Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [197,3,Mod(2,197)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(197, base_ring=CyclotomicField(196))
chi = DirichletCharacter(H, H._module([1]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("197.2");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 197 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 197.i (of order \(196\), degree \(84\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.36786120790\) |
Analytic rank: | \(0\) |
Dimension: | \(2688\) |
Relative dimension: | \(32\) over \(\Q(\zeta_{196})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{196}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.1 | −3.77189 | − | 0.0604630i | −3.32606 | + | 0.815453i | 10.2255 | + | 0.327913i | 0.114711 | + | 0.789665i | 12.5948 | − | 2.87469i | 1.23384 | − | 1.27404i | −23.4777 | − | 1.12981i | 2.41835 | − | 1.26165i | −0.384933 | − | 2.98546i |
2.2 | −3.55486 | − | 0.0569840i | 1.99334 | − | 0.488708i | 8.63581 | + | 0.276934i | −0.673805 | − | 4.63842i | −7.11389 | + | 1.62370i | −5.67297 | + | 5.85781i | −16.4785 | − | 0.792989i | −4.24482 | + | 2.21452i | 2.13096 | + | 16.5273i |
2.3 | −3.34701 | − | 0.0536522i | 5.54436 | − | 1.35931i | 7.20163 | + | 0.230942i | 0.0803709 | + | 0.553268i | −18.6299 | + | 4.25216i | 3.57428 | − | 3.69074i | −10.7172 | − | 0.515743i | 20.9128 | − | 10.9102i | −0.239318 | − | 1.85610i |
2.4 | −3.03519 | − | 0.0486538i | 1.10928 | − | 0.271963i | 5.21208 | + | 0.167141i | 0.311397 | + | 2.14364i | −3.38012 | + | 0.771489i | 6.85710 | − | 7.08052i | −3.68323 | − | 0.177247i | −6.82285 | + | 3.55948i | −0.840854 | − | 6.52149i |
2.5 | −2.90911 | − | 0.0466327i | −3.04003 | + | 0.745325i | 4.46279 | + | 0.143113i | 1.10267 | + | 7.59067i | 8.87853 | − | 2.02647i | −1.50854 | + | 1.55769i | −1.35160 | − | 0.0650426i | 0.706873 | − | 0.368775i | −2.85380 | − | 22.1335i |
2.6 | −2.90099 | − | 0.0465026i | −0.438834 | + | 0.107589i | 4.41565 | + | 0.141601i | −1.33348 | − | 9.17958i | 1.27806 | − | 0.291708i | 6.15258 | − | 6.35304i | −1.21114 | − | 0.0582831i | −7.79839 | + | 4.06842i | 3.44154 | + | 26.6919i |
2.7 | −2.51939 | − | 0.0403857i | 2.86079 | − | 0.701380i | 2.34777 | + | 0.0752885i | 1.17768 | + | 8.10706i | −7.23578 | + | 1.65152i | −4.47328 | + | 4.61903i | 4.15530 | + | 0.199964i | −0.287225 | + | 0.149845i | −2.63963 | − | 20.4724i |
2.8 | −2.39696 | − | 0.0384230i | −2.46500 | + | 0.604344i | 1.74599 | + | 0.0559904i | −0.118182 | − | 0.813558i | 5.93172 | − | 1.35388i | −8.04223 | + | 8.30426i | 5.39507 | + | 0.259626i | −2.26841 | + | 1.18343i | 0.252018 | + | 1.95460i |
2.9 | −2.29979 | − | 0.0368654i | −5.44672 | + | 1.33537i | 1.28973 | + | 0.0413592i | −0.353836 | − | 2.43578i | 12.5755 | − | 2.87028i | 3.36359 | − | 3.47318i | 6.22512 | + | 0.299570i | 19.9041 | − | 10.3840i | 0.723952 | + | 5.61483i |
2.10 | −1.56922 | − | 0.0251544i | 3.06562 | − | 0.751600i | −1.53613 | − | 0.0492607i | −0.0487173 | − | 0.335366i | −4.82954 | + | 1.10231i | −4.37223 | + | 4.51469i | 8.67971 | + | 0.417691i | 0.853757 | − | 0.445404i | 0.0680121 | + | 0.527489i |
2.11 | −1.39730 | − | 0.0223985i | 4.32840 | − | 1.06119i | −2.04601 | − | 0.0656116i | −0.976931 | − | 6.72513i | −6.07182 | + | 1.38585i | −0.551726 | + | 0.569703i | 8.44085 | + | 0.406197i | 9.62948 | − | 5.02369i | 1.21443 | + | 9.41887i |
2.12 | −1.20152 | − | 0.0192602i | −1.83823 | + | 0.450679i | −2.55467 | − | 0.0819232i | −1.02118 | − | 7.02975i | 2.21735 | − | 0.506095i | 0.840357 | − | 0.867738i | 7.86904 | + | 0.378680i | −4.80343 | + | 2.50594i | 1.09158 | + | 8.46605i |
2.13 | −1.16597 | − | 0.0186905i | 0.0922996 | − | 0.0226291i | −2.63880 | − | 0.0846211i | 0.771412 | + | 5.31035i | −0.108042 | + | 0.0246599i | 5.57777 | − | 5.75951i | 7.73430 | + | 0.372195i | −7.97139 | + | 4.15867i | −0.800194 | − | 6.20615i |
2.14 | −0.800946 | − | 0.0128391i | −1.49515 | + | 0.366567i | −3.35660 | − | 0.107639i | 0.284989 | + | 1.96185i | 1.20224 | − | 0.274404i | 3.19566 | − | 3.29978i | 5.88756 | + | 0.283325i | −5.87829 | + | 3.06670i | −0.203073 | − | 1.57499i |
2.15 | −0.215672 | − | 0.00345720i | 4.98112 | − | 1.22122i | −3.95144 | − | 0.126715i | 0.981634 | + | 6.75750i | −1.07851 | + | 0.246163i | 3.12516 | − | 3.22698i | 1.71358 | + | 0.0824619i | 15.3408 | − | 8.00328i | −0.188349 | − | 1.46079i |
2.16 | −0.192762 | − | 0.00308995i | −4.80460 | + | 1.17795i | −3.96080 | − | 0.127015i | 1.32718 | + | 9.13619i | 0.929784 | − | 0.212217i | −3.47871 | + | 3.59205i | 1.53335 | + | 0.0737891i | 13.7173 | − | 7.15629i | −0.227598 | − | 1.76521i |
2.17 | 0.0441796 | 0.000708195i | −4.54280 | + | 1.11376i | −3.99599 | − | 0.128144i | −0.843380 | − | 5.80577i | −0.201488 | + | 0.0459883i | −5.49223 | + | 5.67118i | −0.352988 | − | 0.0169867i | 11.4172 | − | 5.95634i | −0.0331486 | − | 0.257094i | |
2.18 | 0.648427 | + | 0.0103942i | 0.725334 | − | 0.177830i | −3.57760 | − | 0.114727i | −0.578637 | − | 3.98330i | 0.472175 | − | 0.107771i | −3.67258 | + | 3.79224i | −4.90966 | − | 0.236266i | −7.48491 | + | 3.90487i | −0.333801 | − | 2.58889i |
2.19 | 0.701592 | + | 0.0112464i | 1.42484 | − | 0.349329i | −3.50584 | − | 0.112425i | 0.386593 | + | 2.66128i | 1.00358 | − | 0.229062i | −6.67457 | + | 6.89204i | −5.26189 | − | 0.253216i | −6.07125 | + | 3.16737i | 0.241300 | + | 1.87148i |
2.20 | 0.830612 | + | 0.0133146i | 3.37180 | − | 0.826664i | −3.30821 | − | 0.106088i | −0.509948 | − | 3.51044i | 2.81166 | − | 0.641743i | 7.89308 | − | 8.15026i | −6.06546 | − | 0.291886i | 2.70624 | − | 1.41184i | −0.376829 | − | 2.92261i |
See next 80 embeddings (of 2688 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
197.i | odd | 196 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 197.3.i.a | ✓ | 2688 |
197.i | odd | 196 | 1 | inner | 197.3.i.a | ✓ | 2688 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
197.3.i.a | ✓ | 2688 | 1.a | even | 1 | 1 | trivial |
197.3.i.a | ✓ | 2688 | 197.i | odd | 196 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(197, [\chi])\).