Properties

Label 197.3.c.a.183.10
Level $197$
Weight $3$
Character 197.183
Analytic conductor $5.368$
Analytic rank $0$
Dimension $64$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,3,Mod(14,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.14");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 197.c (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.36786120790\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 183.10
Character \(\chi\) \(=\) 197.183
Dual form 197.3.c.a.14.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.11355 - 1.11355i) q^{2} +(2.19442 + 2.19442i) q^{3} -1.52002i q^{4} +(-1.87378 - 1.87378i) q^{5} -4.88717i q^{6} -5.07096i q^{7} +(-6.14681 + 6.14681i) q^{8} +0.630916i q^{9} +O(q^{10})\) \(q+(-1.11355 - 1.11355i) q^{2} +(2.19442 + 2.19442i) q^{3} -1.52002i q^{4} +(-1.87378 - 1.87378i) q^{5} -4.88717i q^{6} -5.07096i q^{7} +(-6.14681 + 6.14681i) q^{8} +0.630916i q^{9} +4.17310i q^{10} +(-9.24618 - 9.24618i) q^{11} +(3.33556 - 3.33556i) q^{12} +(2.79068 + 2.79068i) q^{13} +(-5.64675 + 5.64675i) q^{14} -8.22372i q^{15} +7.60944 q^{16} +(-12.5261 + 12.5261i) q^{17} +(0.702555 - 0.702555i) q^{18} -33.2908i q^{19} +(-2.84820 + 2.84820i) q^{20} +(11.1278 - 11.1278i) q^{21} +20.5921i q^{22} +30.3777 q^{23} -26.9773 q^{24} -17.9779i q^{25} -6.21512i q^{26} +(18.3652 - 18.3652i) q^{27} -7.70797 q^{28} -36.4488 q^{29} +(-9.15751 + 9.15751i) q^{30} +(-5.16354 - 5.16354i) q^{31} +(16.1138 + 16.1138i) q^{32} -40.5799i q^{33} +27.8969 q^{34} +(-9.50188 + 9.50188i) q^{35} +0.959006 q^{36} -42.9671 q^{37} +(-37.0709 + 37.0709i) q^{38} +12.2478i q^{39} +23.0356 q^{40} -0.230336i q^{41} -24.7826 q^{42} +70.5045i q^{43} +(-14.0544 + 14.0544i) q^{44} +(1.18220 - 1.18220i) q^{45} +(-33.8271 - 33.8271i) q^{46} -55.0790i q^{47} +(16.6983 + 16.6983i) q^{48} +23.2854 q^{49} +(-20.0192 + 20.0192i) q^{50} -54.9751 q^{51} +(4.24190 - 4.24190i) q^{52} +74.5527 q^{53} -40.9012 q^{54} +34.6507i q^{55} +(31.1702 + 31.1702i) q^{56} +(73.0539 - 73.0539i) q^{57} +(40.5874 + 40.5874i) q^{58} +75.7516 q^{59} -12.5002 q^{60} +83.6520 q^{61} +11.4997i q^{62} +3.19935 q^{63} -66.3246i q^{64} -10.4583i q^{65} +(-45.1877 + 45.1877i) q^{66} +(-16.2260 - 16.2260i) q^{67} +(19.0400 + 19.0400i) q^{68} +(66.6614 + 66.6614i) q^{69} +21.1616 q^{70} +(-65.9279 + 65.9279i) q^{71} +(-3.87812 - 3.87812i) q^{72} +(53.0731 + 53.0731i) q^{73} +(47.8459 + 47.8459i) q^{74} +(39.4509 - 39.4509i) q^{75} -50.6028 q^{76} +(-46.8870 + 46.8870i) q^{77} +(13.6386 - 13.6386i) q^{78} +(39.8540 - 39.8540i) q^{79} +(-14.2585 - 14.2585i) q^{80} +86.2802 q^{81} +(-0.256490 + 0.256490i) q^{82} +121.464i q^{83} +(-16.9145 - 16.9145i) q^{84} +46.9426 q^{85} +(78.5101 - 78.5101i) q^{86} +(-79.9837 - 79.9837i) q^{87} +113.669 q^{88} +(-81.1992 + 81.1992i) q^{89} -2.63287 q^{90} +(14.1514 - 14.1514i) q^{91} -46.1749i q^{92} -22.6619i q^{93} +(-61.3331 + 61.3331i) q^{94} +(-62.3799 + 62.3799i) q^{95} +70.7206i q^{96} -168.306i q^{97} +(-25.9294 - 25.9294i) q^{98} +(5.83356 - 5.83356i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 2 q^{2} - 2 q^{3} - 10 q^{5} - 6 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 64 q - 2 q^{2} - 2 q^{3} - 10 q^{5} - 6 q^{8} + 10 q^{11} + 68 q^{12} + 2 q^{13} - 2 q^{14} - 280 q^{16} - 30 q^{17} - 68 q^{18} + 114 q^{20} - 20 q^{21} + 48 q^{23} + 60 q^{24} + 22 q^{27} + 392 q^{28} + 56 q^{29} - 70 q^{30} - 64 q^{31} - 156 q^{32} - 52 q^{34} - 92 q^{35} - 36 q^{36} - 160 q^{37} + 40 q^{38} + 52 q^{40} + 80 q^{42} + 140 q^{44} + 324 q^{45} + 214 q^{46} + 216 q^{48} - 836 q^{49} + 126 q^{50} + 124 q^{51} - 10 q^{52} - 16 q^{53} + 400 q^{54} - 40 q^{56} + 68 q^{57} - 266 q^{58} - 364 q^{59} - 68 q^{60} - 168 q^{61} - 12 q^{63} + 238 q^{66} - 112 q^{67} - 148 q^{68} - 48 q^{69} + 48 q^{70} + 150 q^{71} - 474 q^{72} + 18 q^{73} + 236 q^{74} + 64 q^{75} - 260 q^{76} - 388 q^{77} - 782 q^{78} + 202 q^{79} + 796 q^{80} - 516 q^{81} + 72 q^{82} - 294 q^{84} - 696 q^{85} + 618 q^{86} + 464 q^{87} - 244 q^{88} - 536 q^{89} + 1484 q^{90} + 212 q^{91} + 132 q^{94} + 370 q^{95} - 530 q^{98} - 66 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/197\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.11355 1.11355i −0.556774 0.556774i 0.371614 0.928387i \(-0.378805\pi\)
−0.928387 + 0.371614i \(0.878805\pi\)
\(3\) 2.19442 + 2.19442i 0.731472 + 0.731472i 0.970911 0.239440i \(-0.0769637\pi\)
−0.239440 + 0.970911i \(0.576964\pi\)
\(4\) 1.52002i 0.380006i
\(5\) −1.87378 1.87378i −0.374757 0.374757i 0.494449 0.869206i \(-0.335370\pi\)
−0.869206 + 0.494449i \(0.835370\pi\)
\(6\) 4.88717i 0.814529i
\(7\) 5.07096i 0.724422i −0.932096 0.362211i \(-0.882022\pi\)
0.932096 0.362211i \(-0.117978\pi\)
\(8\) −6.14681 + 6.14681i −0.768351 + 0.768351i
\(9\) 0.630916i 0.0701017i
\(10\) 4.17310i 0.417310i
\(11\) −9.24618 9.24618i −0.840562 0.840562i 0.148370 0.988932i \(-0.452597\pi\)
−0.988932 + 0.148370i \(0.952597\pi\)
\(12\) 3.33556 3.33556i 0.277963 0.277963i
\(13\) 2.79068 + 2.79068i 0.214668 + 0.214668i 0.806247 0.591579i \(-0.201495\pi\)
−0.591579 + 0.806247i \(0.701495\pi\)
\(14\) −5.64675 + 5.64675i −0.403339 + 0.403339i
\(15\) 8.22372i 0.548248i
\(16\) 7.60944 0.475590
\(17\) −12.5261 + 12.5261i −0.736832 + 0.736832i −0.971964 0.235132i \(-0.924448\pi\)
0.235132 + 0.971964i \(0.424448\pi\)
\(18\) 0.702555 0.702555i 0.0390308 0.0390308i
\(19\) 33.2908i 1.75215i −0.482176 0.876075i \(-0.660153\pi\)
0.482176 0.876075i \(-0.339847\pi\)
\(20\) −2.84820 + 2.84820i −0.142410 + 0.142410i
\(21\) 11.1278 11.1278i 0.529894 0.529894i
\(22\) 20.5921i 0.936006i
\(23\) 30.3777 1.32077 0.660386 0.750927i \(-0.270393\pi\)
0.660386 + 0.750927i \(0.270393\pi\)
\(24\) −26.9773 −1.12405
\(25\) 17.9779i 0.719114i
\(26\) 6.21512i 0.239043i
\(27\) 18.3652 18.3652i 0.680194 0.680194i
\(28\) −7.70797 −0.275285
\(29\) −36.4488 −1.25685 −0.628427 0.777869i \(-0.716301\pi\)
−0.628427 + 0.777869i \(0.716301\pi\)
\(30\) −9.15751 + 9.15751i −0.305250 + 0.305250i
\(31\) −5.16354 5.16354i −0.166566 0.166566i 0.618902 0.785468i \(-0.287578\pi\)
−0.785468 + 0.618902i \(0.787578\pi\)
\(32\) 16.1138 + 16.1138i 0.503555 + 0.503555i
\(33\) 40.5799i 1.22970i
\(34\) 27.8969 0.820497
\(35\) −9.50188 + 9.50188i −0.271482 + 0.271482i
\(36\) 0.959006 0.0266391
\(37\) −42.9671 −1.16127 −0.580636 0.814163i \(-0.697196\pi\)
−0.580636 + 0.814163i \(0.697196\pi\)
\(38\) −37.0709 + 37.0709i −0.975551 + 0.975551i
\(39\) 12.2478i 0.314047i
\(40\) 23.0356 0.575890
\(41\) 0.230336i 0.00561795i −0.999996 0.00280897i \(-0.999106\pi\)
0.999996 0.00280897i \(-0.000894125\pi\)
\(42\) −24.7826 −0.590063
\(43\) 70.5045i 1.63964i 0.572622 + 0.819819i \(0.305926\pi\)
−0.572622 + 0.819819i \(0.694074\pi\)
\(44\) −14.0544 + 14.0544i −0.319418 + 0.319418i
\(45\) 1.18220 1.18220i 0.0262711 0.0262711i
\(46\) −33.8271 33.8271i −0.735371 0.735371i
\(47\) 55.0790i 1.17189i −0.810350 0.585947i \(-0.800723\pi\)
0.810350 0.585947i \(-0.199277\pi\)
\(48\) 16.6983 + 16.6983i 0.347881 + 0.347881i
\(49\) 23.2854 0.475212
\(50\) −20.0192 + 20.0192i −0.400384 + 0.400384i
\(51\) −54.9751 −1.07794
\(52\) 4.24190 4.24190i 0.0815751 0.0815751i
\(53\) 74.5527 1.40665 0.703327 0.710866i \(-0.251697\pi\)
0.703327 + 0.710866i \(0.251697\pi\)
\(54\) −40.9012 −0.757429
\(55\) 34.6507i 0.630013i
\(56\) 31.1702 + 31.1702i 0.556611 + 0.556611i
\(57\) 73.0539 73.0539i 1.28165 1.28165i
\(58\) 40.5874 + 40.5874i 0.699783 + 0.699783i
\(59\) 75.7516 1.28393 0.641963 0.766736i \(-0.278120\pi\)
0.641963 + 0.766736i \(0.278120\pi\)
\(60\) −12.5002 −0.208337
\(61\) 83.6520 1.37134 0.685672 0.727911i \(-0.259508\pi\)
0.685672 + 0.727911i \(0.259508\pi\)
\(62\) 11.4997i 0.185479i
\(63\) 3.19935 0.0507833
\(64\) 66.3246i 1.03632i
\(65\) 10.4583i 0.160897i
\(66\) −45.1877 + 45.1877i −0.684662 + 0.684662i
\(67\) −16.2260 16.2260i −0.242179 0.242179i 0.575572 0.817751i \(-0.304779\pi\)
−0.817751 + 0.575572i \(0.804779\pi\)
\(68\) 19.0400 + 19.0400i 0.280000 + 0.280000i
\(69\) 66.6614 + 66.6614i 0.966107 + 0.966107i
\(70\) 21.1616 0.302309
\(71\) −65.9279 + 65.9279i −0.928561 + 0.928561i −0.997613 0.0690518i \(-0.978003\pi\)
0.0690518 + 0.997613i \(0.478003\pi\)
\(72\) −3.87812 3.87812i −0.0538627 0.0538627i
\(73\) 53.0731 + 53.0731i 0.727029 + 0.727029i 0.970027 0.242998i \(-0.0781309\pi\)
−0.242998 + 0.970027i \(0.578131\pi\)
\(74\) 47.8459 + 47.8459i 0.646566 + 0.646566i
\(75\) 39.4509 39.4509i 0.526012 0.526012i
\(76\) −50.6028 −0.665827
\(77\) −46.8870 + 46.8870i −0.608922 + 0.608922i
\(78\) 13.6386 13.6386i 0.174853 0.174853i
\(79\) 39.8540 39.8540i 0.504481 0.504481i −0.408346 0.912827i \(-0.633894\pi\)
0.912827 + 0.408346i \(0.133894\pi\)
\(80\) −14.2585 14.2585i −0.178231 0.178231i
\(81\) 86.2802 1.06519
\(82\) −0.256490 + 0.256490i −0.00312793 + 0.00312793i
\(83\) 121.464i 1.46342i 0.681616 + 0.731710i \(0.261278\pi\)
−0.681616 + 0.731710i \(0.738722\pi\)
\(84\) −16.9145 16.9145i −0.201363 0.201363i
\(85\) 46.9426 0.552266
\(86\) 78.5101 78.5101i 0.912908 0.912908i
\(87\) −79.9837 79.9837i −0.919353 0.919353i
\(88\) 113.669 1.29169
\(89\) −81.1992 + 81.1992i −0.912350 + 0.912350i −0.996457 0.0841065i \(-0.973196\pi\)
0.0841065 + 0.996457i \(0.473196\pi\)
\(90\) −2.63287 −0.0292541
\(91\) 14.1514 14.1514i 0.155510 0.155510i
\(92\) 46.1749i 0.501901i
\(93\) 22.6619i 0.243676i
\(94\) −61.3331 + 61.3331i −0.652480 + 0.652480i
\(95\) −62.3799 + 62.3799i −0.656630 + 0.656630i
\(96\) 70.7206i 0.736673i
\(97\) 168.306i 1.73511i −0.497342 0.867554i \(-0.665691\pi\)
0.497342 0.867554i \(-0.334309\pi\)
\(98\) −25.9294 25.9294i −0.264586 0.264586i
\(99\) 5.83356 5.83356i 0.0589249 0.0589249i
\(100\) −27.3268 −0.273268
\(101\) 6.52298 0.0645839 0.0322920 0.999478i \(-0.489719\pi\)
0.0322920 + 0.999478i \(0.489719\pi\)
\(102\) 61.2174 + 61.2174i 0.600171 + 0.600171i
\(103\) 10.3065 + 10.3065i 0.100063 + 0.100063i 0.755366 0.655303i \(-0.227459\pi\)
−0.655303 + 0.755366i \(0.727459\pi\)
\(104\) −34.3076 −0.329881
\(105\) −41.7021 −0.397163
\(106\) −83.0180 83.0180i −0.783188 0.783188i
\(107\) 50.7316i 0.474127i 0.971494 + 0.237064i \(0.0761850\pi\)
−0.971494 + 0.237064i \(0.923815\pi\)
\(108\) −27.9156 27.9156i −0.258478 0.258478i
\(109\) 158.400i 1.45322i −0.687053 0.726608i \(-0.741096\pi\)
0.687053 0.726608i \(-0.258904\pi\)
\(110\) 38.5852 38.5852i 0.350775 0.350775i
\(111\) −94.2876 94.2876i −0.849438 0.849438i
\(112\) 38.5871i 0.344528i
\(113\) 1.48490 1.48490i 0.0131407 0.0131407i −0.700506 0.713647i \(-0.747042\pi\)
0.713647 + 0.700506i \(0.247042\pi\)
\(114\) −162.698 −1.42718
\(115\) −56.9213 56.9213i −0.494968 0.494968i
\(116\) 55.4030i 0.477612i
\(117\) −1.76069 + 1.76069i −0.0150486 + 0.0150486i
\(118\) −84.3530 84.3530i −0.714856 0.714856i
\(119\) 63.5195 + 63.5195i 0.533777 + 0.533777i
\(120\) 50.5497 + 50.5497i 0.421247 + 0.421247i
\(121\) 49.9839i 0.413090i
\(122\) −93.1505 93.1505i −0.763528 0.763528i
\(123\) 0.505452 0.505452i 0.00410937 0.00410937i
\(124\) −7.84869 + 7.84869i −0.0632959 + 0.0632959i
\(125\) −80.5313 + 80.5313i −0.644250 + 0.644250i
\(126\) −3.56262 3.56262i −0.0282748 0.0282748i
\(127\) 122.844i 0.967273i 0.875269 + 0.483636i \(0.160684\pi\)
−0.875269 + 0.483636i \(0.839316\pi\)
\(128\) −9.40060 + 9.40060i −0.0734422 + 0.0734422i
\(129\) −154.716 + 154.716i −1.19935 + 1.19935i
\(130\) −11.6458 + 11.6458i −0.0895831 + 0.0895831i
\(131\) −29.6586 29.6586i −0.226401 0.226401i 0.584786 0.811187i \(-0.301178\pi\)
−0.811187 + 0.584786i \(0.801178\pi\)
\(132\) −61.6824 −0.467291
\(133\) −168.816 −1.26930
\(134\) 36.1368i 0.269677i
\(135\) −68.8250 −0.509815
\(136\) 153.992i 1.13229i
\(137\) 57.8952i 0.422593i −0.977422 0.211296i \(-0.932231\pi\)
0.977422 0.211296i \(-0.0677685\pi\)
\(138\) 148.461i 1.07581i
\(139\) 47.3212 47.3212i 0.340440 0.340440i −0.516093 0.856533i \(-0.672614\pi\)
0.856533 + 0.516093i \(0.172614\pi\)
\(140\) 14.4431 + 14.4431i 0.103165 + 0.103165i
\(141\) 120.866 120.866i 0.857207 0.857207i
\(142\) 146.828 1.03400
\(143\) 51.6064i 0.360884i
\(144\) 4.80091i 0.0333397i
\(145\) 68.2971 + 68.2971i 0.471015 + 0.471015i
\(146\) 118.199i 0.809581i
\(147\) 51.0978 + 51.0978i 0.347604 + 0.347604i
\(148\) 65.3110i 0.441290i
\(149\) −32.5345 + 32.5345i −0.218352 + 0.218352i −0.807804 0.589451i \(-0.799344\pi\)
0.589451 + 0.807804i \(0.299344\pi\)
\(150\) −87.8609 −0.585739
\(151\) 109.726 109.726i 0.726659 0.726659i −0.243293 0.969953i \(-0.578228\pi\)
0.969953 + 0.243293i \(0.0782277\pi\)
\(152\) 204.632 + 204.632i 1.34627 + 1.34627i
\(153\) −7.90294 7.90294i −0.0516532 0.0516532i
\(154\) 104.422 0.678064
\(155\) 19.3507i 0.124843i
\(156\) 18.6170 0.119340
\(157\) 103.228i 0.657505i −0.944416 0.328752i \(-0.893372\pi\)
0.944416 0.328752i \(-0.106628\pi\)
\(158\) −88.7587 −0.561764
\(159\) 163.600 + 163.600i 1.02893 + 1.02893i
\(160\) 60.3875i 0.377422i
\(161\) 154.044i 0.956796i
\(162\) −96.0771 96.0771i −0.593069 0.593069i
\(163\) 218.586i 1.34102i 0.741900 + 0.670511i \(0.233925\pi\)
−0.741900 + 0.670511i \(0.766075\pi\)
\(164\) −0.350116 −0.00213485
\(165\) −76.0381 + 76.0381i −0.460837 + 0.460837i
\(166\) 135.256 135.256i 0.814795 0.814795i
\(167\) −188.646 188.646i −1.12962 1.12962i −0.990239 0.139380i \(-0.955489\pi\)
−0.139380 0.990239i \(-0.544511\pi\)
\(168\) 136.801i 0.814290i
\(169\) 153.424i 0.907835i
\(170\) −52.2728 52.2728i −0.307487 0.307487i
\(171\) 21.0037 0.122829
\(172\) 107.168 0.623072
\(173\) 265.786i 1.53633i −0.640250 0.768167i \(-0.721169\pi\)
0.640250 0.768167i \(-0.278831\pi\)
\(174\) 178.131i 1.02374i
\(175\) −91.1649 −0.520943
\(176\) −70.3583 70.3583i −0.399763 0.399763i
\(177\) 166.231 + 166.231i 0.939155 + 0.939155i
\(178\) 180.838 1.01595
\(179\) −105.046 105.046i −0.586849 0.586849i 0.349928 0.936777i \(-0.386206\pi\)
−0.936777 + 0.349928i \(0.886206\pi\)
\(180\) −1.79697 1.79697i −0.00998317 0.00998317i
\(181\) 40.7615i 0.225202i −0.993640 0.112601i \(-0.964082\pi\)
0.993640 0.112601i \(-0.0359182\pi\)
\(182\) −31.5166 −0.173168
\(183\) 183.567 + 183.567i 1.00310 + 1.00310i
\(184\) −186.726 + 186.726i −1.01482 + 1.01482i
\(185\) 80.5111 + 80.5111i 0.435195 + 0.435195i
\(186\) −25.2351 + 25.2351i −0.135673 + 0.135673i
\(187\) 231.638 1.23871
\(188\) −83.7213 −0.445326
\(189\) −93.1294 93.1294i −0.492748 0.492748i
\(190\) 138.926 0.731189
\(191\) 242.811 1.27126 0.635630 0.771994i \(-0.280740\pi\)
0.635630 + 0.771994i \(0.280740\pi\)
\(192\) 145.544 145.544i 0.758041 0.758041i
\(193\) 157.520 0.816166 0.408083 0.912945i \(-0.366197\pi\)
0.408083 + 0.912945i \(0.366197\pi\)
\(194\) −187.416 + 187.416i −0.966063 + 0.966063i
\(195\) 22.9498 22.9498i 0.117691 0.117691i
\(196\) 35.3943i 0.180583i
\(197\) −6.06770 196.907i −0.0308005 0.999526i
\(198\) −12.9919 −0.0656156
\(199\) 61.6921 + 61.6921i 0.310011 + 0.310011i 0.844914 0.534903i \(-0.179652\pi\)
−0.534903 + 0.844914i \(0.679652\pi\)
\(200\) 110.506 + 110.506i 0.552532 + 0.552532i
\(201\) 71.2130i 0.354294i
\(202\) −7.26365 7.26365i −0.0359586 0.0359586i
\(203\) 184.830i 0.910493i
\(204\) 83.5634i 0.409625i
\(205\) −0.431600 + 0.431600i −0.00210536 + 0.00210536i
\(206\) 22.9535i 0.111425i
\(207\) 19.1658i 0.0925883i
\(208\) 21.2355 + 21.2355i 0.102094 + 0.102094i
\(209\) −307.813 + 307.813i −1.47279 + 1.47279i
\(210\) 46.4373 + 46.4373i 0.221130 + 0.221130i
\(211\) −138.008 + 138.008i −0.654065 + 0.654065i −0.953969 0.299904i \(-0.903045\pi\)
0.299904 + 0.953969i \(0.403045\pi\)
\(212\) 113.322i 0.534537i
\(213\) −289.346 −1.35843
\(214\) 56.4921 56.4921i 0.263982 0.263982i
\(215\) 132.110 132.110i 0.614466 0.614466i
\(216\) 225.775i 1.04526i
\(217\) −26.1841 + 26.1841i −0.120664 + 0.120664i
\(218\) −176.386 + 176.386i −0.809112 + 0.809112i
\(219\) 232.929i 1.06360i
\(220\) 52.6699 0.239409
\(221\) −69.9130 −0.316348
\(222\) 209.988i 0.945890i
\(223\) 41.3642i 0.185490i −0.995690 0.0927448i \(-0.970436\pi\)
0.995690 0.0927448i \(-0.0295641\pi\)
\(224\) 81.7122 81.7122i 0.364787 0.364787i
\(225\) 11.3425 0.0504112
\(226\) −3.30702 −0.0146329
\(227\) 5.50797 5.50797i 0.0242642 0.0242642i −0.694871 0.719135i \(-0.744538\pi\)
0.719135 + 0.694871i \(0.244538\pi\)
\(228\) −111.044 111.044i −0.487033 0.487033i
\(229\) −215.133 215.133i −0.939445 0.939445i 0.0588238 0.998268i \(-0.481265\pi\)
−0.998268 + 0.0588238i \(0.981265\pi\)
\(230\) 126.769i 0.551171i
\(231\) −205.779 −0.890819
\(232\) 224.044 224.044i 0.965705 0.965705i
\(233\) 120.028 0.515141 0.257570 0.966260i \(-0.417078\pi\)
0.257570 + 0.966260i \(0.417078\pi\)
\(234\) 3.92122 0.0167573
\(235\) −103.206 + 103.206i −0.439175 + 0.439175i
\(236\) 115.144i 0.487899i
\(237\) 174.913 0.738027
\(238\) 141.464i 0.594387i
\(239\) 175.672 0.735029 0.367514 0.930018i \(-0.380209\pi\)
0.367514 + 0.930018i \(0.380209\pi\)
\(240\) 62.5779i 0.260741i
\(241\) −197.909 + 197.909i −0.821201 + 0.821201i −0.986280 0.165079i \(-0.947212\pi\)
0.165079 + 0.986280i \(0.447212\pi\)
\(242\) 55.6594 55.6594i 0.229998 0.229998i
\(243\) 24.0473 + 24.0473i 0.0989602 + 0.0989602i
\(244\) 127.153i 0.521119i
\(245\) −43.6318 43.6318i −0.178089 0.178089i
\(246\) −1.12569 −0.00457598
\(247\) 92.9042 92.9042i 0.376130 0.376130i
\(248\) 63.4785 0.255962
\(249\) −266.542 + 266.542i −1.07045 + 1.07045i
\(250\) 179.351 0.717403
\(251\) −186.861 −0.744466 −0.372233 0.928139i \(-0.621408\pi\)
−0.372233 + 0.928139i \(0.621408\pi\)
\(252\) 4.86308i 0.0192979i
\(253\) −280.878 280.878i −1.11019 1.11019i
\(254\) 136.792 136.792i 0.538552 0.538552i
\(255\) 103.012 + 103.012i 0.403967 + 0.403967i
\(256\) −244.363 −0.954541
\(257\) 68.8305 0.267823 0.133912 0.990993i \(-0.457246\pi\)
0.133912 + 0.990993i \(0.457246\pi\)
\(258\) 344.567 1.33553
\(259\) 217.884i 0.841252i
\(260\) −15.8968 −0.0611417
\(261\) 22.9961i 0.0881076i
\(262\) 66.0525i 0.252109i
\(263\) 265.327 265.327i 1.00885 1.00885i 0.00888848 0.999960i \(-0.497171\pi\)
0.999960 0.00888848i \(-0.00282933\pi\)
\(264\) 249.437 + 249.437i 0.944838 + 0.944838i
\(265\) −139.696 139.696i −0.527154 0.527154i
\(266\) 187.985 + 187.985i 0.706711 + 0.706711i
\(267\) −356.369 −1.33472
\(268\) −24.6638 + 24.6638i −0.0920292 + 0.0920292i
\(269\) 24.9352 + 24.9352i 0.0926961 + 0.0926961i 0.751934 0.659238i \(-0.229121\pi\)
−0.659238 + 0.751934i \(0.729121\pi\)
\(270\) 76.6400 + 76.6400i 0.283852 + 0.283852i
\(271\) 337.196 + 337.196i 1.24427 + 1.24427i 0.958214 + 0.286052i \(0.0923431\pi\)
0.286052 + 0.958214i \(0.407657\pi\)
\(272\) −95.3169 + 95.3169i −0.350430 + 0.350430i
\(273\) 62.1083 0.227503
\(274\) −64.4691 + 64.4691i −0.235289 + 0.235289i
\(275\) −166.227 + 166.227i −0.604460 + 0.604460i
\(276\) 101.327 101.327i 0.367126 0.367126i
\(277\) 56.7117 + 56.7117i 0.204735 + 0.204735i 0.802025 0.597290i \(-0.203756\pi\)
−0.597290 + 0.802025i \(0.703756\pi\)
\(278\) −105.389 −0.379096
\(279\) 3.25776 3.25776i 0.0116765 0.0116765i
\(280\) 116.813i 0.417188i
\(281\) 363.329 + 363.329i 1.29299 + 1.29299i 0.932930 + 0.360057i \(0.117243\pi\)
0.360057 + 0.932930i \(0.382757\pi\)
\(282\) −269.181 −0.954541
\(283\) −124.123 + 124.123i −0.438596 + 0.438596i −0.891539 0.452944i \(-0.850374\pi\)
0.452944 + 0.891539i \(0.350374\pi\)
\(284\) 100.212 + 100.212i 0.352859 + 0.352859i
\(285\) −273.775 −0.960613
\(286\) −57.4662 + 57.4662i −0.200931 + 0.200931i
\(287\) −1.16802 −0.00406977
\(288\) −10.1664 + 10.1664i −0.0353001 + 0.0353001i
\(289\) 24.8083i 0.0858420i
\(290\) 152.104i 0.524497i
\(291\) 369.332 369.332i 1.26918 1.26918i
\(292\) 80.6723 80.6723i 0.276275 0.276275i
\(293\) 333.324i 1.13763i −0.822467 0.568813i \(-0.807403\pi\)
0.822467 0.568813i \(-0.192597\pi\)
\(294\) 113.800i 0.387074i
\(295\) −141.942 141.942i −0.481160 0.481160i
\(296\) 264.111 264.111i 0.892265 0.892265i
\(297\) −339.617 −1.14349
\(298\) 72.4574 0.243146
\(299\) 84.7747 + 84.7747i 0.283527 + 0.283527i
\(300\) −59.9663 59.9663i −0.199888 0.199888i
\(301\) 357.525 1.18779
\(302\) −244.369 −0.809170
\(303\) 14.3141 + 14.3141i 0.0472413 + 0.0472413i
\(304\) 253.325i 0.833304i
\(305\) −156.746 156.746i −0.513921 0.513921i
\(306\) 17.6006i 0.0575183i
\(307\) 11.3542 11.3542i 0.0369844 0.0369844i −0.688373 0.725357i \(-0.741675\pi\)
0.725357 + 0.688373i \(0.241675\pi\)
\(308\) 71.2693 + 71.2693i 0.231394 + 0.231394i
\(309\) 45.2333i 0.146386i
\(310\) 21.5479 21.5479i 0.0695095 0.0695095i
\(311\) 16.1530 0.0519388 0.0259694 0.999663i \(-0.491733\pi\)
0.0259694 + 0.999663i \(0.491733\pi\)
\(312\) −75.2851 75.2851i −0.241298 0.241298i
\(313\) 166.973i 0.533460i 0.963771 + 0.266730i \(0.0859432\pi\)
−0.963771 + 0.266730i \(0.914057\pi\)
\(314\) −114.950 + 114.950i −0.366082 + 0.366082i
\(315\) −5.99489 5.99489i −0.0190314 0.0190314i
\(316\) −60.5790 60.5790i −0.191706 0.191706i
\(317\) −103.951 103.951i −0.327923 0.327923i 0.523874 0.851796i \(-0.324486\pi\)
−0.851796 + 0.523874i \(0.824486\pi\)
\(318\) 364.352i 1.14576i
\(319\) 337.012 + 337.012i 1.05646 + 1.05646i
\(320\) −124.278 + 124.278i −0.388369 + 0.388369i
\(321\) −111.326 + 111.326i −0.346811 + 0.346811i
\(322\) −171.536 + 171.536i −0.532719 + 0.532719i
\(323\) 417.006 + 417.006i 1.29104 + 1.29104i
\(324\) 131.148i 0.404777i
\(325\) 50.1705 50.1705i 0.154371 0.154371i
\(326\) 243.406 243.406i 0.746645 0.746645i
\(327\) 347.596 347.596i 1.06299 1.06299i
\(328\) 1.41583 + 1.41583i 0.00431656 + 0.00431656i
\(329\) −279.303 −0.848946
\(330\) 169.344 0.513164
\(331\) 33.2430i 0.100432i −0.998738 0.0502161i \(-0.984009\pi\)
0.998738 0.0502161i \(-0.0159910\pi\)
\(332\) 184.628 0.556108
\(333\) 27.1086i 0.0814072i
\(334\) 420.134i 1.25789i
\(335\) 60.8079i 0.181516i
\(336\) 84.6762 84.6762i 0.252012 0.252012i
\(337\) −213.210 213.210i −0.632669 0.632669i 0.316068 0.948737i \(-0.397637\pi\)
−0.948737 + 0.316068i \(0.897637\pi\)
\(338\) −170.845 + 170.845i −0.505459 + 0.505459i
\(339\) 6.51699 0.0192242
\(340\) 71.3538i 0.209864i
\(341\) 95.4860i 0.280018i
\(342\) −23.3886 23.3886i −0.0683878 0.0683878i
\(343\) 366.556i 1.06868i
\(344\) −433.377 433.377i −1.25982 1.25982i
\(345\) 249.818i 0.724110i
\(346\) −295.965 + 295.965i −0.855390 + 0.855390i
\(347\) −624.394 −1.79941 −0.899703 0.436503i \(-0.856217\pi\)
−0.899703 + 0.436503i \(0.856217\pi\)
\(348\) −121.577 + 121.577i −0.349359 + 0.349359i
\(349\) 136.438 + 136.438i 0.390939 + 0.390939i 0.875022 0.484083i \(-0.160847\pi\)
−0.484083 + 0.875022i \(0.660847\pi\)
\(350\) 101.517 + 101.517i 0.290047 + 0.290047i
\(351\) 102.503 0.292032
\(352\) 297.982i 0.846539i
\(353\) −112.415 −0.318457 −0.159229 0.987242i \(-0.550901\pi\)
−0.159229 + 0.987242i \(0.550901\pi\)
\(354\) 370.211i 1.04579i
\(355\) 247.069 0.695970
\(356\) 123.425 + 123.425i 0.346698 + 0.346698i
\(357\) 278.776i 0.780886i
\(358\) 233.947i 0.653484i
\(359\) −117.123 117.123i −0.326247 0.326247i 0.524910 0.851158i \(-0.324099\pi\)
−0.851158 + 0.524910i \(0.824099\pi\)
\(360\) 14.5335i 0.0403709i
\(361\) −747.280 −2.07003
\(362\) −45.3899 + 45.3899i −0.125386 + 0.125386i
\(363\) −109.685 + 109.685i −0.302164 + 0.302164i
\(364\) −21.5105 21.5105i −0.0590948 0.0590948i
\(365\) 198.895i 0.544918i
\(366\) 408.822i 1.11700i
\(367\) 137.767 + 137.767i 0.375387 + 0.375387i 0.869435 0.494048i \(-0.164483\pi\)
−0.494048 + 0.869435i \(0.664483\pi\)
\(368\) 231.158 0.628145
\(369\) 0.145322 0.000393828
\(370\) 179.306i 0.484611i
\(371\) 378.053i 1.01901i
\(372\) −34.4466 −0.0925983
\(373\) 150.499 + 150.499i 0.403482 + 0.403482i 0.879458 0.475976i \(-0.157905\pi\)
−0.475976 + 0.879458i \(0.657905\pi\)
\(374\) −257.940 257.940i −0.689679 0.689679i
\(375\) −353.438 −0.942502
\(376\) 338.560 + 338.560i 0.900426 + 0.900426i
\(377\) −101.717 101.717i −0.269806 0.269806i
\(378\) 207.408i 0.548698i
\(379\) 422.210 1.11401 0.557005 0.830509i \(-0.311950\pi\)
0.557005 + 0.830509i \(0.311950\pi\)
\(380\) 94.8188 + 94.8188i 0.249523 + 0.249523i
\(381\) −269.570 + 269.570i −0.707533 + 0.707533i
\(382\) −270.381 270.381i −0.707805 0.707805i
\(383\) 143.438 143.438i 0.374511 0.374511i −0.494606 0.869117i \(-0.664688\pi\)
0.869117 + 0.494606i \(0.164688\pi\)
\(384\) −41.2576 −0.107442
\(385\) 175.712 0.456396
\(386\) −175.406 175.406i −0.454420 0.454420i
\(387\) −44.4824 −0.114941
\(388\) −255.828 −0.659351
\(389\) −9.93096 + 9.93096i −0.0255295 + 0.0255295i −0.719756 0.694227i \(-0.755746\pi\)
0.694227 + 0.719756i \(0.255746\pi\)
\(390\) −51.1114 −0.131055
\(391\) −380.516 + 380.516i −0.973186 + 0.973186i
\(392\) −143.131 + 143.131i −0.365130 + 0.365130i
\(393\) 130.166i 0.331212i
\(394\) −212.508 + 226.021i −0.539361 + 0.573659i
\(395\) −149.356 −0.378116
\(396\) −8.86715 8.86715i −0.0223918 0.0223918i
\(397\) 147.995 + 147.995i 0.372784 + 0.372784i 0.868490 0.495706i \(-0.165091\pi\)
−0.495706 + 0.868490i \(0.665091\pi\)
\(398\) 137.394i 0.345212i
\(399\) −370.453 370.453i −0.928454 0.928454i
\(400\) 136.801i 0.342004i
\(401\) 478.467i 1.19318i −0.802545 0.596592i \(-0.796521\pi\)
0.802545 0.596592i \(-0.203479\pi\)
\(402\) −79.2991 + 79.2991i −0.197261 + 0.197261i
\(403\) 28.8196i 0.0715127i
\(404\) 9.91507i 0.0245423i
\(405\) −161.671 161.671i −0.399186 0.399186i
\(406\) 205.817 205.817i 0.506939 0.506939i
\(407\) 397.282 + 397.282i 0.976122 + 0.976122i
\(408\) 337.921 337.921i 0.828239 0.828239i
\(409\) 550.186i 1.34520i 0.740007 + 0.672599i \(0.234822\pi\)
−0.740007 + 0.672599i \(0.765178\pi\)
\(410\) 0.961214 0.00234442
\(411\) 127.046 127.046i 0.309115 0.309115i
\(412\) 15.6661 15.6661i 0.0380244 0.0380244i
\(413\) 384.133i 0.930105i
\(414\) 21.3420 21.3420i 0.0515508 0.0515508i
\(415\) 227.597 227.597i 0.548427 0.548427i
\(416\) 89.9369i 0.216194i
\(417\) 207.685 0.498045
\(418\) 685.529 1.64002
\(419\) 268.783i 0.641486i 0.947166 + 0.320743i \(0.103933\pi\)
−0.947166 + 0.320743i \(0.896067\pi\)
\(420\) 63.3882i 0.150924i
\(421\) −210.501 + 210.501i −0.500002 + 0.500002i −0.911439 0.411436i \(-0.865027\pi\)
0.411436 + 0.911439i \(0.365027\pi\)
\(422\) 307.356 0.728333
\(423\) 34.7502 0.0821518
\(424\) −458.261 + 458.261i −1.08080 + 1.08080i
\(425\) 225.193 + 225.193i 0.529866 + 0.529866i
\(426\) 322.201 + 322.201i 0.756340 + 0.756340i
\(427\) 424.196i 0.993432i
\(428\) 77.1132 0.180171
\(429\) 113.246 113.246i 0.263976 0.263976i
\(430\) −294.222 −0.684237
\(431\) −151.648 −0.351852 −0.175926 0.984403i \(-0.556292\pi\)
−0.175926 + 0.984403i \(0.556292\pi\)
\(432\) 139.749 139.749i 0.323494 0.323494i
\(433\) 371.716i 0.858467i −0.903194 0.429233i \(-0.858784\pi\)
0.903194 0.429233i \(-0.141216\pi\)
\(434\) 58.3144 0.134365
\(435\) 299.745i 0.689068i
\(436\) −240.772 −0.552230
\(437\) 1011.30i 2.31419i
\(438\) 259.377 259.377i 0.592186 0.592186i
\(439\) −527.707 + 527.707i −1.20207 + 1.20207i −0.228530 + 0.973537i \(0.573392\pi\)
−0.973537 + 0.228530i \(0.926608\pi\)
\(440\) −212.991 212.991i −0.484071 0.484071i
\(441\) 14.6911i 0.0333132i
\(442\) 77.8515 + 77.8515i 0.176135 + 0.176135i
\(443\) 300.537 0.678413 0.339207 0.940712i \(-0.389841\pi\)
0.339207 + 0.940712i \(0.389841\pi\)
\(444\) −143.319 + 143.319i −0.322791 + 0.322791i
\(445\) 304.300 0.683819
\(446\) −46.0610 + 46.0610i −0.103276 + 0.103276i
\(447\) −142.788 −0.319437
\(448\) −336.329 −0.750735
\(449\) 693.314i 1.54413i 0.635544 + 0.772065i \(0.280776\pi\)
−0.635544 + 0.772065i \(0.719224\pi\)
\(450\) −12.6304 12.6304i −0.0280676 0.0280676i
\(451\) −2.12973 + 2.12973i −0.00472223 + 0.00472223i
\(452\) −2.25709 2.25709i −0.00499356 0.00499356i
\(453\) 481.567 1.06306
\(454\) −12.2668 −0.0270193
\(455\) −53.0335 −0.116557
\(456\) 898.097i 1.96951i
\(457\) 483.318 1.05759 0.528794 0.848750i \(-0.322644\pi\)
0.528794 + 0.848750i \(0.322644\pi\)
\(458\) 479.121i 1.04612i
\(459\) 460.091i 1.00238i
\(460\) −86.5218 + 86.5218i −0.188091 + 0.188091i
\(461\) −143.318 143.318i −0.310886 0.310886i 0.534367 0.845253i \(-0.320550\pi\)
−0.845253 + 0.534367i \(0.820550\pi\)
\(462\) 229.145 + 229.145i 0.495985 + 0.495985i
\(463\) 85.4692 + 85.4692i 0.184599 + 0.184599i 0.793356 0.608758i \(-0.208332\pi\)
−0.608758 + 0.793356i \(0.708332\pi\)
\(464\) −277.355 −0.597747
\(465\) −42.4635 + 42.4635i −0.0913194 + 0.0913194i
\(466\) −133.657 133.657i −0.286817 0.286817i
\(467\) 256.789 + 256.789i 0.549869 + 0.549869i 0.926403 0.376534i \(-0.122884\pi\)
−0.376534 + 0.926403i \(0.622884\pi\)
\(468\) 2.67628 + 2.67628i 0.00571855 + 0.00571855i
\(469\) −82.2812 + 82.2812i −0.175440 + 0.175440i
\(470\) 229.850 0.489043
\(471\) 226.526 226.526i 0.480946 0.480946i
\(472\) −465.631 + 465.631i −0.986506 + 0.986506i
\(473\) 651.897 651.897i 1.37822 1.37822i
\(474\) −194.773 194.773i −0.410914 0.410914i
\(475\) −598.498 −1.26000
\(476\) 96.5511 96.5511i 0.202838 0.202838i
\(477\) 47.0364i 0.0986089i
\(478\) −195.619 195.619i −0.409245 0.409245i
\(479\) −131.932 −0.275432 −0.137716 0.990472i \(-0.543976\pi\)
−0.137716 + 0.990472i \(0.543976\pi\)
\(480\) 132.515 132.515i 0.276073 0.276073i
\(481\) −119.908 119.908i −0.249288 0.249288i
\(482\) 440.763 0.914446
\(483\) 338.037 338.037i 0.699869 0.699869i
\(484\) 75.9766 0.156977
\(485\) −315.368 + 315.368i −0.650244 + 0.650244i
\(486\) 53.5557i 0.110197i
\(487\) 664.697i 1.36488i 0.730941 + 0.682441i \(0.239082\pi\)
−0.730941 + 0.682441i \(0.760918\pi\)
\(488\) −514.193 + 514.193i −1.05367 + 1.05367i
\(489\) −479.669 + 479.669i −0.980919 + 0.980919i
\(490\) 97.1722i 0.198311i
\(491\) 564.280i 1.14925i 0.818418 + 0.574624i \(0.194852\pi\)
−0.818418 + 0.574624i \(0.805148\pi\)
\(492\) −0.768299 0.768299i −0.00156158 0.00156158i
\(493\) 456.562 456.562i 0.926090 0.926090i
\(494\) −206.907 −0.418839
\(495\) −21.8617 −0.0441650
\(496\) −39.2916 39.2916i −0.0792170 0.0792170i
\(497\) 334.317 + 334.317i 0.672671 + 0.672671i
\(498\) 593.615 1.19200
\(499\) 850.705 1.70482 0.852410 0.522875i \(-0.175140\pi\)
0.852410 + 0.522875i \(0.175140\pi\)
\(500\) 122.409 + 122.409i 0.244819 + 0.244819i
\(501\) 827.937i 1.65257i
\(502\) 208.079 + 208.079i 0.414499 + 0.414499i
\(503\) 610.493i 1.21370i −0.794815 0.606852i \(-0.792432\pi\)
0.794815 0.606852i \(-0.207568\pi\)
\(504\) −19.6658 + 19.6658i −0.0390194 + 0.0390194i
\(505\) −12.2227 12.2227i −0.0242033 0.0242033i
\(506\) 625.542i 1.23625i
\(507\) 336.676 336.676i 0.664056 0.664056i
\(508\) 186.725 0.367569
\(509\) −465.508 465.508i −0.914555 0.914555i 0.0820715 0.996626i \(-0.473846\pi\)
−0.996626 + 0.0820715i \(0.973846\pi\)
\(510\) 229.416i 0.449836i
\(511\) 269.131 269.131i 0.526676 0.526676i
\(512\) 309.712 + 309.712i 0.604906 + 0.604906i
\(513\) −611.394 611.394i −1.19180 1.19180i
\(514\) −76.6461 76.6461i −0.149117 0.149117i
\(515\) 38.6242i 0.0749984i
\(516\) 235.172 + 235.172i 0.455760 + 0.455760i
\(517\) −509.271 + 509.271i −0.985050 + 0.985050i
\(518\) 242.625 242.625i 0.468387 0.468387i
\(519\) 583.244 583.244i 1.12378 1.12378i
\(520\) 64.2851 + 64.2851i 0.123625 + 0.123625i
\(521\) 17.7961i 0.0341576i −0.999854 0.0170788i \(-0.994563\pi\)
0.999854 0.0170788i \(-0.00543661\pi\)
\(522\) −25.6072 + 25.6072i −0.0490560 + 0.0490560i
\(523\) −649.537 + 649.537i −1.24194 + 1.24194i −0.282752 + 0.959193i \(0.591247\pi\)
−0.959193 + 0.282752i \(0.908753\pi\)
\(524\) −45.0817 + 45.0817i −0.0860338 + 0.0860338i
\(525\) −200.054 200.054i −0.381055 0.381055i
\(526\) −590.909 −1.12340
\(527\) 129.358 0.245462
\(528\) 308.791i 0.584831i
\(529\) 393.807 0.744436
\(530\) 311.116i 0.587011i
\(531\) 47.7929i 0.0900054i
\(532\) 256.605i 0.482340i
\(533\) 0.642794 0.642794i 0.00120599 0.00120599i
\(534\) 396.834 + 396.834i 0.743135 + 0.743135i
\(535\) 95.0601 95.0601i 0.177682 0.177682i
\(536\) 199.476 0.372156
\(537\) 461.029i 0.858527i
\(538\) 55.5332i 0.103221i
\(539\) −215.301 215.301i −0.399445 0.399445i
\(540\) 104.616i 0.193733i
\(541\) 284.018 + 284.018i 0.524987 + 0.524987i 0.919073 0.394086i \(-0.128939\pi\)
−0.394086 + 0.919073i \(0.628939\pi\)
\(542\) 750.968i 1.38555i
\(543\) 89.4477 89.4477i 0.164729 0.164729i
\(544\) −403.686 −0.742071
\(545\) −296.808 + 296.808i −0.544603 + 0.544603i
\(546\) −69.1605 69.1605i −0.126668 0.126668i
\(547\) 701.955 + 701.955i 1.28328 + 1.28328i 0.938790 + 0.344491i \(0.111949\pi\)
0.344491 + 0.938790i \(0.388051\pi\)
\(548\) −88.0020 −0.160588
\(549\) 52.7773i 0.0961336i
\(550\) 370.203 0.673096
\(551\) 1213.41i 2.20220i
\(552\) −819.509 −1.48462
\(553\) −202.098 202.098i −0.365457 0.365457i
\(554\) 126.302i 0.227983i
\(555\) 353.350i 0.636666i
\(556\) −71.9293 71.9293i −0.129369 0.129369i
\(557\) 560.297i 1.00592i 0.864310 + 0.502960i \(0.167756\pi\)
−0.864310 + 0.502960i \(0.832244\pi\)
\(558\) −7.25533 −0.0130024
\(559\) −196.756 + 196.756i −0.351978 + 0.351978i
\(560\) −72.3040 + 72.3040i −0.129114 + 0.129114i
\(561\) 508.310 + 508.310i 0.906078 + 0.906078i
\(562\) 809.169i 1.43980i
\(563\) 227.622i 0.404302i 0.979354 + 0.202151i \(0.0647931\pi\)
−0.979354 + 0.202151i \(0.935207\pi\)
\(564\) −183.719 183.719i −0.325744 0.325744i
\(565\) −5.56478 −0.00984918
\(566\) 276.433 0.488397
\(567\) 437.523i 0.771646i
\(568\) 810.492i 1.42692i
\(569\) 798.239 1.40288 0.701441 0.712728i \(-0.252541\pi\)
0.701441 + 0.712728i \(0.252541\pi\)
\(570\) 304.861 + 304.861i 0.534844 + 0.534844i
\(571\) −506.836 506.836i −0.887629 0.887629i 0.106666 0.994295i \(-0.465983\pi\)
−0.994295 + 0.106666i \(0.965983\pi\)
\(572\) −78.4429 −0.137138
\(573\) 532.828 + 532.828i 0.929891 + 0.929891i
\(574\) 1.30065 + 1.30065i 0.00226594 + 0.00226594i
\(575\) 546.127i 0.949786i
\(576\) 41.8452 0.0726480
\(577\) −276.243 276.243i −0.478757 0.478757i 0.425977 0.904734i \(-0.359930\pi\)
−0.904734 + 0.425977i \(0.859930\pi\)
\(578\) −27.6253 + 27.6253i −0.0477946 + 0.0477946i
\(579\) 345.664 + 345.664i 0.597002 + 0.597002i
\(580\) 103.813 103.813i 0.178988 0.178988i
\(581\) 615.938 1.06013
\(582\) −822.538 −1.41330
\(583\) −689.328 689.328i −1.18238 1.18238i
\(584\) −652.460 −1.11723
\(585\) 6.59829 0.0112791
\(586\) −371.173 + 371.173i −0.633400 + 0.633400i
\(587\) −93.0829 −0.158574 −0.0792870 0.996852i \(-0.525264\pi\)
−0.0792870 + 0.996852i \(0.525264\pi\)
\(588\) 77.6699 77.6699i 0.132092 0.132092i
\(589\) −171.898 + 171.898i −0.291848 + 0.291848i
\(590\) 316.119i 0.535795i
\(591\) 418.780 445.410i 0.708595 0.753654i
\(592\) −326.955 −0.552290
\(593\) 772.575 + 772.575i 1.30283 + 1.30283i 0.926479 + 0.376346i \(0.122820\pi\)
0.376346 + 0.926479i \(0.377180\pi\)
\(594\) 378.180 + 378.180i 0.636666 + 0.636666i
\(595\) 238.044i 0.400074i
\(596\) 49.4532 + 49.4532i 0.0829751 + 0.0829751i
\(597\) 270.756i 0.453528i
\(598\) 188.801i 0.315721i
\(599\) 181.454 181.454i 0.302929 0.302929i −0.539230 0.842159i \(-0.681285\pi\)
0.842159 + 0.539230i \(0.181285\pi\)
\(600\) 484.994i 0.808324i
\(601\) 683.225i 1.13681i 0.822747 + 0.568407i \(0.192440\pi\)
−0.822747 + 0.568407i \(0.807560\pi\)
\(602\) −398.121 398.121i −0.661331 0.661331i
\(603\) 10.2372 10.2372i 0.0169771 0.0169771i
\(604\) −166.785 166.785i −0.276135 0.276135i
\(605\) 93.6590 93.6590i 0.154808 0.154808i
\(606\) 31.8789i 0.0526055i
\(607\) 56.7164 0.0934372 0.0467186 0.998908i \(-0.485124\pi\)
0.0467186 + 0.998908i \(0.485124\pi\)
\(608\) 536.441 536.441i 0.882304 0.882304i
\(609\) −405.594 + 405.594i −0.666000 + 0.666000i
\(610\) 349.088i 0.572275i
\(611\) 153.708 153.708i 0.251568 0.251568i
\(612\) −12.0126 + 12.0126i −0.0196285 + 0.0196285i
\(613\) 328.690i 0.536199i −0.963391 0.268100i \(-0.913604\pi\)
0.963391 0.268100i \(-0.0863957\pi\)
\(614\) −25.2869 −0.0411839
\(615\) −1.89422 −0.00308003
\(616\) 576.411i 0.935732i
\(617\) 561.376i 0.909847i −0.890531 0.454924i \(-0.849667\pi\)
0.890531 0.454924i \(-0.150333\pi\)
\(618\) 50.3695 50.3695i 0.0815040 0.0815040i
\(619\) −385.562 −0.622879 −0.311440 0.950266i \(-0.600811\pi\)
−0.311440 + 0.950266i \(0.600811\pi\)
\(620\) 29.4135 0.0474412
\(621\) 557.895 557.895i 0.898381 0.898381i
\(622\) −17.9871 17.9871i −0.0289181 0.0289181i
\(623\) 411.757 + 411.757i 0.660927 + 0.660927i
\(624\) 93.1992i 0.149358i
\(625\) −147.650 −0.236240
\(626\) 185.932 185.932i 0.297017 0.297017i
\(627\) −1350.94 −2.15461
\(628\) −156.909 −0.249856
\(629\) 538.212 538.212i 0.855663 0.855663i
\(630\) 13.3512i 0.0211924i
\(631\) 538.041 0.852680 0.426340 0.904563i \(-0.359803\pi\)
0.426340 + 0.904563i \(0.359803\pi\)
\(632\) 489.950i 0.775237i
\(633\) −605.693 −0.956860
\(634\) 231.510i 0.365157i
\(635\) 230.183 230.183i 0.362492 0.362492i
\(636\) 248.675 248.675i 0.390998 0.390998i
\(637\) 64.9822 + 64.9822i 0.102013 + 0.102013i
\(638\) 750.558i 1.17642i
\(639\) −41.5949 41.5949i −0.0650937 0.0650937i
\(640\) 35.2294 0.0550460
\(641\) −146.951 + 146.951i −0.229253 + 0.229253i −0.812381 0.583127i \(-0.801829\pi\)
0.583127 + 0.812381i \(0.301829\pi\)
\(642\) 247.934 0.386190
\(643\) 377.506 377.506i 0.587100 0.587100i −0.349745 0.936845i \(-0.613732\pi\)
0.936845 + 0.349745i \(0.113732\pi\)
\(644\) −234.151 −0.363588
\(645\) 579.809 0.898929
\(646\) 928.711i 1.43763i
\(647\) 644.180 + 644.180i 0.995642 + 0.995642i 0.999991 0.00434900i \(-0.00138433\pi\)
−0.00434900 + 0.999991i \(0.501384\pi\)
\(648\) −530.348 + 530.348i −0.818438 + 0.818438i
\(649\) −700.414 700.414i −1.07922 1.07922i
\(650\) −111.735 −0.171899
\(651\) −114.917 −0.176524
\(652\) 332.256 0.509596
\(653\) 187.359i 0.286920i −0.989656 0.143460i \(-0.954177\pi\)
0.989656 0.143460i \(-0.0458228\pi\)
\(654\) −774.130 −1.18369
\(655\) 111.148i 0.169691i
\(656\) 1.75273i 0.00267184i
\(657\) −33.4846 + 33.4846i −0.0509660 + 0.0509660i
\(658\) 311.017 + 311.017i 0.472671 + 0.472671i
\(659\) −716.817 716.817i −1.08773 1.08773i −0.995762 0.0919724i \(-0.970683\pi\)
−0.0919724 0.995762i \(-0.529317\pi\)
\(660\) 115.580 + 115.580i 0.175121 + 0.175121i
\(661\) −606.010 −0.916808 −0.458404 0.888744i \(-0.651579\pi\)
−0.458404 + 0.888744i \(0.651579\pi\)
\(662\) −37.0177 + 37.0177i −0.0559180 + 0.0559180i
\(663\) −153.418 153.418i −0.231400 0.231400i
\(664\) −746.616 746.616i −1.12442 1.12442i
\(665\) 316.326 + 316.326i 0.475678 + 0.475678i
\(666\) −30.1867 + 30.1867i −0.0453254 + 0.0453254i
\(667\) −1107.23 −1.66002
\(668\) −286.747 + 286.747i −0.429262 + 0.429262i
\(669\) 90.7702 90.7702i 0.135680 0.135680i
\(670\) 67.7125 67.7125i 0.101063 0.101063i
\(671\) −773.462 773.462i −1.15270 1.15270i
\(672\) 358.621 0.533662
\(673\) 572.493 572.493i 0.850658 0.850658i −0.139556 0.990214i \(-0.544568\pi\)
0.990214 + 0.139556i \(0.0445676\pi\)
\(674\) 474.838i 0.704507i
\(675\) −330.168 330.168i −0.489137 0.489137i
\(676\) −233.208 −0.344983
\(677\) −861.160 + 861.160i −1.27202 + 1.27202i −0.326998 + 0.945025i \(0.606037\pi\)
−0.945025 + 0.326998i \(0.893963\pi\)
\(678\) −7.25698 7.25698i −0.0107035 0.0107035i
\(679\) −853.470 −1.25695
\(680\) −288.547 + 288.547i −0.424334 + 0.424334i
\(681\) 24.1735 0.0354971
\(682\) 106.328 106.328i 0.155907 0.155907i
\(683\) 874.996i 1.28111i −0.767914 0.640553i \(-0.778705\pi\)
0.767914 0.640553i \(-0.221295\pi\)
\(684\) 31.9261i 0.0466756i
\(685\) −108.483 + 108.483i −0.158370 + 0.158370i
\(686\) −408.178 + 408.178i −0.595011 + 0.595011i
\(687\) 944.181i 1.37435i
\(688\) 536.499i 0.779796i
\(689\) 208.053 + 208.053i 0.301964 + 0.301964i
\(690\) −278.184 + 278.184i −0.403166 + 0.403166i
\(691\) 238.390 0.344993 0.172496 0.985010i \(-0.444817\pi\)
0.172496 + 0.985010i \(0.444817\pi\)
\(692\) −404.000 −0.583816
\(693\) −29.5817 29.5817i −0.0426865 0.0426865i
\(694\) 695.292 + 695.292i 1.00186 + 1.00186i
\(695\) −177.339 −0.255165
\(696\) 983.289 1.41277
\(697\) 2.88522 + 2.88522i 0.00413948 + 0.00413948i
\(698\) 303.860i 0.435329i
\(699\) 263.391 + 263.391i 0.376811 + 0.376811i
\(700\) 138.573i 0.197961i
\(701\) −82.0413 + 82.0413i −0.117035 + 0.117035i −0.763199 0.646164i \(-0.776372\pi\)
0.646164 + 0.763199i \(0.276372\pi\)
\(702\) −114.142 114.142i −0.162596 0.162596i
\(703\) 1430.41i 2.03472i
\(704\) −613.250 + 613.250i −0.871094 + 0.871094i
\(705\) −452.954 −0.642489
\(706\) 125.180 + 125.180i 0.177309 + 0.177309i
\(707\) 33.0777i 0.0467860i
\(708\) 252.674 252.674i 0.356884 0.356884i
\(709\) −757.263 757.263i −1.06807 1.06807i −0.997507 0.0705643i \(-0.977520\pi\)
−0.0705643 0.997507i \(-0.522480\pi\)
\(710\) −275.123 275.123i −0.387498 0.387498i
\(711\) 25.1445 + 25.1445i 0.0353650 + 0.0353650i
\(712\) 998.232i 1.40201i
\(713\) −156.857 156.857i −0.219995 0.219995i
\(714\) 310.431 310.431i 0.434777 0.434777i
\(715\) −96.6992 + 96.6992i −0.135244 + 0.135244i
\(716\) −159.672 + 159.672i −0.223006 + 0.223006i
\(717\) 385.497 + 385.497i 0.537653 + 0.537653i
\(718\) 260.844i 0.363292i
\(719\) 997.137 997.137i 1.38684 1.38684i 0.554966 0.831873i \(-0.312731\pi\)
0.831873 0.554966i \(-0.187269\pi\)
\(720\) 8.99588 8.99588i 0.0124943 0.0124943i
\(721\) 52.2636 52.2636i 0.0724877 0.0724877i
\(722\) 832.132 + 832.132i 1.15254 + 1.15254i
\(723\) −868.591 −1.20137
\(724\) −61.9585 −0.0855780
\(725\) 655.271i 0.903822i
\(726\) 244.280 0.336474
\(727\) 502.751i 0.691542i 0.938319 + 0.345771i \(0.112383\pi\)
−0.938319 + 0.345771i \(0.887617\pi\)
\(728\) 173.972i 0.238973i
\(729\) 670.982i 0.920414i
\(730\) −221.479 + 221.479i −0.303396 + 0.303396i
\(731\) −883.149 883.149i −1.20814 1.20814i
\(732\) 279.026 279.026i 0.381183 0.381183i
\(733\) 667.873 0.911149 0.455575 0.890198i \(-0.349434\pi\)
0.455575 + 0.890198i \(0.349434\pi\)
\(734\) 306.820i 0.418011i
\(735\) 191.493i 0.260534i
\(736\) 489.500 + 489.500i 0.665081 + 0.665081i
\(737\) 300.057i 0.407132i
\(738\) −0.161823 0.161823i −0.000219273 0.000219273i
\(739\) 735.904i 0.995811i 0.867231 + 0.497905i \(0.165897\pi\)
−0.867231 + 0.497905i \(0.834103\pi\)
\(740\) 122.379 122.379i 0.165377 0.165377i
\(741\) 407.741 0.550258
\(742\) −420.981 + 420.981i −0.567359 + 0.567359i
\(743\) −341.898 341.898i −0.460159 0.460159i 0.438549 0.898707i \(-0.355493\pi\)
−0.898707 + 0.438549i \(0.855493\pi\)
\(744\) 139.298 + 139.298i 0.187229 + 0.187229i
\(745\) 121.925 0.163658
\(746\) 335.175i 0.449296i
\(747\) −76.6335 −0.102588
\(748\) 352.095i 0.470715i
\(749\) 257.258 0.343468
\(750\) 393.570 + 393.570i 0.524760 + 0.524760i
\(751\) 529.592i 0.705182i 0.935778 + 0.352591i \(0.114699\pi\)
−0.935778 + 0.352591i \(0.885301\pi\)
\(752\) 419.120i 0.557341i
\(753\) −410.050 410.050i −0.544556 0.544556i
\(754\) 226.533i 0.300442i
\(755\) −411.204 −0.544641
\(756\) −141.559 + 141.559i −0.187247 + 0.187247i
\(757\) 600.515 600.515i 0.793283 0.793283i −0.188744 0.982026i \(-0.560441\pi\)
0.982026 + 0.188744i \(0.0604415\pi\)
\(758\) −470.151 470.151i −0.620251 0.620251i
\(759\) 1232.73i 1.62415i
\(760\) 766.874i 1.00905i
\(761\) −238.390 238.390i −0.313259 0.313259i 0.532912 0.846171i \(-0.321098\pi\)
−0.846171 + 0.532912i \(0.821098\pi\)
\(762\) 600.358 0.787871
\(763\) −803.242 −1.05274
\(764\) 369.078i 0.483086i
\(765\) 29.6168i 0.0387148i
\(766\) −319.450 −0.417036
\(767\) 211.399 + 211.399i 0.275618 + 0.275618i
\(768\) −536.233 536.233i −0.698220 0.698220i
\(769\) 637.452 0.828937 0.414468 0.910064i \(-0.363968\pi\)
0.414468 + 0.910064i \(0.363968\pi\)
\(770\) −195.664 195.664i −0.254109 0.254109i
\(771\) 151.043 + 151.043i 0.195905 + 0.195905i
\(772\) 239.434i 0.310148i
\(773\) −457.236 −0.591508 −0.295754 0.955264i \(-0.595571\pi\)
−0.295754 + 0.955264i \(0.595571\pi\)
\(774\) 49.5332 + 49.5332i 0.0639964 + 0.0639964i
\(775\) &minus