432i
\(148\) 203.536 6.52699i 1.37524 0.0441013i
\(149\) 35.2272 + 197.724i 0.236424 + 1.32700i 0.845535 + 0.533920i \(0.179282\pi\)
−0.609111 + 0.793085i \(0.708474\pi\)
\(150\) −268.473 + 151.201i −1.78982 + 1.00801i
\(151\) −105.543 40.7731i −0.698959 0.270020i −0.0153637 0.999882i \(-0.504891\pi\)
−0.683595 + 0.729862i \(0.739584\pi\)
\(152\) 34.4020 24.8264i 0.226329 0.163332i
\(153\) 6.03801 11.1348i 0.0394641 0.0727765i
\(154\) 87.9815 29.2119i 0.571308 0.189687i
\(155\) −355.019 215.215i −2.29045 1.38848i
\(156\) −218.879 42.6267i −1.40307 0.273248i
\(157\) −79.3056 + 7.65052i −0.505131 + 0.0487294i −0.345446 0.938439i \(-0.612272\pi\)
−0.159685 + 0.987168i \(0.551048\pi\)
\(158\) −35.8528 + 221.762i −0.226917 + 1.40356i
\(159\) −45.6506 59.1652i −0.287111 0.372108i
\(160\) 22.5681 + 351.517i 0.141051 + 2.19698i
\(161\) −26.1443 54.2892i −0.162387 0.337200i
\(162\) 149.045 206.532i 0.920032 1.27489i
\(163\) −24.0675 36.9741i −0.147653 0.226835i 0.756552 0.653934i \(-0.226883\pi\)
−0.904205 + 0.427099i \(0.859536\pi\)
\(164\) 45.1335 197.743i 0.275204 1.20575i
\(165\) 28.2426 351.649i 0.171167 2.13121i
\(166\) 153.082 + 126.145i 0.922181 + 0.759911i
\(167\) 143.343 55.3760i 0.858341 0.331593i 0.109213 0.994018i \(-0.465167\pi\)
0.749128 + 0.662426i \(0.230473\pi\)
\(168\) −5.01039 + 7.69730i −0.0298237 + 0.0458172i
\(169\) 59.5307 + 61.4704i 0.352253 + 0.363730i
\(170\) −234.125 266.250i −1.37721 1.56618i
\(171\) −10.1182 + 22.8573i −0.0591710 + 0.133668i
\(172\) −49.4415 166.585i −0.287451 0.968517i
\(173\) 30.8836 + 158.581i 0.178518 + 0.916651i 0.957243 + 0.289286i \(0.0934177\pi\)
−0.778725 + 0.627365i \(0.784133\pi\)
\(174\) −319.303 117.506i −1.83507 0.675324i
\(175\) 33.9351 65.0472i 0.193915 0.371698i
\(176\) −176.630 103.240i −1.00358 0.586589i
\(177\) 45.3039 5.10453i 0.255954 0.0288391i
\(178\) −87.5616 109.799i −0.491919 0.616847i
\(179\) −33.9344 67.6692i −0.189578 0.378040i 0.778897 0.627152i \(-0.215780\pi\)
−0.968475 + 0.249112i \(0.919861\pi\)
\(180\) 15.2613 + 22.6432i 0.0847849 + 0.125795i
\(181\) −8.19384 + 127.626i −0.0452699 + 0.705115i 0.910959 + 0.412496i \(0.135343\pi\)
−0.956229 + 0.292619i \(0.905473\pi\)
\(182\) 93.3055 37.7752i 0.512667 0.207556i
\(183\) 146.378 + 146.378i 0.799878 + 0.799878i
\(184\) 14.6675 34.6230i 0.0797147 0.188169i
\(185\) 72.3667 + 342.256i 0.391171 + 1.85003i
\(186\) −220.956 + 440.611i −1.18793 + 2.36888i
\(187\) 231.527 29.8521i 1.23811 0.159637i
\(188\) −37.9724 72.7859i −0.201981 0.387159i
\(189\) −2.67611 + 55.6101i −0.0141593 + 0.294233i
\(190\) 502.614 + 486.754i 2.64534 + 2.56187i
\(191\) −16.6673 73.0241i −0.0872633 0.382325i 0.912371 0.409364i \(-0.134249\pi\)
−0.999634 + 0.0270387i \(0.991392\pi\)
\(192\) 241.352 35.0602i 1.25704 0.182605i
\(193\) 9.44117 294.411i 0.0489180 1.52544i −0.621473 0.783436i \(-0.713465\pi\)
0.670391 0.742008i \(-0.266126\pi\)
\(194\) −29.0752 118.592i −0.149872 0.611299i
\(195\) 6.13971 383.016i 0.0314857 1.96418i
\(196\) 197.794i 1.00915i
\(197\) 165.876 106.274i 0.842010 0.539461i
\(198\) −34.0854 −0.172148
\(199\) 61.5309 + 0.986335i 0.309201 + 0.00495646i 0.170435 0.985369i \(-0.445483\pi\)
0.138765 + 0.990325i \(0.455687\pi\)
\(200\) 44.4662 10.9018i 0.222331 0.0545090i
\(201\) 12.0055 + 0.384993i 0.0597288 + 0.00191539i
\(202\) 20.7829 + 143.068i 0.102886 + 0.708259i
\(203\) 78.9829 18.0273i 0.389078 0.0888046i
\(204\) −154.468 + 159.501i −0.757195 + 0.781866i
\(205\) 348.025 + 16.7479i 1.69768 + 0.0816971i
\(206\) 500.084 260.893i 2.42759 1.26647i
\(207\) 2.83312 + 21.9731i 0.0136866 + 0.106150i
\(208\) −198.581 99.5834i −0.954715 0.478766i
\(209\) −450.723 + 95.3008i −2.15657 + 0.455985i
\(210\) −139.472 59.0850i −0.664151 0.281357i
\(211\) 57.4463 57.4463i 0.272258 0.272258i −0.557751 0.830008i \(-0.688336\pi\)
0.830008 + 0.557751i \(0.188336\pi\)
\(212\) 40.0046 + 98.8120i 0.188701 + 0.466094i
\(213\) −324.352 20.8241i −1.52278 0.0977656i
\(214\) 46.6095 31.4144i 0.217802 0.146796i
\(215\) 266.834 133.811i 1.24109 0.622375i
\(216\) −27.1627 + 21.6616i −0.125753 + 0.100285i
\(217\) −13.1409 116.628i −0.0605570 0.537458i
\(218\) −25.8244 + 44.1823i −0.118460 + 0.202671i
\(219\) 187.313 + 97.7212i 0.855312 + 0.446216i
\(220\) −173.805 + 472.283i −0.790021 + 2.14674i
\(221\) 248.809 48.4555i 1.12583 0.219256i
\(222\) 398.172 118.175i 1.79357 0.532321i
\(223\) 102.954 + 45.5746i 0.461677 + 0.204371i 0.622511 0.782611i \(-0.286112\pi\)
−0.160835 + 0.986981i \(0.551419\pi\)
\(224\) −74.7801 + 65.7573i −0.333840 + 0.293559i
\(225\) −19.3778 + 18.7664i −0.0861237 + 0.0834062i
\(226\) −351.208 228.611i −1.55402 1.01155i
\(227\) 93.6866 + 242.512i 0.412717 + 1.06833i 0.971084 + 0.238739i \(0.0767342\pi\)
−0.558367 + 0.829594i \(0.688572\pi\)
\(228\) 278.656 338.159i 1.22217 1.48315i
\(229\) 68.5452 + 5.50519i 0.299324 + 0.0240401i 0.228811 0.973471i \(-0.426516\pi\)
0.0705127 + 0.997511i \(0.477536\pi\)
\(230\) 604.590 + 137.994i 2.62865 + 0.599973i
\(231\) 83.5846 54.4076i 0.361838 0.235531i
\(232\) 40.9950 + 29.5843i 0.176702 + 0.127518i
\(233\) −74.0065 + 35.6397i −0.317625 + 0.152960i −0.585902 0.810382i \(-0.699260\pi\)
0.268278 + 0.963342i \(0.413545\pi\)
\(234\) −36.9353 + 2.37133i −0.157843 + 0.0101339i
\(235\) 111.655 86.1509i 0.475128 0.366600i
\(236\) −64.2021 10.3797i −0.272043 0.0439818i
\(237\) 23.2062 + 240.556i 0.0979163 + 1.01501i
\(238\) 19.1602 98.3834i 0.0805049 0.413376i
\(239\) −152.723 + 251.933i −0.639009 + 1.05411i 0.353906 + 0.935281i \(0.384853\pi\)
−0.992915 + 0.118831i \(0.962085\pi\)
\(240\) 105.335 + 317.251i 0.438894 + 1.32188i
\(241\) 312.687 + 169.559i 1.29746 + 0.703564i 0.970414 0.241445i \(-0.0776215\pi\)
0.327042 + 0.945010i \(0.393948\pi\)
\(242\) −161.597 223.925i −0.667755 0.925309i
\(243\) 15.4705 40.0459i 0.0636645 0.164798i
\(244\) −144.910 257.302i −0.593893 1.05452i
\(245\) −334.512 + 59.5980i −1.36536 + 0.243257i
\(246\) −13.2592 413.469i −0.0538990 1.68077i
\(247\) −481.778 + 134.626i −1.95052 + 0.545044i
\(248\) 49.2393 54.2179i 0.198546 0.218621i
\(249\) 193.725 + 89.4967i 0.778011 + 0.359424i
\(250\) 79.8027 + 180.276i 0.319211 + 0.721103i
\(251\) 118.198 100.623i 0.470907 0.400889i −0.381006 0.924573i \(-0.624422\pi\)
0.851913 + 0.523684i \(0.175443\pi\)
\(252\) −2.43248 + 7.32625i −0.00965271 + 0.0290724i
\(253\) −297.829 + 279.321i −1.17719 + 1.10403i
\(254\) 252.888 327.753i 0.995621 1.29037i
\(255\) −316.293 213.179i −1.24037 0.835995i
\(256\) 185.004 + 23.8536i 0.722671 + 0.0931782i
\(257\) −121.337 329.712i −0.472129 1.28293i −0.921081 0.389372i \(-0.872692\pi\)
0.448952 0.893556i \(-0.351798\pi\)
\(258\) −183.724 303.071i −0.712107 1.17469i
\(259\) −64.1073 + 75.3041i −0.247519 + 0.290749i
\(260\) −155.480 + 523.863i −0.597999 + 2.01486i
\(261\) −29.6495 2.86025i −0.113600 0.0109588i
\(262\) 63.5755 242.441i 0.242655 0.925348i
\(263\) 291.534 + 71.4755i 1.10849 + 0.271770i 0.749787 0.661680i \(-0.230156\pi\)
0.358708 + 0.933450i \(0.383217\pi\)
\(264\) 59.9397 + 16.7493i 0.227044 + 0.0634443i
\(265\) −155.059 + 97.4298i −0.585127 + 0.367660i
\(266\) −22.1467 + 196.558i −0.0832585 + 0.738939i
\(267\) −121.082 90.3655i −0.453489 0.338448i
\(268\) −16.3464 5.13799i −0.0609939 0.0191716i
\(269\) −396.088 + 182.984i −1.47245 + 0.680239i −0.981590 0.191002i \(-0.938826\pi\)
−0.490857 + 0.871240i \(0.663316\pi\)
\(270\) −430.286 378.368i −1.59365 1.40136i
\(271\) −285.226 + 13.7259i −1.05249 + 0.0506489i −0.567102 0.823647i \(-0.691936\pi\)
−0.485393 + 0.874296i \(0.661323\pi\)
\(272\) −190.972 + 111.623i −0.702104 + 0.410377i
\(273\) 86.7881 64.7717i 0.317905 0.237259i
\(274\) −428.793 + 150.041i −1.56494 + 0.547595i
\(275\) −489.450 87.2022i −1.77982 0.317099i
\(276\) 55.8303 384.332i 0.202284 1.39251i
\(277\) 13.9571 + 173.780i 0.0503866 + 0.627364i 0.971340 + 0.237693i \(0.0763911\pi\)
−0.920954 + 0.389672i \(0.872588\pi\)
\(278\) −179.793 + 257.747i −0.646737 + 0.927147i
\(279\) −8.92693 + 42.2197i −0.0319962 + 0.151325i
\(280\) 17.5964 + 14.0327i 0.0628442 + 0.0501166i
\(281\) 16.9560 26.9853i 0.0603415 0.0960329i −0.815191 0.579192i \(-0.803368\pi\)
0.875532 + 0.483159i \(0.160511\pi\)
\(282\) −112.570 123.952i −0.399184 0.439546i
\(283\) −140.453 446.848i −0.496302 1.57897i −0.783688 0.621155i \(-0.786664\pi\)
0.287386 0.957815i \(-0.407214\pi\)
\(284\) 437.628 + 153.133i 1.54094 + 0.539199i
\(285\) 655.863 + 369.375i 2.30127 + 1.29605i
\(286\) −433.786 526.416i −1.51673 1.84061i
\(287\) 56.3545 + 80.7884i 0.196357 + 0.281493i
\(288\) 33.7129 14.2819i 0.117059 0.0495901i
\(289\) −13.7351 + 33.9258i −0.0475261 + 0.117390i
\(290\) −361.758 + 751.199i −1.24744 + 2.59034i
\(291\) −62.6185 115.476i −0.215184 0.396825i
\(292\) −219.831 206.170i −0.752845 0.706061i
\(293\) −11.7038 + 1.89219i −0.0399448 + 0.00645797i −0.179540 0.983751i \(-0.557461\pi\)
0.139595 + 0.990209i \(0.455420\pi\)
\(294\) 102.328 + 390.221i 0.348054 + 1.32728i
\(295\) −1.79066 111.707i −0.00607002 0.378668i
\(296\) −61.7061 + 0.989143i −0.208467 + 0.00334170i
\(297\) 364.928 95.6955i 1.22872 0.322207i
\(298\) −93.2594 576.842i −0.312951 1.93571i
\(299\) −303.298 + 323.395i −1.01437 + 1.08159i
\(300\) 415.683 225.410i 1.38561 0.751367i
\(301\) 76.0314 + 36.6148i 0.252596 + 0.121644i
\(302\) 305.134 + 123.535i 1.01038 + 0.409056i
\(303\) 60.6685 + 143.210i 0.200226 + 0.472639i
\(304\) 358.028 249.745i 1.17772 0.821529i
\(305\) 391.491 322.603i 1.28358 1.05771i
\(306\) −18.0845 + 32.1108i −0.0590995 + 0.104937i
\(307\) 28.0278 80.0989i 0.0912958 0.260908i −0.889177 0.457564i \(-0.848722\pi\)
0.980473 + 0.196655i \(0.0630079\pi\)
\(308\) −135.724 + 42.6606i −0.440661 + 0.138509i
\(309\) 449.208 407.959i 1.45375 1.32025i
\(310\) 1022.75 + 642.638i 3.29920 + 2.07303i
\(311\) −138.089 + 173.158i −0.444016 + 0.556778i −0.952597 0.304236i \(-0.901599\pi\)
0.508581 + 0.861014i \(0.330170\pi\)
\(312\) 66.1166 + 13.9797i 0.211912 + 0.0448067i
\(313\) 4.53056 + 3.16032i 0.0144746 + 0.0100969i 0.579332 0.815092i \(-0.303314\pi\)
−0.564857 + 0.825189i \(0.691069\pi\)
\(314\) 231.065 18.5579i 0.735877 0.0591017i
\(315\) −13.1232 1.90635i −0.0416610 0.00605192i
\(316\) 60.4699 339.406i 0.191360 1.07407i
\(317\) 74.0744 + 211.693i 0.233673 + 0.667800i 0.999688 + 0.0249768i \(0.00795120\pi\)
−0.766015 + 0.642823i \(0.777763\pi\)
\(318\) 130.044 + 174.247i 0.408942 + 0.547945i
\(319\) −277.024 473.953i −0.868414 1.48575i
\(320\) −28.7273 596.959i −0.0897727 1.86550i
\(321\) 39.9307 45.4098i 0.124395 0.141464i
\(322\) 73.5249 + 159.152i 0.228338 + 0.494262i
\(323\) −149.357 + 475.175i −0.462406 + 1.47113i
\(324\) −233.785 + 313.251i −0.721560 + 0.966825i
\(325\) −536.440 60.4422i −1.65058 0.185976i
\(326\) 68.2907 + 108.684i 0.209481 + 0.333387i
\(327\) −14.8169 + 53.0244i −0.0453116 + 0.162154i
\(328\) −14.6366 + 59.6998i −0.0446239 + 0.182012i
\(329\) 38.5651 + 10.1130i 0.117219 + 0.0307385i
\(330\) −98.5592 + 1021.67i −0.298664 + 3.09597i
\(331\) 566.801 + 168.224i 1.71239 + 0.508229i 0.984187 0.177132i \(-0.0566820\pi\)
0.728204 + 0.685361i \(0.240355\pi\)
\(332\) −231.797 197.332i −0.698183 0.594372i
\(333\) 31.0947 18.8498i 0.0933776 0.0566060i
\(334\) −419.582 + 154.410i −1.25623 + 0.462306i
\(335\) 3.76407 29.1934i 0.0112360 0.0871445i
\(336\) −52.8171 + 78.3647i −0.157194 + 0.233228i
\(337\) −89.4921 69.0503i −0.265555 0.204897i 0.469449 0.882960i \(-0.344453\pi\)
−0.735004 + 0.678062i \(0.762820\pi\)
\(338\) −170.315 181.600i −0.503890 0.537278i
\(339\) −427.862 142.060i −1.26213 0.419056i
\(340\) 352.709 + 414.312i 1.03738 + 1.21857i
\(341\) −727.242 + 321.928i −2.13267 + 0.944071i
\(342\) 30.5010 66.0225i 0.0891841 0.193048i
\(343\) −149.766 136.013i −0.436635 0.396540i
\(344\) 14.1724 + 50.7179i 0.0411988 + 0.147436i
\(345\) 666.810 21.3833i 1.93278 0.0619806i
\(346\) −82.4486 462.768i −0.238291 1.33748i
\(347\) 435.741 245.405i 1.25574 0.707219i 0.287628 0.957742i \(-0.407133\pi\)
0.968111 + 0.250523i \(0.0806027\pi\)
\(348\) 487.071 + 188.164i 1.39963 + 0.540702i
\(349\) −471.398 + 340.187i −1.35071 + 0.974748i −0.351453 + 0.936206i \(0.614312\pi\)
−0.999257 + 0.0385423i \(0.987729\pi\)
\(350\) −101.754 + 187.647i −0.290726 + 0.536134i
\(351\) 388.783 129.085i 1.10764 0.367763i
\(352\) 577.034 + 349.801i 1.63930 + 0.993754i
\(353\) −62.3597 12.1446i −0.176656 0.0344038i 0.102055 0.994779i \(-0.467458\pi\)
−0.278711 + 0.960375i \(0.589907\pi\)
\(354\) −132.032 + 12.7370i −0.372972 + 0.0359801i
\(355\) −127.117 + 786.264i −0.358076 + 2.21483i
\(356\) 131.660 + 170.637i 0.369831 + 0.479316i
\(357\) −6.90874 107.609i −0.0193522 0.301426i
\(358\) 95.5634 + 198.439i 0.266937 + 0.554300i
\(359\) 244.786 339.201i 0.681856 0.944849i −0.318139 0.948044i \(-0.603058\pi\)
0.999995 + 0.00319521i \(0.00101707\pi\)
\(360\) −4.51442 6.93535i −0.0125400 0.0192649i
\(361\) 138.400 606.368i 0.383378 1.67969i
\(362\) 29.7883 370.895i 0.0822882 1.02457i
\(363\) −229.268 188.925i −0.631592 0.520455i
\(364\) −144.104 + 55.6698i −0.395889 + 0.152939i
\(365\) 282.440 433.903i 0.773807 1.18878i
\(366\) −419.002 432.654i −1.14482 1.18212i
\(367\) 129.715 + 147.513i 0.353446 + 0.401944i 0.900290 0.435291i \(-0.143354\pi\)
−0.546844 + 0.837235i \(0.684171\pi\)
\(368\) 156.612 353.789i 0.425575 0.961382i
\(369\) −10.3047 34.7201i −0.0279261 0.0940923i
\(370\) −194.562 999.035i −0.525844 2.70010i
\(371\) −48.5853 17.8798i −0.130958 0.0481936i
\(372\) 349.888 670.669i 0.940558 1.80287i
\(373\) 182.760 + 106.823i 0.489973 + 0.286388i 0.728863 0.684659i \(-0.240049\pi\)
−0.238890 + 0.971047i \(0.576784\pi\)
\(374\) −674.930 + 76.0463i −1.80463 + 0.203332i
\(375\) 132.240 + 165.823i 0.352639 + 0.442195i
\(376\) 11.1527 + 22.2397i 0.0296613 + 0.0591481i
\(377\) −333.159 494.309i −0.883712 1.31116i
\(378\) 10.3783 161.651i 0.0274559 0.427648i
\(379\) −447.381 + 181.124i −1.18042 + 0.477901i −0.879570 0.475770i \(-0.842170\pi\)
−0.300854 + 0.953670i \(0.597272\pi\)
\(380\) −759.273 759.273i −1.99809 1.99809i
\(381\) 173.723 410.079i 0.455967 1.07632i
\(382\) 45.0816 + 213.212i 0.118015 + 0.558148i
\(383\) −75.4786 + 150.513i −0.197072 + 0.392984i −0.970572 0.240813i \(-0.922586\pi\)
0.773500 + 0.633797i \(0.218504\pi\)
\(384\) −133.514 + 17.2147i −0.347693 + 0.0448300i
\(385\) −113.044 216.684i −0.293620 0.562815i
\(386\) −41.1946 + 856.032i −0.106722 + 2.21770i
\(387\) −22.2888 21.5855i −0.0575939 0.0557766i
\(388\) 41.6980 + 182.691i 0.107469 + 0.470853i
\(389\) −497.672 + 72.2947i −1.27936 + 0.185848i −0.749368 0.662154i \(-0.769643\pi\)
−0.529994 + 0.848001i \(0.677806\pi\)
\(390\) −35.7222 + 1113.95i −0.0915953 + 2.85628i
\(391\) 105.122 + 428.772i 0.268855 + 1.09660i
\(392\) 0.960746 59.9346i 0.00245088 0.152894i
\(393\) 269.640i 0.686107i
\(394\) −487.507 + 301.427i −1.23733 + 0.765043i
\(395\) 592.229 1.49931
\(396\) 52.3030 + 0.838412i 0.132078 + 0.00211720i
\(397\) 496.520 121.732i 1.25068 0.306630i 0.443145 0.896450i \(-0.353863\pi\)
0.807535 + 0.589820i \(0.200801\pi\)
\(398\) −178.954 5.73871i −0.449634 0.0144189i
\(399\) 30.5912 + 210.587i 0.0766696 + 0.527788i
\(400\) 459.273 104.826i 1.14818 0.262065i
\(401\) 101.186 104.483i 0.252335 0.260557i −0.580269 0.814425i \(-0.697053\pi\)
0.832605 + 0.553868i \(0.186849\pi\)
\(402\) −34.9073 1.67983i −0.0868341 0.00417869i
\(403\) −765.651 + 399.439i −1.89988 + 0.991165i
\(404\) −28.3717 220.045i −0.0702269 0.544666i
\(405\) −600.218 300.995i −1.48202 0.743197i
\(406\) −230.610 + 48.7603i −0.568006 + 0.120099i
\(407\) 617.063 + 261.409i 1.51613 + 0.642283i
\(408\) 47.5808 47.5808i 0.116620 0.116620i
\(409\) 91.7027 + 226.508i 0.224212 + 0.553808i 0.996696 0.0812266i \(-0.0258837\pi\)
−0.772484 + 0.635035i \(0.780986\pi\)
\(410\) −1011.66 64.9508i −2.46747 0.158417i
\(411\) −405.270 + 273.148i −0.986059 + 0.664594i
\(412\) −773.781 + 388.032i −1.87811 + 0.941826i
\(413\) 24.6934 19.6923i 0.0597903 0.0476812i
\(414\) −7.21719 64.0543i −0.0174328 0.154721i
\(415\) 263.887 451.477i 0.635872 1.08790i
\(416\) 649.616 + 338.904i 1.56158 + 0.814674i
\(417\) −116.763 + 317.282i −0.280006 + 0.760867i
\(418\) 1315.65 256.222i 3.14748 0.612971i
\(419\) −716.734 + 212.723i −1.71058 + 0.507692i −0.983814 0.179190i \(-0.942652\pi\)
−0.726769 + 0.686882i \(0.758979\pi\)
\(420\) 212.562 + 94.0949i 0.506100 + 0.224035i
\(421\) 249.515 219.409i 0.592672 0.521162i −0.310425 0.950598i \(-0.600471\pi\)
0.903097 + 0.429436i \(0.141288\pi\)
\(422\) −169.797 + 164.439i −0.402361 + 0.389665i
\(423\) −12.2855 7.99700i −0.0290438 0.0189054i
\(424\) −11.6420 30.1359i −0.0274576 0.0710751i
\(425\) −341.835 + 414.829i −0.804317 + 0.976068i
\(426\) 942.603 + 75.7049i 2.21268 + 0.177711i
\(427\) 139.815 + 31.9119i 0.327436 + 0.0747352i
\(428\) −72.2937 + 47.0580i −0.168910 + 0.109949i
\(429\) −595.062 429.430i −1.38709 1.00100i
\(430\) −782.488 + 376.826i −1.81974 + 0.876340i
\(431\) 261.130 16.7651i 0.605869 0.0388981i 0.241888 0.970304i \(-0.422233\pi\)
0.363981 + 0.931406i \(0.381417\pi\)
\(432\) −283.027 + 218.378i −0.655155 + 0.505505i
\(433\) 791.895 + 128.028i 1.82886 + 0.295676i 0.974563 0.224113i \(-0.0719486\pi\)
0.854295 + 0.519789i \(0.173989\pi\)
\(434\) 32.7895 + 339.898i 0.0755519 + 0.783174i
\(435\) −171.465 + 880.438i −0.394173 + 2.02400i
\(436\) 40.7135 67.1612i 0.0933796 0.154039i
\(437\) −274.528 826.833i −0.628210 1.89207i
\(438\) −540.358 293.017i −1.23369 0.668988i
\(439\) 463.005 + 641.587i 1.05468 + 1.46147i 0.878878 + 0.477047i \(0.158293\pi\)
0.175803 + 0.984425i \(0.443748\pi\)
\(440\) 54.9595 142.265i 0.124908 0.323329i
\(441\) 17.3312 + 30.7733i 0.0392998 + 0.0697808i
\(442\) −726.071 + 129.360i −1.64269 + 0.292669i
\(443\) −12.2883 383.196i −0.0277389 0.865001i −0.914933 0.403605i \(-0.867757\pi\)
0.887194 0.461396i \(-0.152651\pi\)
\(444\) −613.890 + 171.543i −1.38263 + 0.386357i
\(445\) −248.913 + 274.080i −0.559354 + 0.615911i
\(446\) −297.379 137.383i −0.666769 0.308033i
\(447\) −254.460 574.830i −0.569262 1.28597i
\(448\) 128.652 109.523i 0.287170 0.244471i
\(449\) 35.3466 106.458i 0.0787229 0.237101i −0.902261 0.431191i \(-0.858094\pi\)
0.980984 + 0.194090i \(0.0621753\pi\)
\(450\) 57.2473 53.6898i 0.127216 0.119311i
\(451\) 407.747 528.458i 0.904096 1.17175i
\(452\) 533.295 + 359.436i 1.17986 + 0.795212i
\(453\) 351.242 + 45.2877i 0.775369 + 0.0999728i
\(454\) −261.236 709.862i −0.575409 1.56357i
\(455\) −137.570 226.936i −0.302352 0.498761i
\(456\) −86.0794 + 101.114i −0.188771 + 0.221741i
\(457\) −67.1930 + 226.395i −0.147031 + 0.495395i −0.999631 0.0271688i \(-0.991351\pi\)
0.852600 + 0.522564i \(0.175024\pi\)
\(458\) −199.149 19.2116i −0.434823 0.0419468i
\(459\) 103.466 394.560i 0.225416 0.859608i
\(460\) −924.331 226.619i −2.00941 0.492649i
\(461\) 732.877 + 204.792i 1.58976 + 0.444234i 0.946840 0.321704i \(-0.104256\pi\)
0.642915 + 0.765938i \(0.277725\pi\)
\(462\) −245.694 + 154.380i −0.531805 + 0.334155i
\(463\) −65.4972 + 581.304i −0.141463 + 1.25552i 0.699583 + 0.714551i \(0.253369\pi\)
−0.841046 + 0.540964i \(0.818060\pi\)
\(464\) 416.884 + 311.128i 0.898457 + 0.670536i
\(465\) 1239.67 + 389.654i 2.66596 + 0.837966i
\(466\) 216.955 100.229i 0.465569 0.215083i
\(467\) 252.836 + 222.329i 0.541404 + 0.476079i 0.886655 0.462431i \(-0.153023\pi\)
−0.345252 + 0.938510i \(0.612206\pi\)
\(468\) 56.7345 2.73022i 0.121227 0.00583379i
\(469\) 7.18420 4.19914i 0.0153181 0.00895339i
\(470\) −328.834 + 245.415i −0.699648 + 0.522161i
\(471\) 235.389 82.3663i 0.499765 0.174875i
\(472\) 19.4038 + 3.45705i 0.0411097 + 0.00732427i
\(473\) 82.2062 565.902i 0.173798 1.19641i
\(474\) −56.2915 700.886i −0.118758 1.47866i
\(475\) 606.887 870.019i 1.27766 1.83162i
\(476\) −31.8207 + 150.495i −0.0668502 + 0.316166i
\(477\) 14.8822 + 11.8681i 0.0311995 + 0.0248808i
\(478\) 456.037 725.778i 0.954051 1.51836i
\(479\) 135.896 + 149.636i 0.283707 + 0.312393i 0.865465 0.500969i \(-0.167023\pi\)
−0.581759 + 0.813362i \(0.697635\pi\)
\(480\) −330.602 1051.80i −0.688754 2.19125i
\(481\) 686.843 + 240.337i 1.42795 + 0.499660i
\(482\) −901.734 507.847i −1.87082 1.05362i
\(483\) 119.943 + 145.555i 0.248328 + 0.301356i
\(484\) 242.457 + 347.581i 0.500945 + 0.718142i
\(485\) −296.406 + 125.568i −0.611146 + 0.258902i
\(486\) −46.8727 + 115.777i −0.0964459 + 0.238223i
\(487\) −178.673 + 371.019i −0.366886 + 0.761846i −0.999925 0.0122740i \(-0.996093\pi\)
0.633039 + 0.774120i \(0.281807\pi\)
\(488\) 42.6601 + 78.6704i 0.0874183 + 0.161210i
\(489\) 100.724 + 94.4643i 0.205979 + 0.193178i
\(490\) 975.912 157.778i 1.99166 0.321996i
\(491\) 34.7363 + 132.465i 0.0707461 + 0.269785i 0.993216 0.116283i \(-0.0370981\pi\)
−0.922470 + 0.386069i \(0.873833\pi\)
\(492\) 10.1755 + 634.783i 0.0206819 + 1.29021i
\(493\) −593.476 + 9.51336i −1.20380 + 0.0192969i
\(494\) 1407.82 369.175i 2.84984 0.747317i
\(495\) 14.3417 + 88.7083i 0.0289731 + 0.179209i
\(496\) 515.523 549.683i 1.03936 1.10823i
\(497\) −197.937 + 107.334i −0.398263 + 0.215964i
\(498\) −559.393 269.389i −1.12328 0.540943i
\(499\) 585.047 + 236.859i 1.17244 + 0.474668i 0.876905 0.480664i \(-0.159604\pi\)
0.295534 + 0.955332i \(0.404502\pi\)
\(500\) −118.021 278.591i −0.236041 0.557181i
\(501\) −394.494 + 275.182i −0.787412 + 0.549265i
\(502\) −348.542 + 287.212i −0.694307 + 0.572135i
\(503\) −221.427 + 393.166i −0.440213 + 0.781642i −0.998859 0.0477640i \(-0.984790\pi\)
0.558646 + 0.829406i \(0.311321\pi\)
\(504\) 0.772665 2.20815i 0.00153306 0.00438125i
\(505\) 363.595 114.285i 0.719990 0.226307i
\(506\) 879.441 798.685i 1.73803 1.57843i
\(507\) −226.790 142.502i −0.447319 0.281069i
\(508\) −396.111 + 496.707i −0.779745 + 0.977769i
\(509\) −340.619 72.0204i −0.669192 0.141494i −0.140203 0.990123i \(-0.544776\pi\)
−0.528989 + 0.848629i \(0.677429\pi\)
\(510\) 910.191 + 634.910i 1.78469 + 1.24492i
\(511\) 145.894 11.7174i 0.285507 0.0229304i
\(512\) −707.331 102.751i −1.38151 0.200686i
\(513\) −141.193 + 792.489i −0.275230 + 1.54481i
\(514\) 337.608 + 964.828i 0.656824 + 1.87710i
\(515\) −889.397 1191.71i −1.72698 2.31400i
\(516\) 274.464 + 469.573i 0.531906 + 0.910025i
\(517\) −12.9860 269.852i −0.0251180 0.521958i
\(518\) 190.007 216.078i 0.366808 0.417140i
\(519\) −212.081 459.071i −0.408634 0.884531i
\(520\) 49.6573 157.983i 0.0954948 0.303814i
\(521\) 23.2859 31.2010i 0.0446947 0.0598868i −0.778507 0.627636i \(-0.784023\pi\)
0.823201 + 0.567749i \(0.192186\pi\)
\(522\) 86.1203 + 9.70342i 0.164981 + 0.0185889i
\(523\) −32.7219 52.0766i −0.0625658 0.0995729i 0.813976 0.580898i \(-0.197298\pi\)
−0.876542 + 0.481325i \(0.840156\pi\)
\(524\) −103.518 + 370.455i −0.197554 + 0.706975i
\(525\) −54.6823 + 223.038i −0.104157 + 0.424834i
\(526\) −844.771 221.525i −1.60603 0.421150i
\(527\) −82.5691 + 855.915i −0.156678 + 1.62413i
\(528\) 613.908 + 182.205i 1.16270 + 0.345084i
\(529\) −185.165 157.633i −0.350028 0.297983i
\(530\) 455.626 276.203i 0.859671 0.521138i
\(531\) −10.8982 + 4.01065i −0.0205240 + 0.00755301i
\(532\) 38.8183 301.067i 0.0729668 0.565916i
\(533\) 405.075 601.010i 0.759990 1.12760i
\(534\) 348.025 + 268.529i 0.651733 + 0.502864i
\(535\) −101.368 108.085i −0.189473 0.202028i
\(536\) 4.92824 + 1.63629i 0.00919448 + 0.00305278i
\(537\) 153.597 + 180.424i 0.286028 + 0.335985i
\(538\) 1160.80 513.850i 2.15761 0.955112i
\(539\) −272.984 + 590.902i −0.506463 + 1.09629i
\(540\) 650.954 + 591.179i 1.20547 + 1.09478i
\(541\) −231.871 829.783i −0.428597 1.53379i −0.796913 0.604094i \(-0.793535\pi\)
0.368316 0.929701i \(-0.379934\pi\)
\(542\) 830.394 26.6291i 1.53209 0.0491312i
\(543\) −70.2131 394.093i −0.129306 0.725770i
\(544\) 635.690 358.014i 1.16855 0.658114i
\(545\) 125.852 + 48.6187i 0.230920 + 0.0892087i
\(546\) −255.497 + 184.381i −0.467942 + 0.337693i
\(547\) −31.5160 + 58.1193i −0.0576161 + 0.106251i −0.906273 0.422692i \(-0.861085\pi\)
0.848657 + 0.528943i \(0.177412\pi\)
\(548\) 661.660 219.686i 1.20741 0.400887i
\(549\) −45.0910 27.3344i −0.0821329 0.0497895i
\(550\) 1419.80 + 276.505i 2.58145 + 0.502737i
\(551\) 1165.93 112.476i 2.11602 0.204130i
\(552\) −18.7842 + 116.187i −0.0340294 + 0.210484i
\(553\) 102.276 + 132.555i 0.184948 + 0.239701i
\(554\) −32.4988 506.195i −0.0586621 0.913710i
\(555\) −475.089 986.532i −0.856016 1.77754i
\(556\) 282.227 391.082i 0.507602 0.703385i
\(557\) −142.165 218.404i −0.255234 0.392108i 0.687217 0.726452i \(-0.258832\pi\)
−0.942451 + 0.334344i \(0.891485\pi\)
\(558\) 27.9382 122.405i 0.0500685 0.219365i
\(559\) 49.7097 618.937i 0.0889261 1.10722i
\(560\) 178.720 + 147.272i 0.319143 + 0.262986i
\(561\) −681.600 + 263.314i −1.21497 + 0.469366i
\(562\) −50.5851 + 77.7123i −0.0900091 + 0.138278i
\(563\) 108.806 + 112.351i 0.193261 + 0.199558i 0.808017 0.589160i \(-0.200541\pi\)
−0.614755 + 0.788718i \(0.710745\pi\)
\(564\) 169.686 + 192.970i 0.300862 + 0.342145i
\(565\) −447.195 + 1010.22i −0.791495 + 1.78800i
\(566\) 387.756 + 1306.48i 0.685082 + 2.30827i
\(567\) −36.2865 186.324i −0.0639974 0.328613i
\(568\) −131.864 48.5272i −0.232155 0.0854351i
\(569\) −307.135 + 588.720i −0.539780 + 1.03466i 0.450131 + 0.892963i \(0.351377\pi\)
−0.989910 + 0.141694i \(0.954745\pi\)
\(570\) −1890.75 1105.14i −3.31711 1.93884i
\(571\) −207.739 + 23.4066i −0.363817 + 0.0409923i −0.291981 0.956424i \(-0.594314\pi\)
−0.0718360 + 0.997416i \(0.522886\pi\)
\(572\) 652.683 + 818.439i 1.14105 + 1.43084i
\(573\) 105.096 + 209.573i 0.183413 + 0.365747i
\(574\) −160.174 237.650i −0.279049 0.414025i
\(575\) 60.2378 938.253i 0.104761 1.63174i
\(576\) −57.5820 + 23.3124i −0.0999688 + 0.0404729i
\(577\) 388.426 + 388.426i 0.673182 + 0.673182i 0.958448 0.285266i \(-0.0920820\pi\)
−0.285266 + 0.958448i \(0.592082\pi\)
\(578\) 41.5388 98.0535i 0.0718665 0.169643i
\(579\) 190.730 + 902.053i 0.329413 + 1.55795i
\(580\) 573.585 1143.79i 0.988940 1.97206i
\(581\) 146.624 18.9050i 0.252364 0.0325388i
\(582\) 176.779 + 338.853i 0.303744 + 0.582221i
\(583\) −16.8626 + 350.409i −0.0289239 + 0.601044i
\(584\) 65.6106 + 63.5403i 0.112347 + 0.108802i
\(585\) 21.7123 + 95.1276i 0.0371150 + 0.162611i
\(586\) 34.1360 4.95879i 0.0582525 0.00846210i
\(587\) −26.2953 + 819.985i −0.0447961 + 1.39691i 0.692539 + 0.721381i \(0.256492\pi\)
−0.737335 + 0.675528i \(0.763916\pi\)
\(588\) −147.421 601.300i −0.250716 1.02262i
\(589\) 27.1983 1696.72i 0.0461771 2.88068i
\(590\) 325.052i 0.550935i
\(591\) −425.059 + 446.707i −0.719221 + 0.755850i
\(592\) −635.006 −1.07264
\(593\) −48.3175 0.774526i −0.0814798 0.00130611i −0.0247254 0.999694i \(-0.507871\pi\)
−0.0567545 + 0.998388i \(0.518075\pi\)
\(594\) −1066.08 + 261.371i −1.79475 + 0.440018i
\(595\) −264.108 8.46942i −0.443879 0.0142343i
\(596\) 128.915 + 887.441i 0.216300 + 1.48900i
\(597\) −187.791 + 42.8621i −0.314558 + 0.0717958i
\(598\) 897.408 926.647i 1.50068 1.54958i
\(599\) 761.021 + 36.6224i 1.27049 + 0.0611392i 0.672337 0.740245i \(-0.265291\pi\)
0.598149 + 0.801385i \(0.295903\pi\)
\(600\) −127.053 + 66.2836i −0.211755 + 0.110473i
\(601\) 63.3845 + 491.598i 0.105465 + 0.817966i 0.956270 + 0.292485i \(0.0944821\pi\)
−0.850805 + 0.525481i \(0.823885\pi\)
\(602\) −219.476 110.062i −0.364578 0.182827i
\(603\) −2.99342 + 0.632928i −0.00496421 + 0.00104963i
\(604\) −465.180 197.066i −0.770166 0.326269i
\(605\) −514.778 + 514.778i −0.850873 + 0.850873i
\(606\) −169.813 419.442i −0.280220 0.692148i
\(607\) −106.954 6.86667i −0.176201 0.0113125i −0.0242803 0.999705i \(-0.507729\pi\)
−0.151920 + 0.988393i \(0.548546\pi\)
\(608\) −1193.91 + 804.683i −1.96367 + 1.32349i
\(609\) −226.674 + 113.672i −0.372207 + 0.186653i
\(610\) −1153.93 + 920.230i −1.89169 + 1.50857i
\(611\) −32.8455 291.512i −0.0537569 0.477106i
\(612\) 28.5399 48.8282i 0.0466338 0.0797847i
\(613\) 481.218 + 251.051i 0.785021 + 0.409545i 0.807251 0.590208i \(-0.200954\pi\)
−0.0222304 + 0.999753i \(0.507077\pi\)
\(614\) −85.2712 + 231.709i −0.138878 + 0.377377i
\(615\) −1070.49 + 208.478i −1.74063 + 0.338988i
\(616\) 41.3335 12.2676i 0.0670998 0.0199149i
\(617\) −20.5232 9.08500i −0.0332628 0.0147245i 0.388085 0.921624i \(-0.373137\pi\)
−0.421348 + 0.906899i \(0.638443\pi\)
\(618\) −1325.82 + 1165.85i −2.14534 + 1.88649i
\(619\) −472.781 + 457.863i −0.763782 + 0.739681i −0.971121 0.238588i \(-0.923315\pi\)
0.207339 + 0.978269i \(0.433520\pi\)
\(620\) −1553.58 1011.27i −2.50577 1.63107i
\(621\) 257.103 + 665.522i 0.414015 + 1.07169i
\(622\) 409.791 497.296i 0.658827 0.799511i
\(623\) −104.332 8.37940i −0.167467 0.0134501i
\(624\) 677.913 + 154.729i 1.08640 + 0.247964i
\(625\) −273.304 + 177.901i −0.437286 + 0.284642i
\(626\) −13.0325 9.40500i −0.0208187 0.0150240i
\(627\) 1299.18 625.652i 2.07206 0.997850i
\(628\) −355.019 + 22.7930i −0.565318 + 0.0362946i
\(629\) 573.656 442.622i 0.912013 0.703691i
\(630\) 38.0879 + 6.15776i 0.0604570 + 0.00977423i
\(631\) −110.315 1143.53i −0.174826 1.81225i −0.499381 0.866383i \(-0.666439\pi\)
0.324555 0.945867i \(-0.394785\pi\)
\(632\) −19.9719 + 102.551i −0.0316011 + 0.162265i
\(633\) −131.822 + 217.455i −0.208250 + 0.343530i
\(634\) −205.619 619.291i −0.324320 0.976799i
\(635\) −959.392 520.244i −1.51085 0.819282i
\(636\) −195.262 270.575i −0.307016 0.425432i
\(637\) −254.699 + 659.299i −0.399842 + 1.03501i
\(638\) 783.791 + 1391.70i 1.22851 + 2.18135i
\(639\) 81.5051 14.5213i 0.127551 0.0227250i
\(640\) 10.5735 + 329.720i 0.0165211 + 0.515188i
\(641\) −643.538 + 179.827i −1.00396 + 0.280542i −0.731659 0.681670i \(-0.761254\pi\)
−0.272300 + 0.962212i \(0.587784\pi\)
\(642\) −118.280 + 130.240i −0.184237 + 0.202866i
\(643\) −966.777 446.630i −1.50354 0.694603i −0.516680 0.856178i \(-0.672832\pi\)
−0.986860 + 0.161575i \(0.948343\pi\)
\(644\) −108.907 246.023i −0.169110 0.382023i
\(645\) −711.450 + 605.666i −1.10302 + 0.939017i
\(646\) 456.655 1375.37i 0.706896 2.12906i
\(647\) −44.2628 + 41.5122i −0.0684123 + 0.0641610i −0.717533 0.696524i \(-0.754729\pi\)
0.649121 + 0.760685i \(0.275137\pi\)
\(648\) 72.3621 93.7843i 0.111670 0.144729i
\(649\) −177.476 119.617i −0.273460 0.184310i
\(650\) 1557.74 + 200.849i 2.39653 + 0.308998i
\(651\) 126.875 + 344.760i 0.194892 + 0.529585i
\(652\) −102.117 168.452i −0.156621 0.258362i
\(653\) 805.740 946.468i 1.23390 1.44941i 0.383287 0.923629i \(-0.374792\pi\)
0.850617 0.525785i \(-0.176229\pi\)
\(654\) 45.5767 153.563i 0.0696891 0.234806i
\(655\) −657.711 63.4486i −1.00414 0.0968680i
\(656\) −160.430 + 611.787i −0.244557 + 0.932603i
\(657\) −52.2670 12.8143i −0.0795540 0.0195043i
\(658\) −111.719 31.2181i −0.169785 0.0474439i
\(659\) −199.301 + 125.229i −0.302429 + 0.190029i −0.674694 0.738098i \(-0.735724\pi\)
0.372265 + 0.928127i \(0.378581\pi\)
\(660\) 176.367 1565.30i 0.267222 2.37166i
\(661\) −869.408 648.856i −1.31529 0.981628i −0.999462 0.0328130i \(-0.989553\pi\)
−0.315831 0.948815i \(-0.602283\pi\)
\(662\) −1641.04 515.812i −2.47892 0.779173i
\(663\) −720.271 + 332.749i −1.08638 + 0.501885i
\(664\) 69.2795 + 60.9203i 0.104337 + 0.0917475i
\(665\) 520.867 25.0655i 0.783258 0.0376925i
\(666\) −91.3370 + 53.3861i −0.137143 + 0.0801593i
\(667\) 832.012 620.946i 1.24739 0.930954i
\(668\) 647.635 226.617i 0.969513 0.339247i
\(669\) −346.951 61.8141i −0.518611 0.0923978i
\(670\) −12.3115 + 84.7512i −0.0183753 + 0.126494i
\(671\) −77.7990 968.677i −0.115945 1.44363i
\(672\) 178.323 255.640i 0.265362 0.380416i
\(673\) −96.3874 + 455.862i −0.143220 + 0.677357i 0.846269 + 0.532755i \(0.178843\pi\)
−0.989490 + 0.144602i \(0.953810\pi\)
\(674\) 257.122 + 205.048i 0.381487 + 0.304226i
\(675\) −462.172 + 735.542i −0.684699 + 1.08969i
\(676\) 256.876 + 282.849i 0.379994 + 0.418416i
\(677\) −45.7126 145.433i −0.0675223 0.214820i 0.914157 0.405360i \(-0.132854\pi\)
−0.981680 + 0.190540i \(0.938976\pi\)
\(678\) 1238.07 + 433.220i 1.82607 + 0.638968i
\(679\) −79.2935 44.6573i −0.116780 0.0657692i
\(680\) −104.864 127.256i −0.154211 0.187141i
\(681\) −465.560 667.416i −0.683642 0.980052i
\(682\) 2130.64 902.611i 3.12410 1.32348i
\(683\) −375.427 + 927.313i −0.549674 + 1.35771i 0.356300 + 0.934372i \(0.384038\pi\)
−0.905974 + 0.423333i \(0.860860\pi\)
\(684\) −48.4268 + 100.559i −0.0707994 + 0.147017i
\(685\) 570.904 + 1052.82i 0.833437 + 1.53696i
\(686\) 429.342 + 402.661i 0.625863 + 0.586970i
\(687\) −212.483 + 34.3526i −0.309291 + 0.0500037i
\(688\) 137.443 + 524.131i 0.199772 + 0.761818i
\(689\) 6.10547 + 380.880i 0.00886136 + 0.552801i
\(690\) −1940.82 + 31.1112i −2.81278 + 0.0450887i
\(691\) 108.378 28.4201i 0.156843 0.0411290i −0.174398 0.984675i \(-0.555798\pi\)
0.331241 + 0.943546i \(0.392533\pi\)
\(692\) 115.132 + 712.132i 0.166376 + 1.02909i
\(693\) −17.3782 + 18.5297i −0.0250768 + 0.0267384i
\(694\) −1279.06 + 693.590i −1.84303 + 0.999409i
\(695\) 746.443 + 359.468i 1.07402 + 0.517220i
\(696\) −146.676 59.3824i −0.210741 0.0853196i
\(697\) −281.508 664.507i −0.403885 0.953381i
\(698\) 1387.21 967.658i 1.98741 1.38633i
\(699\) 198.419 163.505i 0.283861 0.233912i
\(700\) 160.754 285.435i 0.229649 0.407765i
\(701\) −39.7359 + 113.559i −0.0566846 + 0.161995i −0.968744 0.248063i \(-0.920206\pi\)
0.912059 + 0.410058i \(0.134492\pi\)
\(702\) −1137.03 + 357.392i −1.61970 + 0.509105i
\(703\) −1058.52 + 961.315i −1.50571 + 1.36745i
\(704\) −969.421 609.127i −1.37702 0.865238i
\(705\) −275.224 + 345.121i −0.390389 + 0.489533i
\(706\) 180.845 + 38.2378i 0.256154 + 0.0541613i
\(707\) 88.3716 + 61.6442i 0.124995 + 0.0871913i
\(708\) 202.913 16.2969i 0.286600 0.0230182i
\(709\) −299.371 43.4885i −0.422245 0.0613377i −0.0706748 0.997499i \(-0.522515\pi\)
−0.351570 + 0.936162i \(0.614352\pi\)
\(710\) 406.463 2281.40i 0.572483 3.21324i
\(711\) −20.3315 58.1042i −0.0285957 0.0817218i
\(712\) −39.0661 52.3450i −0.0548681 0.0735182i
\(713\) −758.963 1298.49i −1.06446 1.82117i
\(714\) 15.0802 + 313.369i 0.0211207 + 0.438892i
\(715\) −1187.50 + 1350.44i −1.66083 + 1.88872i
\(716\) −141.758 306.850i −0.197986 0.428561i
\(717\) 276.511 879.711i 0.385650 1.22693i
\(718\) −727.928 + 975.357i −1.01383 + 1.35844i
\(719\) 1197.36 + 134.910i 1.66531 + 0.187636i 0.893765 0.448536i \(-0.148054\pi\)
0.771547 + 0.636172i \(0.219483\pi\)
\(720\) −45.3013 72.0966i −0.0629184 0.100134i
\(721\) 113.136 404.873i 0.156915 0.561544i
\(722\) −430.896 + 1757.54i −0.596809 + 2.43426i
\(723\) −1076.95 282.411i −1.48956 0.390610i
\(724\) −54.8323 + 568.395i −0.0757353 + 0.785075i
\(725\) 1211.82 + 359.662i 1.67148 + 0.496085i
\(726\) 658.155 + 560.296i 0.906550 + 0.771757i
\(727\) 285.651 173.163i 0.392917 0.238189i −0.308068 0.951364i \(-0.599683\pi\)
0.700985 + 0.713176i \(0.252744\pi\)
\(728\) 43.9360 16.1688i 0.0603516 0.0222100i
\(729\) 83.5658 648.120i 0.114631 0.889053i
\(730\) −841.882 + 1249.10i −1.15326 + 1.71110i
\(731\) −489.503 377.691i −0.669635 0.516677i
\(732\) 632.304 + 674.201i 0.863804 + 0.921040i
\(733\) −820.949 272.574i −1.11999 0.371861i −0.305585 0.952165i \(-0.598852\pi\)
−0.814400 + 0.580304i \(0.802934\pi\)
\(734\) −370.475 435.181i −0.504735 0.592890i
\(735\) 972.508 430.500i 1.32314 0.585715i
\(736\) −535.177 + 1158.45i −0.727143 + 1.57398i
\(737\) −41.7430 37.9099i −0.0566390 0.0514381i
\(738\) 28.3585 + 101.485i 0.0384261 + 0.137513i
\(739\) 276.558 8.86867i 0.374232 0.0120009i 0.155631 0.987815i \(-0.450259\pi\)
0.218601 + 0.975814i \(0.429851\pi\)
\(740\) 273.976 + 1537.78i 0.370238 + 2.07808i
\(741\) 1364.28 768.348i 1.84113 1.03691i
\(742\) 140.506 + 54.2800i 0.189361 + 0.0731536i
\(743\) −36.2031 + 26.1262i −0.0487256 + 0.0351631i −0.609287 0.792949i \(-0.708544\pi\)
0.560562 + 0.828113i \(0.310585\pi\)
\(744\) −109.279 + 201.523i −0.146880 + 0.270865i
\(745\) −1462.01 + 485.421i −1.96243 + 0.651572i
\(746\) −526.687 319.281i −0.706015 0.427991i
\(747\) −53.3543 10.3907i −0.0714247 0.0139100i
\(748\) 1037.53 100.089i 1.38707 0.133809i
\(749\) 6.68589 41.3546i 0.00892642 0.0552130i
\(750\) −376.967 488.565i −0.502622 0.651419i
\(751\) 63.1823 + 984.116i 0.0841310 + 1.31041i 0.794796 + 0.606877i \(0.207578\pi\)
−0.710665 + 0.703531i \(0.751606\pi\)
\(752\) 111.073 + 230.645i 0.147703 + 0.306708i
\(753\) −284.327 + 393.993i −0.377593 + 0.523231i
\(754\) 946.146 + 1453.53i 1.25484 + 1.92776i
\(755\) 193.117 846.099i 0.255784 1.12066i
\(756\) −19.9015 + 247.793i −0.0263247 + 0.327769i
\(757\) 576.120 + 474.745i 0.761057 + 0.627139i 0.933787 0.357830i \(-0.116483\pi\)
−0.172730 + 0.984969i \(0.555259\pi\)
\(758\) 1309.92 506.048i 1.72813 0.667609i
\(759\) 697.223 1071.12i 0.918607 1.41123i
\(760\) 226.383 + 233.759i 0.297873 + 0.307578i
\(761\) −470.998 535.625i −0.618920 0.703844i 0.353932 0.935271i \(-0.384844\pi\)
−0.972852 + 0.231427i \(0.925661\pi\)
\(762\) −524.503 + 1184.86i −0.688325 + 1.55494i
\(763\) 10.8522 + 36.5648i 0.0142231 + 0.0479224i
\(764\) −63.9319 328.277i −0.0836805 0.429682i
\(765\) 91.1785 + 33.5545i 0.119188 + 0.0438622i
\(766\) 226.594 434.339i 0.295815 0.567022i