Properties

Label 197.3.i.a.2.20
Level $197$
Weight $3$
Character 197.2
Analytic conductor $5.368$
Analytic rank $0$
Dimension $2688$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,3,Mod(2,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(196))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.2");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 197.i (of order \(196\), degree \(84\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.36786120790\)
Analytic rank: \(0\)
Dimension: \(2688\)
Relative dimension: \(32\) over \(\Q(\zeta_{196})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{196}]$

Embedding invariants

Embedding label 2.20
Character \(\chi\) \(=\) 197.2
Dual form 197.3.i.a.99.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.830612 + 0.0133146i) q^{2} +(3.37180 - 0.826664i) q^{3} +(-3.30821 - 0.106088i) q^{4} +(-0.509948 - 3.51044i) q^{5} +(2.81166 - 0.641743i) q^{6} +(7.89308 - 8.15026i) q^{7} +(-6.06546 - 0.291886i) q^{8} +(2.70624 - 1.41184i) q^{9} +O(q^{10})\) \(q+(0.830612 + 0.0133146i) q^{2} +(3.37180 - 0.826664i) q^{3} +(-3.30821 - 0.106088i) q^{4} +(-0.509948 - 3.51044i) q^{5} +(2.81166 - 0.641743i) q^{6} +(7.89308 - 8.15026i) q^{7} +(-6.06546 - 0.291886i) q^{8} +(2.70624 - 1.41184i) q^{9} +(-0.376829 - 2.92261i) q^{10} +(0.616659 + 0.309239i) q^{11} +(-11.2423 + 2.37707i) q^{12} +(-5.69983 - 2.41465i) q^{13} +(6.66461 - 6.66461i) q^{14} +(-4.62140 - 11.4149i) q^{15} +(8.17826 + 0.525062i) q^{16} +(3.98443 - 2.68546i) q^{17} +(2.26663 - 1.13666i) q^{18} +(17.7502 - 14.1553i) q^{19} +(1.31460 + 11.6674i) q^{20} +(19.8763 - 34.0059i) q^{21} +(0.508087 + 0.265069i) q^{22} +(-8.17051 + 22.2019i) q^{23} +(-20.6928 + 4.02992i) q^{24} +(11.9035 - 3.53290i) q^{25} +(-4.70220 - 2.08153i) q^{26} +(-15.5059 + 13.6349i) q^{27} +(-26.9766 + 26.1254i) q^{28} +(22.7218 + 14.7902i) q^{29} +(-3.68661 - 9.54293i) q^{30} +(-10.0984 + 12.2547i) q^{31} +(30.9979 + 2.48959i) q^{32} +(2.33488 + 0.532922i) q^{33} +(3.34527 - 2.17753i) q^{34} +(-32.6361 - 23.5520i) q^{35} +(-9.10256 + 4.38356i) q^{36} +(-14.9521 + 0.959954i) q^{37} +(14.9320 - 11.5213i) q^{38} +(-21.2148 - 3.42984i) q^{39} +(2.06842 + 21.4413i) q^{40} +(-1.57371 + 8.08065i) q^{41} +(16.9623 - 27.9811i) q^{42} +(13.9945 + 42.1493i) q^{43} +(-2.00723 - 1.08845i) q^{44} +(-6.33623 - 8.78013i) q^{45} +(-7.08214 + 18.3324i) q^{46} +(16.2852 + 28.9160i) q^{47} +(28.0095 - 4.99028i) q^{48} +(-2.55539 - 79.6864i) q^{49} +(9.93425 - 2.77598i) q^{50} +(11.2147 - 12.3486i) q^{51} +(18.6001 + 8.59282i) q^{52} +(-9.35072 - 21.1234i) q^{53} +(-13.0609 + 11.1189i) q^{54} +(0.771104 - 2.32244i) q^{55} +(-50.2541 + 47.1312i) q^{56} +(48.1484 - 62.4024i) q^{57} +(18.6761 + 12.5875i) q^{58} +(-50.3468 - 6.49151i) q^{59} +(14.0776 + 38.2533i) q^{60} +(15.8774 + 26.1915i) q^{61} +(-8.55100 + 10.0445i) q^{62} +(9.85368 - 33.2003i) q^{63} +(-6.91481 - 0.667063i) q^{64} +(-5.56986 + 21.2403i) q^{65} +(1.93229 + 0.473740i) q^{66} +(-94.4718 - 26.3988i) q^{67} +(-13.4662 + 8.46137i) q^{68} +(-9.19576 + 81.6146i) q^{69} +(-26.7943 - 19.9971i) q^{70} +(85.9483 + 27.0153i) q^{71} +(-16.8267 + 7.77356i) q^{72} +(42.7139 + 37.5601i) q^{73} +(-12.4321 + 0.598268i) q^{74} +(37.2157 - 21.7524i) q^{75} +(-60.2231 + 44.9457i) q^{76} +(7.38772 - 2.58507i) q^{77} +(-17.5756 - 3.13133i) q^{78} +(-12.4479 + 85.6903i) q^{79} +(-2.32729 - 28.9771i) q^{80} +(-56.7279 + 81.3237i) q^{81} +(-1.41473 + 6.69093i) q^{82} +(3.08215 + 2.45793i) q^{83} +(-69.3626 + 110.390i) q^{84} +(-11.4590 - 12.6177i) q^{85} +(11.0628 + 35.1961i) q^{86} +(88.8398 + 31.0864i) q^{87} +(-3.65005 - 2.05567i) q^{88} +(-52.7504 - 64.0146i) q^{89} +(-5.14605 - 7.37725i) q^{90} +(-64.6692 + 27.3961i) q^{91} +(29.3851 - 72.5817i) q^{92} +(-23.9191 + 49.6685i) q^{93} +(13.1417 + 24.2348i) q^{94} +(-58.7432 - 55.0927i) q^{95} +(106.577 - 17.2305i) q^{96} +(-15.1377 - 57.7266i) q^{97} +(-1.06154 - 66.2226i) q^{98} +(2.10542 - 0.0337497i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2688 q - 84 q^{2} - 84 q^{3} - 84 q^{4} - 84 q^{5} - 98 q^{6} - 84 q^{7} - 140 q^{8} - 84 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2688 q - 84 q^{2} - 84 q^{3} - 84 q^{4} - 84 q^{5} - 98 q^{6} - 84 q^{7} - 140 q^{8} - 84 q^{9} - 84 q^{10} - 140 q^{11} - 140 q^{12} - 84 q^{13} - 28 q^{14} - 84 q^{15} + 112 q^{16} - 84 q^{17} - 210 q^{18} - 98 q^{19} - 84 q^{20} - 84 q^{21} - 84 q^{22} - 84 q^{23} - 308 q^{24} - 84 q^{25} + 70 q^{26} - 126 q^{27} - 910 q^{28} - 294 q^{29} + 70 q^{30} - 84 q^{31} - 84 q^{32} - 98 q^{33} - 84 q^{34} - 84 q^{35} + 2198 q^{36} + 126 q^{37} - 140 q^{38} - 84 q^{39} + 476 q^{40} + 28 q^{41} - 588 q^{42} - 84 q^{43} - 84 q^{44} - 966 q^{45} - 448 q^{46} + 266 q^{47} - 1428 q^{48} + 756 q^{49} - 84 q^{50} - 84 q^{51} + 126 q^{52} - 84 q^{53} - 588 q^{54} - 84 q^{55} - 84 q^{56} - 672 q^{57} + 532 q^{58} + 616 q^{59} - 378 q^{60} - 364 q^{61} - 854 q^{62} + 1036 q^{63} - 1428 q^{64} + 28 q^{65} + 406 q^{66} - 84 q^{67} - 966 q^{68} - 504 q^{69} - 84 q^{70} + 434 q^{71} - 532 q^{72} - 84 q^{73} + 546 q^{74} - 84 q^{75} - 308 q^{76} + 700 q^{77} + 2310 q^{78} - 1400 q^{79} - 84 q^{80} - 700 q^{81} - 84 q^{82} - 98 q^{83} - 588 q^{84} + 1666 q^{85} - 84 q^{86} - 84 q^{87} + 420 q^{88} + 868 q^{89} - 1890 q^{90} + 1260 q^{91} + 924 q^{92} - 98 q^{93} - 420 q^{94} - 1834 q^{95} + 364 q^{96} + 504 q^{97} - 980 q^{98} + 630 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/197\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{196}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.830612 + 0.0133146i 0.415306 + 0.00665732i 0.223331 0.974743i \(-0.428307\pi\)
0.191975 + 0.981400i \(0.438511\pi\)
\(3\) 3.37180 0.826664i 1.12393 0.275555i 0.367755 0.929923i \(-0.380126\pi\)
0.756176 + 0.654368i \(0.227065\pi\)
\(4\) −3.30821 0.106088i −0.827051 0.0265219i
\(5\) −0.509948 3.51044i −0.101990 0.702089i −0.976252 0.216636i \(-0.930491\pi\)
0.874263 0.485453i \(-0.161345\pi\)
\(6\) 2.81166 0.641743i 0.468610 0.106957i
\(7\) 7.89308 8.15026i 1.12758 1.16432i 0.142942 0.989731i \(-0.454344\pi\)
0.984641 0.174591i \(-0.0558604\pi\)
\(8\) −6.06546 0.291886i −0.758182 0.0364858i
\(9\) 2.70624 1.41184i 0.300693 0.156871i
\(10\) −0.376829 2.92261i −0.0376829 0.292261i
\(11\) 0.616659 + 0.309239i 0.0560599 + 0.0281127i 0.476078 0.879403i \(-0.342058\pi\)
−0.420018 + 0.907516i \(0.637976\pi\)
\(12\) −11.2423 + 2.37707i −0.936857 + 0.198089i
\(13\) −5.69983 2.41465i −0.438449 0.185742i 0.159634 0.987176i \(-0.448969\pi\)
−0.598083 + 0.801434i \(0.704071\pi\)
\(14\) 6.66461 6.66461i 0.476044 0.476044i
\(15\) −4.62140 11.4149i −0.308093 0.760996i
\(16\) 8.17826 + 0.525062i 0.511141 + 0.0328164i
\(17\) 3.98443 2.68546i 0.234378 0.157969i −0.436099 0.899899i \(-0.643640\pi\)
0.670477 + 0.741930i \(0.266089\pi\)
\(18\) 2.26663 1.13666i 0.125924 0.0631478i
\(19\) 17.7502 14.1553i 0.934222 0.745017i −0.0328657 0.999460i \(-0.510463\pi\)
0.967088 + 0.254442i \(0.0818919\pi\)
\(20\) 1.31460 + 11.6674i 0.0657298 + 0.583369i
\(21\) 19.8763 34.0059i 0.946492 1.61933i
\(22\) 0.508087 + 0.265069i 0.0230949 + 0.0120486i
\(23\) −8.17051 + 22.2019i −0.355240 + 0.965301i 0.627223 + 0.778840i \(0.284192\pi\)
−0.982462 + 0.186461i \(0.940298\pi\)
\(24\) −20.6928 + 4.02992i −0.862199 + 0.167913i
\(25\) 11.9035 3.53290i 0.476141 0.141316i
\(26\) −4.70220 2.08153i −0.180854 0.0800587i
\(27\) −15.5059 + 13.6349i −0.574291 + 0.504998i
\(28\) −26.9766 + 26.1254i −0.963449 + 0.933048i
\(29\) 22.7218 + 14.7902i 0.783510 + 0.510009i 0.874022 0.485887i \(-0.161503\pi\)
−0.0905116 + 0.995895i \(0.528850\pi\)
\(30\) −3.68661 9.54293i −0.122887 0.318098i
\(31\) −10.0984 + 12.2547i −0.325754 + 0.395314i −0.908874 0.417072i \(-0.863056\pi\)
0.583120 + 0.812386i \(0.301832\pi\)
\(32\) 30.9979 + 2.48959i 0.968685 + 0.0777997i
\(33\) 2.33488 + 0.532922i 0.0707540 + 0.0161491i
\(34\) 3.34527 2.17753i 0.0983903 0.0640450i
\(35\) −32.6361 23.5520i −0.932459 0.672915i
\(36\) −9.10256 + 4.38356i −0.252849 + 0.121766i
\(37\) −14.9521 + 0.959954i −0.404109 + 0.0259447i −0.264798 0.964304i \(-0.585305\pi\)
−0.139312 + 0.990249i \(0.544489\pi\)
\(38\) 14.9320 11.5213i 0.392948 0.303191i
\(39\) −21.2148 3.42984i −0.543969 0.0879446i
\(40\) 2.06842 + 21.4413i 0.0517104 + 0.536033i
\(41\) −1.57371 + 8.08065i −0.0383831 + 0.197089i −0.995791 0.0916483i \(-0.970786\pi\)
0.957408 + 0.288737i \(0.0932354\pi\)
\(42\) 16.9623 27.9811i 0.403864 0.666217i
\(43\) 13.9945 + 42.1493i 0.325455 + 0.980217i 0.975439 + 0.220270i \(0.0706937\pi\)
−0.649984 + 0.759947i \(0.725225\pi\)
\(44\) −2.00723 1.08845i −0.0456188 0.0247374i
\(45\) −6.33623 8.78013i −0.140805 0.195114i
\(46\) −7.08214 + 18.3324i −0.153960 + 0.398530i
\(47\) 16.2852 + 28.9160i 0.346493 + 0.615233i 0.988457 0.151502i \(-0.0484109\pi\)
−0.641964 + 0.766735i \(0.721880\pi\)
\(48\) 28.0095 4.99028i 0.583531 0.103964i
\(49\) −2.55539 79.6864i −0.0521508 1.62625i
\(50\) 9.93425 2.77598i 0.198685 0.0555196i
\(51\) 11.2147 12.3486i 0.219896 0.242130i
\(52\) 18.6001 + 8.59282i 0.357693 + 0.165247i
\(53\) −9.35072 21.1234i −0.176429 0.398556i 0.804220 0.594332i \(-0.202583\pi\)
−0.980649 + 0.195776i \(0.937277\pi\)
\(54\) −13.0609 + 11.1189i −0.241868 + 0.205906i
\(55\) 0.771104 2.32244i 0.0140201 0.0422262i
\(56\) −50.2541 + 47.1312i −0.897395 + 0.841628i
\(57\) 48.1484 62.4024i 0.844709 1.09478i
\(58\) 18.6761 + 12.5875i 0.322001 + 0.217026i
\(59\) −50.3468 6.49151i −0.853336 0.110026i −0.311229 0.950335i \(-0.600741\pi\)
−0.542107 + 0.840309i \(0.682373\pi\)
\(60\) 14.0776 + 38.2533i 0.234626 + 0.637554i
\(61\) 15.8774 + 26.1915i 0.260286 + 0.429369i 0.957899 0.287106i \(-0.0926933\pi\)
−0.697613 + 0.716475i \(0.745754\pi\)
\(62\) −8.55100 + 10.0445i −0.137919 + 0.162008i
\(63\) 9.85368 33.2003i 0.156408 0.526989i
\(64\) −6.91481 0.667063i −0.108044 0.0104229i
\(65\) −5.56986 + 21.2403i −0.0856902 + 0.326774i
\(66\) 1.93229 + 0.473740i 0.0292771 + 0.00717787i
\(67\) −94.4718 26.3988i −1.41003 0.394012i −0.521663 0.853151i \(-0.674688\pi\)
−0.888364 + 0.459140i \(0.848158\pi\)
\(68\) −13.4662 + 8.46137i −0.198032 + 0.124432i
\(69\) −9.19576 + 81.6146i −0.133272 + 1.18282i
\(70\) −26.7943 19.9971i −0.382776 0.285673i
\(71\) 85.9483 + 27.0153i 1.21054 + 0.380497i 0.837044 0.547136i \(-0.184282\pi\)
0.373495 + 0.927632i \(0.378159\pi\)
\(72\) −16.8267 + 7.77356i −0.233704 + 0.107966i
\(73\) 42.7139 + 37.5601i 0.585122 + 0.514522i 0.900737 0.434365i \(-0.143027\pi\)
−0.315615 + 0.948887i \(0.602211\pi\)
\(74\) −12.4321 + 0.598268i −0.168002 + 0.00808470i
\(75\) 37.2157 21.7524i 0.496210 0.290033i
\(76\) −60.2231 + 44.9457i −0.792409 + 0.591390i
\(77\) 7.38772 2.58507i 0.0959444 0.0335724i
\(78\) −17.5756 3.13133i −0.225328 0.0401453i
\(79\) −12.4479 + 85.6903i −0.157568 + 1.08469i 0.748982 + 0.662590i \(0.230543\pi\)
−0.906550 + 0.422097i \(0.861294\pi\)
\(80\) −2.32729 28.9771i −0.0290911 0.362214i
\(81\) −56.7279 + 81.3237i −0.700344 + 1.00400i
\(82\) −1.41473 + 6.69093i −0.0172528 + 0.0815967i
\(83\) 3.08215 + 2.45793i 0.0371343 + 0.0296136i 0.641881 0.766804i \(-0.278154\pi\)
−0.604747 + 0.796418i \(0.706726\pi\)
\(84\) −69.3626 + 110.390i −0.825745 + 1.31417i
\(85\) −11.4590 12.6177i −0.134812 0.148443i
\(86\) 11.0628 + 35.1961i 0.128638 + 0.409257i
\(87\) 88.8398 + 31.0864i 1.02115 + 0.357315i
\(88\) −3.65005 2.05567i −0.0414779 0.0233599i
\(89\) −52.7504 64.0146i −0.592701 0.719265i 0.386470 0.922302i \(-0.373694\pi\)
−0.979171 + 0.203037i \(0.934919\pi\)
\(90\) −5.14605 7.37725i −0.0571783 0.0819694i
\(91\) −64.6692 + 27.3961i −0.710651 + 0.301056i
\(92\) 29.3851 72.5817i 0.319403 0.788932i
\(93\) −23.9191 + 49.6685i −0.257194 + 0.534070i
\(94\) 13.1417 + 24.2348i 0.139805 + 0.257817i
\(95\) −58.7432 55.0927i −0.618349 0.579923i
\(96\) 106.577 17.2305i 1.11017 0.179484i
\(97\) −15.1377 57.7266i −0.156059 0.595120i −0.998419 0.0562054i \(-0.982100\pi\)
0.842360 0.538915i \(-0.181165\pi\)
\(98\) −1.06154 66.2226i −0.0108321 0.675741i
\(99\) 2.10542 0.0337497i 0.0212669 0.000340906i
\(100\) −39.7541 + 10.4247i −0.397541 + 0.104247i
\(101\) 23.2154 + 143.595i 0.229855 + 1.42174i 0.799906 + 0.600126i \(0.204883\pi\)
−0.570050 + 0.821610i \(0.693076\pi\)
\(102\) 9.47948 10.1076i 0.0929361 0.0990941i
\(103\) 43.3815 23.5242i 0.421179 0.228391i −0.252219 0.967670i \(-0.581160\pi\)
0.673399 + 0.739280i \(0.264834\pi\)
\(104\) 33.8673 + 16.3096i 0.325647 + 0.156823i
\(105\) −129.512 52.4335i −1.23345 0.499367i
\(106\) −7.48557 17.6699i −0.0706186 0.166697i
\(107\) 157.812 110.083i 1.47488 1.02881i 0.487029 0.873386i \(-0.338081\pi\)
0.987848 0.155425i \(-0.0496746\pi\)
\(108\) 52.7430 43.4622i 0.488361 0.402428i
\(109\) 101.398 180.042i 0.930252 1.65176i 0.187420 0.982280i \(-0.439987\pi\)
0.742832 0.669478i \(-0.233482\pi\)
\(110\) 0.671411 1.91878i 0.00610373 0.0174435i
\(111\) −49.6217 + 15.5971i −0.447042 + 0.140514i
\(112\) 68.8311 62.5106i 0.614563 0.558130i
\(113\) 59.6963 + 37.5097i 0.528286 + 0.331944i 0.769624 0.638497i \(-0.220444\pi\)
−0.241338 + 0.970441i \(0.577586\pi\)
\(114\) 40.8235 51.1911i 0.358101 0.449045i
\(115\) 82.1051 + 17.3603i 0.713958 + 0.150959i
\(116\) −73.5993 51.3397i −0.634477 0.442583i
\(117\) −18.8342 + 1.51266i −0.160976 + 0.0129287i
\(118\) −41.7323 6.06228i −0.353663 0.0513752i
\(119\) 9.56218 53.6707i 0.0803544 0.451014i
\(120\) 24.6990 + 70.5858i 0.205825 + 0.588215i
\(121\) −72.0867 96.5897i −0.595758 0.798262i
\(122\) 12.8393 + 21.9664i 0.105240 + 0.180052i
\(123\) 1.37377 + 28.5472i 0.0111689 + 0.232091i
\(124\) 34.7076 39.4699i 0.279900 0.318306i
\(125\) −55.6645 120.491i −0.445316 0.963932i
\(126\) 8.62664 27.4454i 0.0684654 0.217821i
\(127\) −34.6906 + 46.4823i −0.273155 + 0.366002i −0.916817 0.399307i \(-0.869251\pi\)
0.643663 + 0.765309i \(0.277414\pi\)
\(128\) −129.343 14.5735i −1.01050 0.113856i
\(129\) 82.0301 + 130.550i 0.635892 + 1.01202i
\(130\) −4.90920 + 17.5683i −0.0377631 + 0.135141i
\(131\) −35.9950 + 146.816i −0.274771 + 1.12073i 0.655892 + 0.754855i \(0.272293\pi\)
−0.930663 + 0.365879i \(0.880768\pi\)
\(132\) −7.66774 2.01072i −0.0580889 0.0152327i
\(133\) 24.7344 256.398i 0.185973 1.92780i
\(134\) −78.1180 23.1850i −0.582970 0.173022i
\(135\) 55.7719 + 47.4793i 0.413125 + 0.351699i
\(136\) −24.9512 + 15.1256i −0.183465 + 0.111217i
\(137\) −66.6095 + 24.5129i −0.486201 + 0.178926i −0.576677 0.816972i \(-0.695651\pi\)
0.0904762 + 0.995899i \(0.471161\pi\)
\(138\) −8.72478 + 67.6677i −0.0632230 + 0.490345i
\(139\) 115.459 171.306i 0.830640 1.23242i −0.139584 0.990210i \(-0.544577\pi\)
0.970224 0.242210i \(-0.0778724\pi\)
\(140\) 105.468 + 81.3772i 0.753345 + 0.581266i
\(141\) 78.8140 + 84.0363i 0.558965 + 0.596002i
\(142\) 71.0300 + 23.5836i 0.500211 + 0.166082i
\(143\) −2.76815 3.25162i −0.0193577 0.0227386i
\(144\) 22.8736 10.1255i 0.158845 0.0703158i
\(145\) 40.3334 87.3058i 0.278162 0.602109i
\(146\) 34.9786 + 31.7666i 0.239579 + 0.217580i
\(147\) −74.4902 266.574i −0.506736 1.81343i
\(148\) 49.5663 1.58949i 0.334907 0.0107398i
\(149\) 16.3860 + 91.9713i 0.109973 + 0.617257i 0.989857 + 0.142068i \(0.0453753\pi\)
−0.879884 + 0.475189i \(0.842380\pi\)
\(150\) 31.2015 17.5723i 0.208010 0.117149i
\(151\) −116.113 44.8566i −0.768961 0.297064i −0.0561527 0.998422i \(-0.517883\pi\)
−0.712809 + 0.701358i \(0.752577\pi\)
\(152\) −111.795 + 80.6775i −0.735493 + 0.530773i
\(153\) 6.99135 12.8929i 0.0456951 0.0842672i
\(154\) 6.17075 2.04883i 0.0400698 0.0133041i
\(155\) 48.1693 + 29.2005i 0.310769 + 0.188390i
\(156\) 69.8190 + 13.5972i 0.447557 + 0.0871618i
\(157\) 209.347 20.1954i 1.33342 0.128633i 0.595409 0.803423i \(-0.296990\pi\)
0.738010 + 0.674789i \(0.235766\pi\)
\(158\) −11.4803 + 71.0097i −0.0726601 + 0.449428i
\(159\) −48.9907 63.4940i −0.308118 0.399333i
\(160\) −7.06776 110.086i −0.0441735 0.688038i
\(161\) 116.461 + 241.833i 0.723359 + 1.50207i
\(162\) −48.2017 + 66.7931i −0.297541 + 0.412303i
\(163\) −156.248 240.039i −0.958577 1.47263i −0.879577 0.475757i \(-0.842174\pi\)
−0.0790001 0.996875i \(-0.525173\pi\)
\(164\) 6.06340 26.5655i 0.0369719 0.161985i
\(165\) 0.680124 8.46824i 0.00412196 0.0513227i
\(166\) 2.52734 + 2.08263i 0.0152250 + 0.0125459i
\(167\) −87.8611 + 33.9423i −0.526115 + 0.203248i −0.608794 0.793329i \(-0.708346\pi\)
0.0826790 + 0.996576i \(0.473652\pi\)
\(168\) −130.485 + 200.460i −0.776696 + 1.19321i
\(169\) −90.9128 93.8749i −0.537945 0.555473i
\(170\) −9.35001 10.6330i −0.0550001 0.0625468i
\(171\) 28.0512 63.3682i 0.164042 0.370574i
\(172\) −41.8253 140.923i −0.243170 0.819322i
\(173\) 40.2027 + 206.433i 0.232386 + 1.19325i 0.895613 + 0.444834i \(0.146737\pi\)
−0.663227 + 0.748418i \(0.730814\pi\)
\(174\) 73.3775 + 27.0036i 0.421710 + 0.155193i
\(175\) 65.1614 124.902i 0.372351 0.713727i
\(176\) 4.88082 + 2.85282i 0.0277320 + 0.0162092i
\(177\) −175.126 + 19.7319i −0.989410 + 0.111480i
\(178\) −42.9628 53.8737i −0.241364 0.302661i
\(179\) −40.6222 81.0054i −0.226940 0.452544i 0.751317 0.659942i \(-0.229419\pi\)
−0.978257 + 0.207397i \(0.933501\pi\)
\(180\) 20.0301 + 29.7187i 0.111278 + 0.165104i
\(181\) −15.1307 + 235.672i −0.0835948 + 1.30206i 0.714547 + 0.699587i \(0.246633\pi\)
−0.798142 + 0.602469i \(0.794184\pi\)
\(182\) −54.0798 + 21.8945i −0.297142 + 0.120299i
\(183\) 75.1870 + 75.1870i 0.410858 + 0.410858i
\(184\) 56.0383 132.280i 0.304556 0.718913i
\(185\) 10.9946 + 51.9988i 0.0594304 + 0.281075i
\(186\) −20.5288 + 40.9368i −0.110370 + 0.220090i
\(187\) 3.28748 0.423874i 0.0175801 0.00226670i
\(188\) −50.8070 97.3876i −0.270250 0.518019i
\(189\) −11.2606 + 233.998i −0.0595801 + 1.23809i
\(190\) −48.0593 46.5428i −0.252944 0.244962i
\(191\) 14.3766 + 62.9880i 0.0752702 + 0.329780i 0.998518 0.0544252i \(-0.0173326\pi\)
−0.923248 + 0.384205i \(0.874475\pi\)
\(192\) −23.8668 + 3.46702i −0.124306 + 0.0180574i
\(193\) 7.18709 224.120i 0.0372388 1.16124i −0.794923 0.606710i \(-0.792489\pi\)
0.832162 0.554533i \(-0.187103\pi\)
\(194\) −11.8050 48.1500i −0.0608503 0.248196i
\(195\) −1.22184 + 76.2223i −0.00626583 + 0.390884i
\(196\) 263.890i 1.34638i
\(197\) −177.704 85.0313i −0.902050 0.431631i
\(198\) 1.74924 0.00883454
\(199\) −19.0722 0.305725i −0.0958400 0.00153631i −0.0319106 0.999491i \(-0.510159\pi\)
−0.0639295 + 0.997954i \(0.520363\pi\)
\(200\) −73.2315 + 17.9542i −0.366158 + 0.0897710i
\(201\) −340.363 10.9148i −1.69335 0.0543023i
\(202\) 17.3711 + 119.581i 0.0859953 + 0.591986i
\(203\) 299.889 68.4478i 1.47729 0.337181i
\(204\) −38.4105 + 39.6620i −0.188287 + 0.194422i
\(205\) 29.1692 + 1.40370i 0.142289 + 0.00684731i
\(206\) 36.3464 18.9619i 0.176439 0.0920481i
\(207\) 9.23426 + 71.6191i 0.0446100 + 0.345986i
\(208\) −45.3469 22.7404i −0.218014 0.109329i
\(209\) 15.3232 3.23994i 0.0733168 0.0155021i
\(210\) −106.876 45.2763i −0.508933 0.215602i
\(211\) 67.4016 67.4016i 0.319439 0.319439i −0.529113 0.848551i \(-0.677475\pi\)
0.848551 + 0.529113i \(0.177475\pi\)
\(212\) 28.6932 + 70.8727i 0.135345 + 0.334305i
\(213\) 312.132 + 20.0396i 1.46541 + 0.0940825i
\(214\) 132.546 89.3349i 0.619375 0.417453i
\(215\) 140.826 70.6210i 0.655007 0.328470i
\(216\) 98.0300 78.1763i 0.453842 0.361927i
\(217\) 20.1721 + 179.032i 0.0929588 + 0.825032i
\(218\) 86.6192 148.195i 0.397336 0.679792i
\(219\) 175.072 + 91.3350i 0.799416 + 0.417055i
\(220\) −2.79735 + 7.60131i −0.0127152 + 0.0345514i
\(221\) −29.1950 + 5.68573i −0.132104 + 0.0257273i
\(222\) −41.4241 + 12.2944i −0.186595 + 0.0553804i
\(223\) −66.4290 29.4062i −0.297888 0.131866i 0.250434 0.968134i \(-0.419427\pi\)
−0.548321 + 0.836268i \(0.684733\pi\)
\(224\) 264.960 232.990i 1.18286 1.04014i
\(225\) 27.2258 26.3668i 0.121004 0.117186i
\(226\) 49.0851 + 31.9508i 0.217191 + 0.141375i
\(227\) 67.7242 + 175.307i 0.298344 + 0.772276i 0.998311 + 0.0581006i \(0.0185044\pi\)
−0.699966 + 0.714176i \(0.746802\pi\)
\(228\) −165.905 + 201.332i −0.727653 + 0.883034i
\(229\) −332.758 26.7253i −1.45309 0.116705i −0.671736 0.740791i \(-0.734451\pi\)
−0.781355 + 0.624086i \(0.785471\pi\)
\(230\) 67.9664 + 15.5129i 0.295506 + 0.0674473i
\(231\) 22.7729 14.8235i 0.0985839 0.0641710i
\(232\) −133.501 96.3418i −0.575436 0.415267i
\(233\) −102.065 + 49.1518i −0.438046 + 0.210952i −0.639891 0.768466i \(-0.721021\pi\)
0.201845 + 0.979417i \(0.435306\pi\)
\(234\) −15.6641 + 1.00567i −0.0669404 + 0.00429772i
\(235\) 93.2033 71.9138i 0.396610 0.306016i
\(236\) 165.869 + 26.8164i 0.702835 + 0.113629i
\(237\) 28.8654 + 299.220i 0.121795 + 1.26253i
\(238\) 8.65707 44.4522i 0.0363742 0.186774i
\(239\) 43.8534 72.3408i 0.183487 0.302681i −0.749901 0.661550i \(-0.769899\pi\)
0.933388 + 0.358869i \(0.116838\pi\)
\(240\) −31.8015 95.7809i −0.132506 0.399087i
\(241\) 130.973 + 71.0217i 0.543455 + 0.294696i 0.725072 0.688673i \(-0.241807\pi\)
−0.181617 + 0.983369i \(0.558133\pi\)
\(242\) −58.5901 81.1884i −0.242108 0.335489i
\(243\) −57.0803 + 147.755i −0.234898 + 0.608044i
\(244\) −49.7472 88.3312i −0.203882 0.362013i
\(245\) −278.432 + 49.6065i −1.13646 + 0.202475i
\(246\) 0.760974 + 23.7300i 0.00309339 + 0.0964633i
\(247\) −135.353 + 37.8225i −0.547990 + 0.153128i
\(248\) 64.8282 71.3831i 0.261404 0.287835i
\(249\) 12.4243 + 5.73974i 0.0498966 + 0.0230512i
\(250\) −44.6313 100.823i −0.178525 0.403291i
\(251\) −276.307 + 235.224i −1.10083 + 0.937147i −0.998340 0.0575876i \(-0.981659\pi\)
−0.102486 + 0.994734i \(0.532680\pi\)
\(252\) −36.1201 + 108.788i −0.143334 + 0.431699i
\(253\) −11.9041 + 11.1644i −0.0470519 + 0.0441279i
\(254\) −29.4334 + 38.1469i −0.115879 + 0.150185i
\(255\) −49.0681 33.0714i −0.192424 0.129692i
\(256\) −79.6807 10.2737i −0.311253 0.0401316i
\(257\) 108.795 + 295.630i 0.423326 + 1.15031i 0.953227 + 0.302254i \(0.0977390\pi\)
−0.529902 + 0.848059i \(0.677771\pi\)
\(258\) 66.3970 + 109.529i 0.257353 + 0.424530i
\(259\) −110.194 + 129.440i −0.425459 + 0.499768i
\(260\) 20.6796 69.6764i 0.0795368 0.267986i
\(261\) 82.3720 + 7.94633i 0.315602 + 0.0304457i
\(262\) −31.8527 + 121.468i −0.121575 + 0.463618i
\(263\) 278.931 + 68.3856i 1.06057 + 0.260021i 0.729780 0.683682i \(-0.239622\pi\)
0.330794 + 0.943703i \(0.392683\pi\)
\(264\) −14.0066 3.91394i −0.0530553 0.0148255i
\(265\) −69.3843 + 43.5970i −0.261828 + 0.164517i
\(266\) 23.9586 212.638i 0.0900698 0.799391i
\(267\) −230.782 172.237i −0.864353 0.645083i
\(268\) 309.732 + 97.3548i 1.15571 + 0.363264i
\(269\) −165.019 + 76.2352i −0.613454 + 0.283402i −0.701450 0.712718i \(-0.747464\pi\)
0.0879967 + 0.996121i \(0.471954\pi\)
\(270\) 45.6927 + 40.1795i 0.169232 + 0.148813i
\(271\) −449.822 + 21.6466i −1.65986 + 0.0798769i −0.856676 0.515855i \(-0.827474\pi\)
−0.803183 + 0.595732i \(0.796862\pi\)
\(272\) 33.9957 19.8704i 0.124984 0.0730528i
\(273\) −195.404 + 145.834i −0.715766 + 0.534190i
\(274\) −55.6531 + 19.4739i −0.203113 + 0.0710725i
\(275\) 8.43292 + 1.50244i 0.0306652 + 0.00546342i
\(276\) 39.0798 269.022i 0.141593 0.974718i
\(277\) 25.3868 + 316.091i 0.0916490 + 1.14112i 0.863168 + 0.504917i \(0.168477\pi\)
−0.771519 + 0.636207i \(0.780503\pi\)
\(278\) 98.1825 140.752i 0.353174 0.506302i
\(279\) −10.0268 + 47.4215i −0.0359384 + 0.169970i
\(280\) 191.078 + 152.380i 0.682423 + 0.544214i
\(281\) −292.984 + 466.281i −1.04265 + 1.65936i −0.352292 + 0.935890i \(0.614598\pi\)
−0.690354 + 0.723472i \(0.742545\pi\)
\(282\) 64.3450 + 70.8510i 0.228174 + 0.251245i
\(283\) −34.3775 109.371i −0.121475 0.386469i 0.873471 0.486875i \(-0.161863\pi\)
−0.994947 + 0.100406i \(0.967986\pi\)
\(284\) −281.468 98.4901i −0.991086 0.346796i
\(285\) −243.613 137.200i −0.854783 0.481405i
\(286\) −2.25596 2.73770i −0.00788799 0.00957236i
\(287\) 53.4379 + 76.6073i 0.186195 + 0.266924i
\(288\) 87.4026 37.0268i 0.303481 0.128565i
\(289\) −99.7882 + 246.479i −0.345288 + 0.852868i
\(290\) 34.6639 71.9803i 0.119531 0.248208i
\(291\) −98.7618 182.129i −0.339388 0.625871i
\(292\) −137.322 128.788i −0.470280 0.441055i
\(293\) −299.216 + 48.3750i −1.02122 + 0.165102i −0.647200 0.762320i \(-0.724060\pi\)
−0.374016 + 0.927422i \(0.622019\pi\)
\(294\) −58.3231 222.411i −0.198378 0.756502i
\(295\) 2.88619 + 180.050i 0.00978368 + 0.610339i
\(296\) 90.9713 1.45826i 0.307335 0.00492656i
\(297\) −13.7783 + 3.61309i −0.0463915 + 0.0121653i
\(298\) 12.3858 + 76.6107i 0.0415632 + 0.257083i
\(299\) 100.180 106.818i 0.335051 0.357252i
\(300\) −125.425 + 68.0134i −0.418083 + 0.226711i
\(301\) 453.988 + 218.629i 1.50827 + 0.726342i
\(302\) −95.8478 38.8045i −0.317377 0.128492i
\(303\) 196.983 + 464.983i 0.650108 + 1.53460i
\(304\) 152.598 106.446i 0.501968 0.350151i
\(305\) 83.8471 69.0931i 0.274909 0.226535i
\(306\) 5.97876 10.6159i 0.0195384 0.0346925i
\(307\) 81.1737 231.981i 0.264409 0.755639i −0.732763 0.680484i \(-0.761769\pi\)
0.997172 0.0751542i \(-0.0239449\pi\)
\(308\) −24.7143 + 7.76821i −0.0802413 + 0.0252215i
\(309\) 126.827 115.181i 0.410443 0.372753i
\(310\) 39.6212 + 24.8956i 0.127810 + 0.0803085i
\(311\) 198.918 249.435i 0.639608 0.802043i −0.351346 0.936246i \(-0.614276\pi\)
0.990954 + 0.134203i \(0.0428474\pi\)
\(312\) 127.676 + 26.9959i 0.409219 + 0.0865252i
\(313\) 364.959 + 254.580i 1.16600 + 0.813354i 0.985409 0.170204i \(-0.0544426\pi\)
0.180595 + 0.983558i \(0.442198\pi\)
\(314\) 174.155 13.9872i 0.554634 0.0445452i
\(315\) −121.573 17.6604i −0.385945 0.0560646i
\(316\) 50.2708 282.161i 0.159085 0.892913i
\(317\) −55.5850 158.853i −0.175347 0.501113i 0.822347 0.568986i \(-0.192664\pi\)
−0.997694 + 0.0678735i \(0.978379\pi\)
\(318\) −39.8469 53.3912i −0.125305 0.167897i
\(319\) 9.43786 + 16.1470i 0.0295858 + 0.0506176i
\(320\) 1.18450 + 24.6142i 0.00370157 + 0.0769194i
\(321\) 441.108 501.634i 1.37417 1.56272i
\(322\) 93.5139 + 202.420i 0.290416 + 0.628635i
\(323\) 32.7108 104.068i 0.101272 0.322193i
\(324\) 196.295 263.017i 0.605848 0.811782i
\(325\) −76.3788 8.60582i −0.235012 0.0264795i
\(326\) −126.586 201.460i −0.388299 0.617975i
\(327\) 193.058 690.885i 0.590391 2.11280i
\(328\) 11.9039 48.5535i 0.0362923 0.148029i
\(329\) 364.213 + 95.5078i 1.10703 + 0.290297i
\(330\) 0.677671 7.02477i 0.00205355 0.0212872i
\(331\) −400.515 118.871i −1.21002 0.359126i −0.384297 0.923209i \(-0.625556\pi\)
−0.825718 + 0.564083i \(0.809230\pi\)
\(332\) −9.93562 8.45832i −0.0299266 0.0254769i
\(333\) −39.1085 + 23.7078i −0.117443 + 0.0711946i
\(334\) −73.4305 + 27.0231i −0.219852 + 0.0809075i
\(335\) −44.4957 + 345.100i −0.132823 + 1.03015i
\(336\) 180.409 267.673i 0.536932 0.796646i
\(337\) −380.268 293.407i −1.12839 0.870644i −0.135631 0.990759i \(-0.543306\pi\)
−0.992760 + 0.120115i \(0.961674\pi\)
\(338\) −74.2634 79.1841i −0.219714 0.234273i
\(339\) 232.292 + 77.1261i 0.685226 + 0.227511i
\(340\) 36.5702 + 42.9575i 0.107559 + 0.126346i
\(341\) −10.0169 + 4.43418i −0.0293751 + 0.0130035i
\(342\) 24.1434 52.2609i 0.0705948 0.152810i
\(343\) −258.081 234.382i −0.752423 0.683331i
\(344\) −72.5805 259.740i −0.210990 0.755058i
\(345\) 291.193 9.33799i 0.844037 0.0270666i
\(346\) 30.6443 + 172.001i 0.0885674 + 0.497112i
\(347\) 25.3249 14.2627i 0.0729825 0.0411030i −0.453796 0.891106i \(-0.649930\pi\)
0.526778 + 0.850003i \(0.323400\pi\)
\(348\) −290.602 112.265i −0.835064 0.322601i
\(349\) −251.771 + 181.692i −0.721407 + 0.520607i −0.884810 0.465952i \(-0.845712\pi\)
0.163403 + 0.986559i \(0.447753\pi\)
\(350\) 55.7869 102.878i 0.159391 0.293936i
\(351\) 121.304 40.2758i 0.345596 0.114746i
\(352\) 18.3453 + 11.1210i 0.0521172 + 0.0315938i
\(353\) 107.796 + 20.9933i 0.305372 + 0.0594712i 0.341518 0.939875i \(-0.389059\pi\)
−0.0361456 + 0.999347i \(0.511508\pi\)
\(354\) −145.724 + 14.0578i −0.411650 + 0.0397114i
\(355\) 51.0065 315.493i 0.143680 0.888713i
\(356\) 167.718 + 217.370i 0.471118 + 0.610589i
\(357\) −12.1259 188.871i −0.0339662 0.529051i
\(358\) −32.6628 67.8250i −0.0912368 0.189455i
\(359\) 365.420 506.362i 1.01788 1.41048i 0.108703 0.994074i \(-0.465330\pi\)
0.909179 0.416406i \(-0.136711\pi\)
\(360\) 35.8694 + 55.1050i 0.0996371 + 0.153069i
\(361\) 34.3670 150.572i 0.0951994 0.417096i
\(362\) −15.7056 + 195.551i −0.0433857 + 0.540196i
\(363\) −322.909 266.089i −0.889556 0.733028i
\(364\) 216.845 83.7713i 0.595729 0.230141i
\(365\) 110.071 169.098i 0.301564 0.463283i
\(366\) 61.4502 + 63.4524i 0.167897 + 0.173367i
\(367\) 373.988 + 425.304i 1.01904 + 1.15887i 0.987218 + 0.159374i \(0.0509477\pi\)
0.0318232 + 0.999494i \(0.489869\pi\)
\(368\) −78.4780 + 177.283i −0.213255 + 0.481747i
\(369\) 7.14978 + 24.0900i 0.0193761 + 0.0652845i
\(370\) 8.43993 + 43.3373i 0.0228106 + 0.117128i
\(371\) −245.967 90.5183i −0.662985 0.243985i
\(372\) 84.3984 161.776i 0.226877 0.434882i
\(373\) −44.8720 26.2275i −0.120300 0.0703150i 0.443244 0.896401i \(-0.353828\pi\)
−0.563544 + 0.826086i \(0.690562\pi\)
\(374\) 2.73627 0.308303i 0.00731622 0.000824340i
\(375\) −287.295 360.257i −0.766120 0.960685i
\(376\) −90.3368 180.142i −0.240257 0.479101i
\(377\) −93.7972 139.167i −0.248799 0.369143i
\(378\) −12.4688 + 194.212i −0.0329863 + 0.513789i
\(379\) 339.346 137.386i 0.895371 0.362496i 0.119091 0.992883i \(-0.462002\pi\)
0.776281 + 0.630388i \(0.217104\pi\)
\(380\) 188.490 + 188.490i 0.496026 + 0.496026i
\(381\) −78.5445 + 185.406i −0.206154 + 0.486631i
\(382\) 11.1027 + 52.5100i 0.0290647 + 0.137461i
\(383\) −218.656 + 436.026i −0.570905 + 1.13845i 0.403778 + 0.914857i \(0.367697\pi\)
−0.974683 + 0.223592i \(0.928222\pi\)
\(384\) −448.167 + 57.7847i −1.16710 + 0.150481i
\(385\) −12.8421 24.6159i −0.0333561 0.0639374i
\(386\) 8.95376 186.061i 0.0231963 0.482024i
\(387\) 97.3807 + 94.3080i 0.251630 + 0.243690i
\(388\) 43.9546 + 192.577i 0.113285 + 0.496334i
\(389\) −548.782 + 79.7192i −1.41075 + 0.204934i −0.806204 0.591637i \(-0.798482\pi\)
−0.604545 + 0.796571i \(0.706645\pi\)
\(390\) −2.02975 + 63.2949i −0.00520448 + 0.162295i
\(391\) 27.0677 + 110.404i 0.0692268 + 0.282362i
\(392\) −7.75977 + 484.081i −0.0197953 + 1.23490i
\(393\) 524.790i 1.33534i
\(394\) −146.471 72.9941i −0.371754 0.185264i
\(395\) 307.159 0.777617
\(396\) −6.96874 0.111708i −0.0175978 0.000282092i
\(397\) 217.207 53.2528i 0.547121 0.134138i 0.0450828 0.998983i \(-0.485645\pi\)
0.502038 + 0.864845i \(0.332584\pi\)
\(398\) −15.8375 0.507878i −0.0397927 0.00127608i
\(399\) −128.556 884.969i −0.322195 2.21797i
\(400\) 99.2051 22.6429i 0.248013 0.0566073i
\(401\) 169.752 175.283i 0.423322 0.437115i −0.472633 0.881259i \(-0.656696\pi\)
0.895955 + 0.444144i \(0.146492\pi\)
\(402\) −282.564 13.5977i −0.702896 0.0338252i
\(403\) 87.1499 45.4660i 0.216253 0.112819i
\(404\) −61.5675 477.506i −0.152395 1.18194i
\(405\) 314.411 + 157.669i 0.776322 + 0.389307i
\(406\) 250.003 52.8607i 0.615771 0.130199i
\(407\) −9.51716 4.03180i −0.0233837 0.00990614i
\(408\) −71.6266 + 71.6266i −0.175556 + 0.175556i
\(409\) −22.7119 56.0989i −0.0555304 0.137161i 0.896611 0.442819i \(-0.146022\pi\)
−0.952141 + 0.305658i \(0.901124\pi\)
\(410\) 24.2096 + 1.55431i 0.0590478 + 0.00379099i
\(411\) −204.330 + 137.716i −0.497153 + 0.335076i
\(412\) −146.010 + 73.2207i −0.354394 + 0.177720i
\(413\) −450.299 + 359.102i −1.09031 + 0.869495i
\(414\) 6.71651 + 59.6107i 0.0162235 + 0.143987i
\(415\) 7.05669 12.0731i 0.0170041 0.0290919i
\(416\) −170.672 89.0392i −0.410268 0.214037i
\(417\) 247.691 673.056i 0.593983 1.61404i
\(418\) 12.7708 2.48711i 0.0305521 0.00595003i
\(419\) 633.769 188.099i 1.51258 0.448925i 0.581437 0.813591i \(-0.302490\pi\)
0.931138 + 0.364667i \(0.118817\pi\)
\(420\) 422.889 + 187.200i 1.00688 + 0.445715i
\(421\) −131.649 + 115.764i −0.312705 + 0.274974i −0.802231 0.597014i \(-0.796354\pi\)
0.489526 + 0.871989i \(0.337170\pi\)
\(422\) 56.8820 55.0871i 0.134791 0.130538i
\(423\) 84.8962 + 55.2613i 0.200700 + 0.130641i
\(424\) 50.5508 + 130.853i 0.119224 + 0.308615i
\(425\) 37.9412 46.0431i 0.0892735 0.108337i
\(426\) 258.994 + 20.8010i 0.607968 + 0.0488288i
\(427\) 338.789 + 77.3264i 0.793417 + 0.181092i
\(428\) −533.752 + 347.434i −1.24708 + 0.811762i
\(429\) −12.0216 8.67548i −0.0280224 0.0202226i
\(430\) 117.912 56.7837i 0.274215 0.132055i
\(431\) −158.184 + 10.1557i −0.367015 + 0.0235632i −0.246485 0.969147i \(-0.579276\pi\)
−0.120530 + 0.992710i \(0.538459\pi\)
\(432\) −133.970 + 103.369i −0.310116 + 0.239279i
\(433\) −98.8441 15.9804i −0.228277 0.0369061i 0.0443908 0.999014i \(-0.485865\pi\)
−0.272668 + 0.962108i \(0.587906\pi\)
\(434\) 14.3714 + 148.975i 0.0331139 + 0.343260i
\(435\) 63.8234 327.720i 0.146720 0.753379i
\(436\) −354.544 + 584.857i −0.813174 + 1.34142i
\(437\) 169.247 + 509.745i 0.387293 + 1.16647i
\(438\) 144.201 + 78.1950i 0.329226 + 0.178527i
\(439\) 49.5377 + 68.6445i 0.112842 + 0.156366i 0.863540 0.504280i \(-0.168242\pi\)
−0.750698 + 0.660645i \(0.770283\pi\)
\(440\) −5.35499 + 13.8616i −0.0121704 + 0.0315036i
\(441\) −119.420 212.043i −0.270794 0.480822i
\(442\) −24.3254 + 4.33392i −0.0550349 + 0.00980524i
\(443\) 24.1621 + 753.462i 0.0545419 + 1.70082i 0.552416 + 0.833569i \(0.313706\pi\)
−0.497874 + 0.867249i \(0.665886\pi\)
\(444\) 165.813 46.3341i 0.373454 0.104356i
\(445\) −197.820 + 217.822i −0.444539 + 0.489487i
\(446\) −54.7852 25.3096i −0.122837 0.0567480i
\(447\) 131.280 + 296.563i 0.293690 + 0.663451i
\(448\) −60.0159 + 51.0923i −0.133964 + 0.114045i
\(449\) −229.020 + 689.770i −0.510066 + 1.53624i 0.302373 + 0.953190i \(0.402221\pi\)
−0.812438 + 0.583047i \(0.801860\pi\)
\(450\) 22.9652 21.5381i 0.0510338 0.0478623i
\(451\) −3.46929 + 4.49635i −0.00769244 + 0.00996973i
\(452\) −193.508 130.423i −0.428116 0.288546i
\(453\) −428.591 55.2607i −0.946118 0.121988i
\(454\) 53.9184 + 146.514i 0.118763 + 0.322717i
\(455\) 129.150 + 213.047i 0.283847 + 0.468236i
\(456\) −310.257 + 364.445i −0.680387 + 0.799222i
\(457\) 125.599 423.184i 0.274833 0.926003i −0.702032 0.712146i \(-0.747724\pi\)
0.976865 0.213858i \(-0.0686029\pi\)
\(458\) −276.037 26.6290i −0.602701 0.0581418i
\(459\) −25.1657 + 95.9679i −0.0548273 + 0.209080i
\(460\) −269.779 66.1418i −0.586476 0.143787i
\(461\) −275.171 76.8924i −0.596899 0.166795i −0.0425717 0.999093i \(-0.513555\pi\)
−0.554327 + 0.832299i \(0.687024\pi\)
\(462\) 19.1128 12.0094i 0.0413697 0.0259943i
\(463\) −70.3489 + 624.364i −0.151941 + 1.34852i 0.653988 + 0.756505i \(0.273095\pi\)
−0.805929 + 0.592012i \(0.798334\pi\)
\(464\) 178.059 + 132.889i 0.383748 + 0.286398i
\(465\) 186.556 + 58.6383i 0.401195 + 0.126104i
\(466\) −85.4307 + 39.4671i −0.183328 + 0.0846934i
\(467\) −664.588 584.400i −1.42310 1.25139i −0.922656 0.385623i \(-0.873986\pi\)
−0.500444 0.865769i \(-0.666830\pi\)
\(468\) 62.4679 3.00612i 0.133478 0.00642334i
\(469\) −960.831 + 561.602i −2.04868 + 1.19745i
\(470\) 78.3733 58.4915i 0.166752 0.124450i
\(471\) 689.180 241.154i 1.46323 0.512005i
\(472\) 303.482 + 54.0695i 0.642970 + 0.114554i
\(473\) −4.40438 + 30.3194i −0.00931158 + 0.0641002i
\(474\) 19.9920 + 248.920i 0.0421772 + 0.525149i
\(475\) 161.281 231.208i 0.339538 0.486754i
\(476\) −37.3274 + 176.539i −0.0784190 + 0.370881i
\(477\) −55.1282 43.9633i −0.115573 0.0921662i
\(478\) 37.3884 59.5032i 0.0782183 0.124484i
\(479\) −468.137 515.471i −0.977322 1.07614i −0.997082 0.0763355i \(-0.975678\pi\)
0.0197601 0.999805i \(-0.493710\pi\)
\(480\) −114.835 365.345i −0.239240 0.761135i
\(481\) 87.5422 + 30.6323i 0.182000 + 0.0636847i
\(482\) 107.842 + 60.7354i 0.223738 + 0.126007i
\(483\) 592.597 + 719.139i 1.22691 + 1.48890i
\(484\) 228.231 + 327.186i 0.471551 + 0.676004i
\(485\) −194.927 + 82.5777i −0.401911 + 0.170263i
\(486\) −49.3789 + 121.967i −0.101603 + 0.250961i
\(487\) 118.184 245.411i 0.242677 0.503923i −0.743682 0.668534i \(-0.766922\pi\)
0.986359 + 0.164610i \(0.0526366\pi\)
\(488\) −88.6590 163.498i −0.181678 0.335036i
\(489\) −725.268 680.198i −1.48317 1.39100i
\(490\) −231.929 + 37.4965i −0.473325 + 0.0765236i
\(491\) −212.502 810.363i −0.432795 1.65043i −0.721052 0.692881i \(-0.756341\pi\)
0.288258 0.957553i \(-0.406924\pi\)
\(492\) −1.51620 94.5858i −0.00308171 0.192248i
\(493\) 130.252 2.08793i 0.264203 0.00423515i
\(494\) −112.930 + 29.6137i −0.228603 + 0.0599467i
\(495\) −1.19213 7.37375i −0.00240835 0.0148965i
\(496\) −89.0216 + 94.9203i −0.179479 + 0.191371i
\(497\) 898.578 487.267i 1.80800 0.980416i
\(498\) 10.2433 + 4.93292i 0.0205689 + 0.00990546i
\(499\) 459.302 + 185.951i 0.920444 + 0.372647i 0.785966 0.618270i \(-0.212166\pi\)
0.134478 + 0.990917i \(0.457064\pi\)
\(500\) 171.367 + 404.516i 0.342734 + 0.809032i
\(501\) −268.191 + 187.078i −0.535311 + 0.373410i
\(502\) −232.636 + 191.701i −0.463419 + 0.381874i
\(503\) −52.7779 + 93.7125i −0.104926 + 0.186307i −0.918788 0.394751i \(-0.870831\pi\)
0.813862 + 0.581059i \(0.197361\pi\)
\(504\) −69.4578 + 198.499i −0.137813 + 0.393847i
\(505\) 492.245 154.722i 0.974742 0.306381i
\(506\) −10.0364 + 9.11476i −0.0198347 + 0.0180134i
\(507\) −384.142 241.373i −0.757677 0.476080i
\(508\) 119.695 150.093i 0.235620 0.295458i
\(509\) −414.972 87.7417i −0.815270 0.172381i −0.219579 0.975595i \(-0.570468\pi\)
−0.595690 + 0.803214i \(0.703122\pi\)
\(510\) −40.3162 28.1228i −0.0790514 0.0551428i
\(511\) 643.269 51.6639i 1.25884 0.101104i
\(512\) 449.193 + 65.2523i 0.877329 + 0.127446i
\(513\) −82.2251 + 461.514i −0.160283 + 0.899637i
\(514\) 86.4300 + 247.003i 0.168152 + 0.480550i
\(515\) −104.703 140.292i −0.203306 0.272412i
\(516\) −257.523 440.589i −0.499075 0.853855i
\(517\) 1.10044 + 22.8673i 0.00212850 + 0.0442307i
\(518\) −93.2519 + 106.047i −0.180023 + 0.204725i
\(519\) 306.206 + 662.814i 0.589992 + 1.27710i
\(520\) 39.9835 127.206i 0.0768914 0.244628i
\(521\) 361.958 484.991i 0.694737 0.930884i −0.305033 0.952342i \(-0.598667\pi\)
0.999770 + 0.0214577i \(0.00683071\pi\)
\(522\) 68.3134 + 7.69708i 0.130869 + 0.0147454i
\(523\) −143.500 228.379i −0.274379 0.436672i 0.680901 0.732376i \(-0.261589\pi\)
−0.955280 + 0.295704i \(0.904446\pi\)
\(524\) 134.654 481.879i 0.256973 0.919617i
\(525\) 116.459 475.011i 0.221826 0.904784i
\(526\) 230.773 + 60.5158i 0.438732 + 0.115049i
\(527\) −7.32651 + 75.9470i −0.0139023 + 0.144112i
\(528\) 18.8155 + 5.58433i 0.0356354 + 0.0105764i
\(529\) −23.3630 19.8892i −0.0441645 0.0375978i
\(530\) −58.2119 + 35.2884i −0.109834 + 0.0665819i
\(531\) −145.415 + 53.5142i −0.273852 + 0.100780i
\(532\) −109.027 + 845.593i −0.204938 + 1.58946i
\(533\) 28.4818 42.2584i 0.0534367 0.0792841i
\(534\) −189.397 146.135i −0.354677 0.273661i
\(535\) −466.915 497.853i −0.872738 0.930567i
\(536\) 565.310 + 187.696i 1.05468 + 0.350179i
\(537\) −203.934 239.553i −0.379766 0.446094i
\(538\) −138.082 + 61.1248i −0.256658 + 0.113615i
\(539\) 23.0664 49.9296i 0.0427948 0.0926337i
\(540\) −179.468 162.988i −0.332348 0.301830i
\(541\) −164.573 588.949i −0.304202 1.08863i −0.946640 0.322293i \(-0.895547\pi\)
0.642438 0.766337i \(-0.277923\pi\)
\(542\) −373.916 + 11.9907i −0.689881 + 0.0221232i
\(543\) 143.804 + 807.147i 0.264833 + 1.48646i
\(544\) 130.195 73.3243i 0.239328 0.134787i
\(545\) −683.733 264.139i −1.25456 0.484658i
\(546\) −164.247 + 118.530i −0.300818 + 0.217087i
\(547\) 239.893 442.391i 0.438561 0.808759i −0.561261 0.827639i \(-0.689683\pi\)
0.999822 + 0.0188797i \(0.00600996\pi\)
\(548\) 222.958 74.0273i 0.406858 0.135086i
\(549\) 79.9463 + 48.4639i 0.145622 + 0.0882767i
\(550\) 6.98448 + 1.36023i 0.0126991 + 0.00247314i
\(551\) 612.678 59.1043i 1.11194 0.107267i
\(552\) 79.5987 492.346i 0.144200 0.891931i
\(553\) 600.146 + 777.814i 1.08525 + 1.40654i
\(554\) 16.8779 + 262.887i 0.0304656 + 0.474526i
\(555\) 80.0572 + 166.241i 0.144247 + 0.299532i
\(556\) −400.135 + 554.468i −0.719668 + 0.997245i
\(557\) 519.293 + 797.774i 0.932304 + 1.43227i 0.901517 + 0.432744i \(0.142454\pi\)
0.0307872 + 0.999526i \(0.490199\pi\)
\(558\) −8.95979 + 39.2554i −0.0160570 + 0.0703502i
\(559\) 22.0091 274.036i 0.0393723 0.490226i
\(560\) −254.540 209.751i −0.454536 0.374555i
\(561\) 10.7343 4.14686i 0.0191342 0.00739191i
\(562\) −249.564 + 383.398i −0.444064 + 0.682202i
\(563\) 586.538 + 605.649i 1.04181 + 1.07575i 0.997050 + 0.0767549i \(0.0244559\pi\)
0.0447584 + 0.998998i \(0.485748\pi\)
\(564\) −251.818 286.371i −0.446485 0.507749i
\(565\) 101.234 228.689i 0.179175 0.404758i
\(566\) −27.0981 91.3025i −0.0478765 0.161312i
\(567\) 215.051 + 1104.24i 0.379279 + 1.94752i
\(568\) −513.430 188.947i −0.903927 0.332653i
\(569\) 379.973 728.338i 0.667792 1.28003i −0.279650 0.960102i \(-0.590218\pi\)
0.947441 0.319929i \(-0.103659\pi\)
\(570\) −200.521 117.204i −0.351792 0.205621i
\(571\) 741.615 83.5599i 1.29880 0.146340i 0.564652 0.825329i \(-0.309010\pi\)
0.734148 + 0.678989i \(0.237582\pi\)
\(572\) 8.81264 + 11.0507i 0.0154067 + 0.0193194i
\(573\) 100.545 + 200.498i 0.175471 + 0.349909i
\(574\) 43.3662 + 64.3425i 0.0755509 + 0.112095i
\(575\) −18.8206 + 293.147i −0.0327315 + 0.509820i
\(576\) −19.6549 + 7.95738i −0.0341231 + 0.0138149i
\(577\) −177.225 177.225i −0.307149 0.307149i 0.536653 0.843803i \(-0.319688\pi\)
−0.843803 + 0.536653i \(0.819688\pi\)
\(578\) −86.1671 + 203.400i −0.149078 + 0.351903i
\(579\) −161.039 761.628i −0.278132 1.31542i
\(580\) −142.693 + 284.547i −0.246023 + 0.490598i
\(581\) 44.3604 5.71964i 0.0763518 0.00984448i
\(582\) −79.6078 152.593i −0.136783 0.262188i
\(583\) 0.765996 15.9176i 0.00131389 0.0273028i
\(584\) −248.116 240.287i −0.424856 0.411450i
\(585\) 14.9146 + 65.3450i 0.0254950 + 0.111701i
\(586\) −249.177 + 36.1969i −0.425216 + 0.0617694i
\(587\) 28.8632 900.062i 0.0491708 1.53333i −0.616664 0.787227i \(-0.711516\pi\)
0.665835 0.746099i \(-0.268076\pi\)
\(588\) 218.149 + 889.784i 0.371001 + 1.51324i
\(589\) −5.77830 + 360.470i −0.00981036 + 0.612004i
\(590\) 149.590i 0.253543i
\(591\) −669.474 139.807i −1.13278 0.236560i
\(592\) −122.786 −0.207408
\(593\) −756.664 12.1293i −1.27599 0.0204541i −0.625656 0.780099i \(-0.715169\pi\)
−0.650338 + 0.759645i \(0.725373\pi\)
\(594\) −11.4925 + 2.81762i −0.0193477 + 0.00474348i
\(595\) −193.284 6.19825i −0.324847 0.0104172i
\(596\) −44.4511 305.998i −0.0745824 0.513420i
\(597\) −64.5602 + 14.7354i −0.108141 + 0.0246825i
\(598\) 84.6333 87.3908i 0.141527 0.146138i
\(599\) −239.805 11.5400i −0.400342 0.0192655i −0.153079 0.988214i \(-0.548919\pi\)
−0.247263 + 0.968948i \(0.579531\pi\)
\(600\) −232.080 + 121.076i −0.386799 + 0.201793i
\(601\) 12.0976 + 93.8269i 0.0201292 + 0.156118i 0.998778 0.0494215i \(-0.0157378\pi\)
−0.978649 + 0.205539i \(0.934105\pi\)
\(602\) 374.177 + 187.641i 0.621557 + 0.311696i
\(603\) −292.934 + 61.9380i −0.485794 + 0.102716i
\(604\) 379.367 + 160.713i 0.628092 + 0.266081i
\(605\) −302.312 + 302.312i −0.499690 + 0.499690i
\(606\) 157.425 + 388.843i 0.259777 + 0.641655i
\(607\) −446.723 28.6806i −0.735953 0.0472498i −0.308421 0.951250i \(-0.599801\pi\)
−0.427532 + 0.904000i \(0.640617\pi\)
\(608\) 585.461 394.595i 0.962929 0.649005i
\(609\) 954.582 478.700i 1.56746 0.786042i
\(610\) 70.5644 56.2732i 0.115679 0.0922512i
\(611\) −23.0009 204.139i −0.0376447 0.334106i
\(612\) −24.4966 + 41.9106i −0.0400271 + 0.0684814i
\(613\) 162.352 + 84.6992i 0.264849 + 0.138172i 0.589774 0.807568i \(-0.299217\pi\)
−0.324925 + 0.945740i \(0.605339\pi\)
\(614\) 70.5126 191.606i 0.114841 0.312061i
\(615\) 99.5129 19.3801i 0.161810 0.0315124i
\(616\) −45.5644 + 13.5233i −0.0739682 + 0.0219534i
\(617\) 371.587 + 164.491i 0.602249 + 0.266598i 0.683330 0.730110i \(-0.260531\pi\)
−0.0810812 + 0.996708i \(0.525837\pi\)
\(618\) 106.878 93.9820i 0.172941 0.152074i
\(619\) −194.338 + 188.205i −0.313954 + 0.304048i −0.835846 0.548964i \(-0.815022\pi\)
0.521892 + 0.853012i \(0.325226\pi\)
\(620\) −156.256 101.711i −0.252026 0.164051i
\(621\) −176.031 455.664i −0.283464 0.733759i
\(622\) 168.545 204.536i 0.270973 0.328835i
\(623\) −938.099 75.3431i −1.50578 0.120936i
\(624\) −171.699 39.1892i −0.275159 0.0628032i
\(625\) −134.435 + 87.5073i −0.215096 + 0.140012i
\(626\) 299.750 + 216.316i 0.478834 + 0.345553i
\(627\) 48.9884 23.5916i 0.0781314 0.0376261i
\(628\) −694.705 + 44.6015i −1.10622 + 0.0710215i
\(629\) −56.9974 + 43.9781i −0.0906159 + 0.0699174i
\(630\) −100.745 16.2876i −0.159912 0.0258534i
\(631\) −10.6416 110.311i −0.0168646 0.174819i 0.983101 0.183062i \(-0.0586008\pi\)
−0.999966 + 0.00824233i \(0.997376\pi\)
\(632\) 100.514 516.118i 0.159041 0.816642i
\(633\) 171.546 282.983i 0.271004 0.447050i
\(634\) −44.0545 132.685i −0.0694866 0.209283i
\(635\) 180.864 + 98.0760i 0.284825 + 0.154450i
\(636\) 155.335 + 215.249i 0.244238 + 0.338441i
\(637\) −177.849 + 460.370i −0.279198 + 0.722716i
\(638\) 7.62421 + 13.5376i 0.0119502 + 0.0212188i
\(639\) 270.738 48.2357i 0.423689 0.0754862i
\(640\) 14.7989 + 461.485i 0.0231233 + 0.721070i
\(641\) 1020.16 285.068i 1.59151 0.444724i 0.644151 0.764899i \(-0.277211\pi\)
0.947359 + 0.320175i \(0.103742\pi\)
\(642\) 373.069 410.790i 0.581104 0.639860i
\(643\) −893.018 412.555i −1.38883 0.641610i −0.424286 0.905528i \(-0.639475\pi\)
−0.964545 + 0.263918i \(0.914985\pi\)
\(644\) −359.621 812.389i −0.558417 1.26147i
\(645\) 416.458 354.536i 0.645671 0.549668i
\(646\) 28.5556 86.0050i 0.0442038 0.133135i
\(647\) 162.186 152.107i 0.250674 0.235096i −0.548567 0.836106i \(-0.684827\pi\)
0.799242 + 0.601010i \(0.205235\pi\)
\(648\) 367.818 476.707i 0.567620 0.735660i
\(649\) −29.0394 19.5723i −0.0447448 0.0301576i
\(650\) −63.3266 8.16506i −0.0974255 0.0125616i
\(651\) 216.015 + 586.984i 0.331821 + 0.901665i
\(652\) 491.435 + 810.674i 0.753735 + 1.24337i
\(653\) 387.193 454.819i 0.592945 0.696507i −0.380668 0.924712i \(-0.624306\pi\)
0.973613 + 0.228205i \(0.0732856\pi\)
\(654\) 169.555 571.287i 0.259258 0.873528i
\(655\) 533.745 + 51.4898i 0.814878 + 0.0786103i
\(656\) −17.1130 + 65.2593i −0.0260869 + 0.0994807i
\(657\) 168.623 + 41.3413i 0.256656 + 0.0629244i
\(658\) 301.248 + 84.1793i 0.457823 + 0.127932i
\(659\) 861.148 541.095i 1.30675 0.821085i 0.314977 0.949099i \(-0.398003\pi\)
0.991772 + 0.128014i \(0.0408603\pi\)
\(660\) −3.14837 + 27.9425i −0.00477025 + 0.0423372i
\(661\) −426.923 318.621i −0.645874 0.482028i 0.224464 0.974482i \(-0.427937\pi\)
−0.870339 + 0.492454i \(0.836100\pi\)
\(662\) −331.090 104.068i −0.500136 0.157203i
\(663\) −93.7394 + 43.3056i −0.141387 + 0.0653176i
\(664\) −17.9772 15.8081i −0.0270741 0.0238074i
\(665\) −912.684 + 43.9208i −1.37246 + 0.0660464i
\(666\) −32.7997 + 19.1713i −0.0492487 + 0.0287857i
\(667\) −514.021 + 383.624i −0.770646 + 0.575148i
\(668\) 294.264 102.967i 0.440514 0.154143i
\(669\) −248.294 44.2370i −0.371142 0.0661241i
\(670\) −41.5536 + 286.052i −0.0620203 + 0.426943i
\(671\) 1.69152 + 21.0611i 0.00252089 + 0.0313877i
\(672\) 700.786 1004.63i 1.04284 1.49498i
\(673\) −31.8933 + 150.839i −0.0473898 + 0.224129i −0.995625 0.0934404i \(-0.970214\pi\)
0.948235 + 0.317569i \(0.102867\pi\)
\(674\) −311.949 248.771i −0.462832 0.369096i
\(675\) −136.403 + 217.085i −0.202079 + 0.321607i
\(676\) 290.799 + 320.202i 0.430176 + 0.473672i
\(677\) −154.169 490.483i −0.227723 0.724494i −0.996394 0.0848495i \(-0.972959\pi\)
0.768671 0.639645i \(-0.220919\pi\)
\(678\) 191.917 + 67.1548i 0.283064 + 0.0990484i
\(679\) −589.970 332.265i −0.868881 0.489345i
\(680\) 65.8213 + 79.8766i 0.0967961 + 0.117466i
\(681\) 373.272 + 535.113i 0.548123 + 0.785776i
\(682\) −8.37920 + 3.54972i −0.0122862 + 0.00520486i
\(683\) 225.997 558.216i 0.330888 0.817300i −0.666529 0.745479i \(-0.732221\pi\)
0.997418 0.0718212i \(-0.0228811\pi\)
\(684\) −99.5218 + 206.659i −0.145500 + 0.302133i
\(685\) 120.019 + 221.329i 0.175210 + 0.323108i
\(686\) −211.245 198.117i −0.307937 0.288801i
\(687\) −1144.08 + 184.967i −1.66533 + 0.269238i
\(688\) 92.3200 + 352.056i 0.134186 + 0.511710i
\(689\) 2.29194 + 142.979i 0.00332647 + 0.207516i
\(690\) 241.993 3.87912i 0.350714 0.00562192i
\(691\) −714.220 + 187.291i −1.03360 + 0.271043i −0.731219 0.682143i \(-0.761048\pi\)
−0.302385 + 0.953186i \(0.597783\pi\)
\(692\) −111.099 687.186i −0.160548 0.993044i
\(693\) 16.3432 17.4261i 0.0235832 0.0251459i
\(694\) 21.2251 11.5096i 0.0305837 0.0165845i
\(695\) −660.240 317.955i −0.949985 0.457489i
\(696\) −529.781 214.484i −0.761179 0.308167i
\(697\) 15.4300 + 36.4229i 0.0221377 + 0.0522566i
\(698\) −211.543 + 147.563i −0.303071 + 0.211409i
\(699\) −303.509 + 250.103i −0.434205 + 0.357801i
\(700\) −228.818 + 406.289i −0.326883 + 0.580413i
\(701\) −302.257 + 863.802i −0.431180 + 1.23224i 0.499470 + 0.866331i \(0.333528\pi\)
−0.930650 + 0.365911i \(0.880758\pi\)
\(702\) 101.293 31.8385i 0.144292 0.0453539i
\(703\) −251.814 + 228.691i −0.358199 + 0.325307i
\(704\) −4.05779 2.54968i −0.00576391 0.00362170i
\(705\) 254.814 319.526i 0.361438 0.453229i
\(706\) 89.2575 + 18.8726i 0.126427 + 0.0267317i
\(707\) 1353.58 + 944.198i 1.91454 + 1.33550i
\(708\) 581.444 46.6985i 0.821249 0.0659584i
\(709\) 1198.74 + 174.137i 1.69075 + 0.245609i 0.920111 0.391658i \(-0.128098\pi\)
0.770643 + 0.637267i \(0.219935\pi\)
\(710\) 46.5673 261.373i 0.0655877 0.368131i
\(711\) 87.2943 + 249.473i 0.122777 + 0.350876i
\(712\) 301.271 + 403.675i 0.423133 + 0.566959i
\(713\) −189.570 324.331i −0.265877 0.454882i
\(714\) −7.55720 157.040i −0.0105843 0.219944i
\(715\) −10.0030 + 11.3756i −0.0139903 + 0.0159099i
\(716\) 125.793 + 272.292i 0.175689 + 0.380296i
\(717\) 88.0631 280.170i 0.122822 0.390754i
\(718\) 310.264 415.726i 0.432123 0.579005i
\(719\) −552.010 62.1965i −0.767746 0.0865042i −0.280600 0.959825i \(-0.590533\pi\)
−0.487146 + 0.873321i \(0.661962\pi\)
\(720\) −47.2092 75.1331i −0.0655684 0.104352i
\(721\) 150.685 539.249i 0.208995 0.747918i
\(722\) 30.5504 124.609i 0.0423136 0.172589i
\(723\) 500.324 + 131.200i 0.692011 + 0.181467i
\(724\) 75.0573 778.047i 0.103670 1.07465i
\(725\) 322.722 + 95.7822i 0.445134 + 0.132113i
\(726\) −264.669 225.316i −0.364558 0.310353i
\(727\) −764.323 + 463.337i −1.05134 + 0.637328i −0.934551 0.355829i \(-0.884198\pi\)
−0.116788 + 0.993157i \(0.537260\pi\)
\(728\) 400.245 147.294i 0.549787 0.202327i
\(729\) 43.7967 339.678i 0.0600777 0.465951i
\(730\) 93.6777 138.990i 0.128326 0.190397i
\(731\) 168.951 + 130.359i 0.231123 + 0.178330i
\(732\) −240.758 256.710i −0.328904 0.350697i
\(733\) 1081.40 + 359.048i 1.47530 + 0.489834i 0.935916 0.352224i \(-0.114575\pi\)
0.539386 + 0.842058i \(0.318656\pi\)
\(734\) 304.976 + 358.243i 0.415499 + 0.488069i
\(735\) −897.807 + 397.433i −1.22151 + 0.540725i
\(736\) −308.543 + 667.872i −0.419215 + 0.907435i
\(737\) −50.0933 45.4934i −0.0679692 0.0617278i
\(738\) 5.61794 + 20.1046i 0.00761239 + 0.0272420i
\(739\) 1101.70 35.3295i 1.49080 0.0478072i 0.724049 0.689748i \(-0.242279\pi\)
0.766754 + 0.641941i \(0.221871\pi\)
\(740\) −30.8561 173.189i −0.0416974 0.234039i
\(741\) −425.117 + 239.422i −0.573708 + 0.323106i
\(742\) −203.098 78.4606i −0.273718 0.105742i
\(743\) −835.932 + 603.255i −1.12508 + 0.811918i −0.984016 0.178083i \(-0.943011\pi\)
−0.141061 + 0.990001i \(0.545051\pi\)
\(744\) 159.578 294.280i 0.214486 0.395538i
\(745\) 314.504 104.423i 0.422153 0.140165i
\(746\) −36.9220 22.3823i −0.0494933 0.0300031i
\(747\) 11.8112 + 2.30024i 0.0158115 + 0.00307930i
\(748\) −10.9206 + 1.05350i −0.0145998 + 0.00140842i
\(749\) 348.420 2155.10i 0.465180 2.87730i
\(750\) −233.834 303.059i −0.311779 0.404079i
\(751\) −37.9900 591.725i −0.0505859 0.787916i −0.942186 0.335092i \(-0.891233\pi\)
0.891600 0.452825i \(-0.149584\pi\)
\(752\) 118.002 + 245.033i 0.156917 + 0.325842i
\(753\) −737.201 + 1021.54i −0.979018 + 1.35663i
\(754\) −76.0562 116.843i −0.100870 0.154964i
\(755\) −98.2550 + 430.483i −0.130139 + 0.570177i
\(756\) 62.0768 772.920i 0.0821122 1.02238i
\(757\) −538.396 443.658i −0.711223 0.586074i 0.208791 0.977960i \(-0.433047\pi\)
−0.920014 + 0.391886i \(0.871823\pi\)
\(758\) 283.694 109.596i 0.374267 0.144586i
\(759\) −30.9091 + 47.4846i −0.0407234 + 0.0625621i
\(760\) 340.224 + 351.309i 0.447663 + 0.462248i
\(761\) 45.0461 + 51.2270i 0.0591933 + 0.0673154i 0.779800 0.626028i \(-0.215321\pi\)
−0.720607 + 0.693344i \(0.756137\pi\)
\(762\) −67.7087 + 152.955i −0.0888565 + 0.200728i
\(763\) −667.046 2247.50i −0.874241 2.94561i
\(764\) −40.8785 209.902i −0.0535059 0.274741i
\(765\) −48.8250 17.9680i −0.0638235 0.0234876i
\(766\) −187.424 + 359.257i −0.