Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [197,3,Mod(20,197)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(197, base_ring=CyclotomicField(28))
chi = DirichletCharacter(H, H._module([13]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("197.20");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 197 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 197.f (of order \(28\), degree \(12\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.36786120790\) |
Analytic rank: | \(0\) |
Dimension: | \(384\) |
Relative dimension: | \(32\) over \(\Q(\zeta_{28})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{28}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20.1 | −0.435755 | − | 3.86743i | 2.95944 | + | 0.333448i | −10.8674 | + | 2.48042i | −1.52759 | − | 2.43114i | − | 11.5907i | −10.9320 | + | 8.71802i | 9.18674 | + | 26.2542i | −0.127271 | − | 0.0290489i | −8.73662 | + | 6.96722i | |
20.2 | −0.419508 | − | 3.72324i | 2.90493 | + | 0.327307i | −9.78678 | + | 2.23377i | 4.78832 | + | 7.62057i | − | 10.9530i | 8.80031 | − | 7.01801i | 7.47253 | + | 21.3553i | −0.442873 | − | 0.101083i | 26.3644 | − | 21.0249i | |
20.3 | −0.414952 | − | 3.68280i | −4.30059 | − | 0.484560i | −9.49114 | + | 2.16629i | 1.58670 | + | 2.52521i | 16.0393i | −0.116216 | + | 0.0926788i | 7.02019 | + | 20.0626i | 9.48591 | + | 2.16510i | 8.64146 | − | 6.89134i | ||
20.4 | −0.371930 | − | 3.30097i | −2.56336 | − | 0.288822i | −6.85837 | + | 1.56538i | −2.94574 | − | 4.68813i | 8.56901i | −0.501926 | + | 0.400272i | 3.32954 | + | 9.51528i | −2.28693 | − | 0.521977i | −14.3798 | + | 11.4675i | ||
20.5 | −0.342570 | − | 3.04039i | 0.502201 | + | 0.0565845i | −5.22690 | + | 1.19301i | −1.18537 | − | 1.88650i | − | 1.54627i | 5.27485 | − | 4.20656i | 1.37566 | + | 3.93140i | −8.52535 | − | 1.94585i | −5.32963 | + | 4.25024i | |
20.6 | −0.319435 | − | 2.83506i | 4.80794 | + | 0.541725i | −4.03584 | + | 0.921154i | −2.57594 | − | 4.09958i | − | 13.8039i | 3.34211 | − | 2.66524i | 0.131571 | + | 0.376009i | 14.0485 | + | 3.20647i | −10.7997 | + | 8.61250i | |
20.7 | −0.297386 | − | 2.63937i | −0.843629 | − | 0.0950542i | −2.97813 | + | 0.679738i | 3.14437 | + | 5.00424i | 2.25492i | −6.48064 | + | 5.16814i | −0.829245 | − | 2.36985i | −8.07168 | − | 1.84231i | 12.2730 | − | 9.78736i | ||
20.8 | −0.262848 | − | 2.33284i | −0.767376 | − | 0.0864625i | −1.47335 | + | 0.336283i | 2.37800 | + | 3.78457i | 1.81289i | −0.926942 | + | 0.739212i | −1.92969 | − | 5.51475i | −8.19296 | − | 1.86999i | 8.20375 | − | 6.54227i | ||
20.9 | −0.238617 | − | 2.11778i | 4.98319 | + | 0.561471i | −0.528356 | + | 0.120594i | 3.30351 | + | 5.25750i | − | 10.6873i | −6.87622 | + | 5.48360i | −2.43408 | − | 6.95619i | 15.7426 | + | 3.59314i | 10.3460 | − | 8.25065i | |
20.10 | −0.234182 | − | 2.07842i | −5.36165 | − | 0.604113i | −0.365283 | + | 0.0833735i | 3.47891 | + | 5.53666i | 11.2852i | 3.60638 | − | 2.87599i | −2.50438 | − | 7.15712i | 19.6080 | + | 4.47540i | 10.6928 | − | 8.52723i | ||
20.11 | −0.203015 | − | 1.80181i | −4.26999 | − | 0.481113i | 0.694418 | − | 0.158496i | −3.99552 | − | 6.35884i | 7.79138i | 8.06220 | − | 6.42939i | −2.82202 | − | 8.06486i | 9.22703 | + | 2.10601i | −10.6462 | + | 8.49010i | ||
20.12 | −0.163026 | − | 1.44689i | 0.999880 | + | 0.112659i | 1.83279 | − | 0.418322i | −3.86158 | − | 6.14567i | − | 1.46509i | −6.20051 | + | 4.94474i | −2.82767 | − | 8.08101i | −7.78728 | − | 1.77740i | −8.26259 | + | 6.58920i | |
20.13 | −0.110851 | − | 0.983829i | 3.27838 | + | 0.369385i | 2.94408 | − | 0.671967i | 1.96731 | + | 3.13096i | − | 3.26631i | 3.16882 | − | 2.52705i | −2.29543 | − | 6.55997i | 1.83698 | + | 0.419279i | 2.86225 | − | 2.28257i | |
20.14 | −0.0979222 | − | 0.869084i | −3.64248 | − | 0.410409i | 3.15399 | − | 0.719878i | −0.0627753 | − | 0.0999063i | 3.20581i | −7.30411 | + | 5.82484i | −2.08991 | − | 5.97261i | 4.32487 | + | 0.987123i | −0.0806799 | + | 0.0643401i | ||
20.15 | −0.0797429 | − | 0.707737i | 0.378635 | + | 0.0426619i | 3.40518 | − | 0.777210i | −0.451619 | − | 0.718748i | − | 0.271376i | 7.59800 | − | 6.05920i | −1.76252 | − | 5.03699i | −8.63281 | − | 1.97038i | −0.472671 | + | 0.376943i | |
20.16 | 0.00409705 | + | 0.0363623i | −4.18203 | − | 0.471201i | 3.89841 | − | 0.889786i | 0.530491 | + | 0.844271i | − | 0.153999i | 0.477052 | − | 0.380436i | 0.0966694 | + | 0.276265i | 8.49298 | + | 1.93847i | −0.0285262 | + | 0.0227489i | |
20.17 | 0.0450830 | + | 0.400123i | 4.90548 | + | 0.552715i | 3.74165 | − | 0.854006i | −3.62530 | − | 5.76964i | 1.98771i | −1.55739 | + | 1.24198i | 1.04235 | + | 2.97885i | 14.9839 | + | 3.41998i | 2.14512 | − | 1.71068i | ||
20.18 | 0.0564146 | + | 0.500693i | −1.43240 | − | 0.161393i | 3.65220 | − | 0.833591i | 5.14385 | + | 8.18640i | − | 0.726298i | 3.28095 | − | 2.61647i | 1.28907 | + | 3.68395i | −6.74863 | − | 1.54033i | −3.80869 | + | 3.03733i | |
20.19 | 0.0829492 | + | 0.736194i | −2.01235 | − | 0.226738i | 3.36461 | − | 0.767950i | −2.14168 | − | 3.40847i | − | 1.50029i | 0.423154 | − | 0.337454i | 1.82320 | + | 5.21042i | −4.77620 | − | 1.09014i | 2.33165 | − | 1.85943i | |
20.20 | 0.115261 | + | 1.02297i | 1.88088 | + | 0.211925i | 2.86652 | − | 0.654265i | 1.86461 | + | 2.96751i | 1.94852i | −8.57510 | + | 6.83842i | 2.35971 | + | 6.74367i | −5.28154 | − | 1.20548i | −2.82077 | + | 2.24949i | ||
See next 80 embeddings (of 384 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
197.f | odd | 28 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 197.3.f.a | ✓ | 384 |
197.f | odd | 28 | 1 | inner | 197.3.f.a | ✓ | 384 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
197.3.f.a | ✓ | 384 | 1.a | even | 1 | 1 | trivial |
197.3.f.a | ✓ | 384 | 197.f | odd | 28 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(197, [\chi])\).