Properties

Label 197.3.i
Level $197$
Weight $3$
Character orbit 197.i
Rep. character $\chi_{197}(2,\cdot)$
Character field $\Q(\zeta_{196})$
Dimension $2688$
Newform subspaces $1$
Sturm bound $49$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 197.i (of order \(196\) and degree \(84\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 197 \)
Character field: \(\Q(\zeta_{196})\)
Newform subspaces: \( 1 \)
Sturm bound: \(49\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(197, [\chi])\).

Total New Old
Modular forms 2856 2856 0
Cusp forms 2688 2688 0
Eisenstein series 168 168 0

Trace form

\( 2688 q - 84 q^{2} - 84 q^{3} - 84 q^{4} - 84 q^{5} - 98 q^{6} - 84 q^{7} - 140 q^{8} - 84 q^{9} + O(q^{10}) \) \( 2688 q - 84 q^{2} - 84 q^{3} - 84 q^{4} - 84 q^{5} - 98 q^{6} - 84 q^{7} - 140 q^{8} - 84 q^{9} - 84 q^{10} - 140 q^{11} - 140 q^{12} - 84 q^{13} - 28 q^{14} - 84 q^{15} + 112 q^{16} - 84 q^{17} - 210 q^{18} - 98 q^{19} - 84 q^{20} - 84 q^{21} - 84 q^{22} - 84 q^{23} - 308 q^{24} - 84 q^{25} + 70 q^{26} - 126 q^{27} - 910 q^{28} - 294 q^{29} + 70 q^{30} - 84 q^{31} - 84 q^{32} - 98 q^{33} - 84 q^{34} - 84 q^{35} + 2198 q^{36} + 126 q^{37} - 140 q^{38} - 84 q^{39} + 476 q^{40} + 28 q^{41} - 588 q^{42} - 84 q^{43} - 84 q^{44} - 966 q^{45} - 448 q^{46} + 266 q^{47} - 1428 q^{48} + 756 q^{49} - 84 q^{50} - 84 q^{51} + 126 q^{52} - 84 q^{53} - 588 q^{54} - 84 q^{55} - 84 q^{56} - 672 q^{57} + 532 q^{58} + 616 q^{59} - 378 q^{60} - 364 q^{61} - 854 q^{62} + 1036 q^{63} - 1428 q^{64} + 28 q^{65} + 406 q^{66} - 84 q^{67} - 966 q^{68} - 504 q^{69} - 84 q^{70} + 434 q^{71} - 532 q^{72} - 84 q^{73} + 546 q^{74} - 84 q^{75} - 308 q^{76} + 700 q^{77} + 2310 q^{78} - 1400 q^{79} - 84 q^{80} - 700 q^{81} - 84 q^{82} - 98 q^{83} - 588 q^{84} + 1666 q^{85} - 84 q^{86} - 84 q^{87} + 420 q^{88} + 868 q^{89} - 1890 q^{90} + 1260 q^{91} + 924 q^{92} - 98 q^{93} - 420 q^{94} - 1834 q^{95} + 364 q^{96} + 504 q^{97} - 980 q^{98} + 630 q^{99} + O(q^{100}) \)

Decomposition of \(S_{3}^{\mathrm{new}}(197, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
197.3.i.a 197.i 197.i $2688$ $5.368$ None 197.3.i.a \(-84\) \(-84\) \(-84\) \(-84\) $\mathrm{SU}(2)[C_{196}]$