Properties

Label 197.3.i.a
Level $197$
Weight $3$
Character orbit 197.i
Analytic conductor $5.368$
Analytic rank $0$
Dimension $2688$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,3,Mod(2,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(196))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.2");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 197.i (of order \(196\), degree \(84\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.36786120790\)
Analytic rank: \(0\)
Dimension: \(2688\)
Relative dimension: \(32\) over \(\Q(\zeta_{196})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{196}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 2688 q - 84 q^{2} - 84 q^{3} - 84 q^{4} - 84 q^{5} - 98 q^{6} - 84 q^{7} - 140 q^{8} - 84 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 2688 q - 84 q^{2} - 84 q^{3} - 84 q^{4} - 84 q^{5} - 98 q^{6} - 84 q^{7} - 140 q^{8} - 84 q^{9} - 84 q^{10} - 140 q^{11} - 140 q^{12} - 84 q^{13} - 28 q^{14} - 84 q^{15} + 112 q^{16} - 84 q^{17} - 210 q^{18} - 98 q^{19} - 84 q^{20} - 84 q^{21} - 84 q^{22} - 84 q^{23} - 308 q^{24} - 84 q^{25} + 70 q^{26} - 126 q^{27} - 910 q^{28} - 294 q^{29} + 70 q^{30} - 84 q^{31} - 84 q^{32} - 98 q^{33} - 84 q^{34} - 84 q^{35} + 2198 q^{36} + 126 q^{37} - 140 q^{38} - 84 q^{39} + 476 q^{40} + 28 q^{41} - 588 q^{42} - 84 q^{43} - 84 q^{44} - 966 q^{45} - 448 q^{46} + 266 q^{47} - 1428 q^{48} + 756 q^{49} - 84 q^{50} - 84 q^{51} + 126 q^{52} - 84 q^{53} - 588 q^{54} - 84 q^{55} - 84 q^{56} - 672 q^{57} + 532 q^{58} + 616 q^{59} - 378 q^{60} - 364 q^{61} - 854 q^{62} + 1036 q^{63} - 1428 q^{64} + 28 q^{65} + 406 q^{66} - 84 q^{67} - 966 q^{68} - 504 q^{69} - 84 q^{70} + 434 q^{71} - 532 q^{72} - 84 q^{73} + 546 q^{74} - 84 q^{75} - 308 q^{76} + 700 q^{77} + 2310 q^{78} - 1400 q^{79} - 84 q^{80} - 700 q^{81} - 84 q^{82} - 98 q^{83} - 588 q^{84} + 1666 q^{85} - 84 q^{86} - 84 q^{87} + 420 q^{88} + 868 q^{89} - 1890 q^{90} + 1260 q^{91} + 924 q^{92} - 98 q^{93} - 420 q^{94} - 1834 q^{95} + 364 q^{96} + 504 q^{97} - 980 q^{98} + 630 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2.1 −3.77189 0.0604630i −3.32606 + 0.815453i 10.2255 + 0.327913i 0.114711 + 0.789665i 12.5948 2.87469i 1.23384 1.27404i −23.4777 1.12981i 2.41835 1.26165i −0.384933 2.98546i
2.2 −3.55486 0.0569840i 1.99334 0.488708i 8.63581 + 0.276934i −0.673805 4.63842i −7.11389 + 1.62370i −5.67297 + 5.85781i −16.4785 0.792989i −4.24482 + 2.21452i 2.13096 + 16.5273i
2.3 −3.34701 0.0536522i 5.54436 1.35931i 7.20163 + 0.230942i 0.0803709 + 0.553268i −18.6299 + 4.25216i 3.57428 3.69074i −10.7172 0.515743i 20.9128 10.9102i −0.239318 1.85610i
2.4 −3.03519 0.0486538i 1.10928 0.271963i 5.21208 + 0.167141i 0.311397 + 2.14364i −3.38012 + 0.771489i 6.85710 7.08052i −3.68323 0.177247i −6.82285 + 3.55948i −0.840854 6.52149i
2.5 −2.90911 0.0466327i −3.04003 + 0.745325i 4.46279 + 0.143113i 1.10267 + 7.59067i 8.87853 2.02647i −1.50854 + 1.55769i −1.35160 0.0650426i 0.706873 0.368775i −2.85380 22.1335i
2.6 −2.90099 0.0465026i −0.438834 + 0.107589i 4.41565 + 0.141601i −1.33348 9.17958i 1.27806 0.291708i 6.15258 6.35304i −1.21114 0.0582831i −7.79839 + 4.06842i 3.44154 + 26.6919i
2.7 −2.51939 0.0403857i 2.86079 0.701380i 2.34777 + 0.0752885i 1.17768 + 8.10706i −7.23578 + 1.65152i −4.47328 + 4.61903i 4.15530 + 0.199964i −0.287225 + 0.149845i −2.63963 20.4724i
2.8 −2.39696 0.0384230i −2.46500 + 0.604344i 1.74599 + 0.0559904i −0.118182 0.813558i 5.93172 1.35388i −8.04223 + 8.30426i 5.39507 + 0.259626i −2.26841 + 1.18343i 0.252018 + 1.95460i
2.9 −2.29979 0.0368654i −5.44672 + 1.33537i 1.28973 + 0.0413592i −0.353836 2.43578i 12.5755 2.87028i 3.36359 3.47318i 6.22512 + 0.299570i 19.9041 10.3840i 0.723952 + 5.61483i
2.10 −1.56922 0.0251544i 3.06562 0.751600i −1.53613 0.0492607i −0.0487173 0.335366i −4.82954 + 1.10231i −4.37223 + 4.51469i 8.67971 + 0.417691i 0.853757 0.445404i 0.0680121 + 0.527489i
2.11 −1.39730 0.0223985i 4.32840 1.06119i −2.04601 0.0656116i −0.976931 6.72513i −6.07182 + 1.38585i −0.551726 + 0.569703i 8.44085 + 0.406197i 9.62948 5.02369i 1.21443 + 9.41887i
2.12 −1.20152 0.0192602i −1.83823 + 0.450679i −2.55467 0.0819232i −1.02118 7.02975i 2.21735 0.506095i 0.840357 0.867738i 7.86904 + 0.378680i −4.80343 + 2.50594i 1.09158 + 8.46605i
2.13 −1.16597 0.0186905i 0.0922996 0.0226291i −2.63880 0.0846211i 0.771412 + 5.31035i −0.108042 + 0.0246599i 5.57777 5.75951i 7.73430 + 0.372195i −7.97139 + 4.15867i −0.800194 6.20615i
2.14 −0.800946 0.0128391i −1.49515 + 0.366567i −3.35660 0.107639i 0.284989 + 1.96185i 1.20224 0.274404i 3.19566 3.29978i 5.88756 + 0.283325i −5.87829 + 3.06670i −0.203073 1.57499i
2.15 −0.215672 0.00345720i 4.98112 1.22122i −3.95144 0.126715i 0.981634 + 6.75750i −1.07851 + 0.246163i 3.12516 3.22698i 1.71358 + 0.0824619i 15.3408 8.00328i −0.188349 1.46079i
2.16 −0.192762 0.00308995i −4.80460 + 1.17795i −3.96080 0.127015i 1.32718 + 9.13619i 0.929784 0.212217i −3.47871 + 3.59205i 1.53335 + 0.0737891i 13.7173 7.15629i −0.227598 1.76521i
2.17 0.0441796 0.000708195i −4.54280 + 1.11376i −3.99599 0.128144i −0.843380 5.80577i −0.201488 + 0.0459883i −5.49223 + 5.67118i −0.352988 0.0169867i 11.4172 5.95634i −0.0331486 0.257094i
2.18 0.648427 + 0.0103942i 0.725334 0.177830i −3.57760 0.114727i −0.578637 3.98330i 0.472175 0.107771i −3.67258 + 3.79224i −4.90966 0.236266i −7.48491 + 3.90487i −0.333801 2.58889i
2.19 0.701592 + 0.0112464i 1.42484 0.349329i −3.50584 0.112425i 0.386593 + 2.66128i 1.00358 0.229062i −6.67457 + 6.89204i −5.26189 0.253216i −6.07125 + 3.16737i 0.241300 + 1.87148i
2.20 0.830612 + 0.0133146i 3.37180 0.826664i −3.30821 0.106088i −0.509948 3.51044i 2.81166 0.641743i 7.89308 8.15026i −6.06546 0.291886i 2.70624 1.41184i −0.376829 2.92261i
See next 80 embeddings (of 2688 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2.32
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
197.i odd 196 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 197.3.i.a 2688
197.i odd 196 1 inner 197.3.i.a 2688
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
197.3.i.a 2688 1.a even 1 1 trivial
197.3.i.a 2688 197.i odd 196 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(197, [\chi])\).