Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [197,3,Mod(14,197)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(197, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([3]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("197.14");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 197 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 197.c (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.36786120790\) |
Analytic rank: | \(0\) |
Dimension: | \(64\) |
Relative dimension: | \(32\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
14.1 | −2.75292 | + | 2.75292i | −0.348601 | + | 0.348601i | − | 11.1571i | −4.86430 | + | 4.86430i | − | 1.91934i | 12.7739i | 19.7030 | + | 19.7030i | 8.75696i | − | 26.7821i | |||||||
14.2 | −2.60079 | + | 2.60079i | −0.624484 | + | 0.624484i | − | 9.52825i | 1.64362 | − | 1.64362i | − | 3.24831i | − | 8.36970i | 14.3778 | + | 14.3778i | 8.22004i | 8.54942i | |||||||
14.3 | −2.37240 | + | 2.37240i | 3.08237 | − | 3.08237i | − | 7.25653i | 3.27580 | − | 3.27580i | 14.6252i | − | 0.819881i | 7.72579 | + | 7.72579i | − | 10.0021i | 15.5430i | |||||||
14.4 | −2.36282 | + | 2.36282i | −3.56182 | + | 3.56182i | − | 7.16585i | −0.0568632 | + | 0.0568632i | − | 16.8319i | 1.89117i | 7.48035 | + | 7.48035i | − | 16.3731i | − | 0.268715i | ||||||
14.5 | −2.07857 | + | 2.07857i | 3.03733 | − | 3.03733i | − | 4.64088i | −3.00380 | + | 3.00380i | 12.6266i | 7.49199i | 1.33210 | + | 1.33210i | − | 9.45073i | − | 12.4872i | |||||||
14.6 | −1.90042 | + | 1.90042i | 0.406457 | − | 0.406457i | − | 3.22320i | 1.91596 | − | 1.91596i | 1.54488i | − | 0.163555i | −1.47625 | − | 1.47625i | 8.66959i | 7.28227i | ||||||||
14.7 | −1.85403 | + | 1.85403i | 0.722049 | − | 0.722049i | − | 2.87488i | −6.14279 | + | 6.14279i | 2.67741i | − | 9.45582i | −2.08602 | − | 2.08602i | 7.95729i | − | 22.7779i | |||||||
14.8 | −1.84369 | + | 1.84369i | −1.89732 | + | 1.89732i | − | 2.79835i | 6.24444 | − | 6.24444i | − | 6.99613i | 9.93768i | −2.21546 | − | 2.21546i | 1.80035i | 23.0256i | ||||||||
14.9 | −1.68863 | + | 1.68863i | −3.21724 | + | 3.21724i | − | 1.70294i | −3.76601 | + | 3.76601i | − | 10.8655i | − | 2.48441i | −3.87889 | − | 3.87889i | − | 11.7013i | − | 12.7188i | |||||
14.10 | −1.11355 | + | 1.11355i | 2.19442 | − | 2.19442i | 1.52002i | −1.87378 | + | 1.87378i | 4.88717i | 5.07096i | −6.14681 | − | 6.14681i | − | 0.630916i | − | 4.17310i | ||||||||
14.11 | −0.904445 | + | 0.904445i | −2.55489 | + | 2.55489i | 2.36396i | 3.86642 | − | 3.86642i | − | 4.62152i | − | 11.7409i | −5.75585 | − | 5.75585i | − | 4.05494i | 6.99393i | |||||||
14.12 | −0.892438 | + | 0.892438i | −0.994798 | + | 0.994798i | 2.40711i | −0.178552 | + | 0.178552i | − | 1.77559i | 2.79633i | −5.71795 | − | 5.71795i | 7.02075i | − | 0.318693i | ||||||||
14.13 | −0.770755 | + | 0.770755i | 4.07862 | − | 4.07862i | 2.81187i | −1.79164 | + | 1.79164i | 6.28722i | − | 12.4564i | −5.25028 | − | 5.25028i | − | 24.2702i | − | 2.76183i | |||||||
14.14 | −0.694722 | + | 0.694722i | 2.63608 | − | 2.63608i | 3.03472i | 5.73458 | − | 5.73458i | 3.66268i | − | 1.32953i | −4.88717 | − | 4.88717i | − | 4.89782i | 7.96787i | ||||||||
14.15 | −0.573175 | + | 0.573175i | −2.28798 | + | 2.28798i | 3.34294i | −5.47154 | + | 5.47154i | − | 2.62283i | 8.43976i | −4.20879 | − | 4.20879i | − | 1.46972i | − | 6.27231i | |||||||
14.16 | −0.0624262 | + | 0.0624262i | 1.58284 | − | 1.58284i | 3.99221i | 3.24675 | − | 3.24675i | 0.197621i | 10.7744i | −0.498923 | − | 0.498923i | 3.98923i | 0.405365i | ||||||||||
14.17 | −0.00732944 | + | 0.00732944i | 0.226886 | − | 0.226886i | 3.99989i | −2.04970 | + | 2.04970i | 0.00332589i | − | 5.87781i | −0.0586348 | − | 0.0586348i | 8.89705i | − | 0.0300462i | ||||||||
14.18 | 0.351579 | − | 0.351579i | −3.57720 | + | 3.57720i | 3.75279i | 0.963817 | − | 0.963817i | 2.51533i | 6.75956i | 2.72571 | + | 2.72571i | − | 16.5927i | − | 0.677714i | ||||||||
14.19 | 0.667408 | − | 0.667408i | 2.53367 | − | 2.53367i | 3.10913i | −6.79914 | + | 6.79914i | − | 3.38198i | 5.78196i | 4.74469 | + | 4.74469i | − | 3.83893i | 9.07559i | ||||||||
14.20 | 0.711462 | − | 0.711462i | −2.03514 | + | 2.03514i | 2.98765i | 3.89762 | − | 3.89762i | 2.89584i | 0.0611598i | 4.97144 | + | 4.97144i | 0.716450i | − | 5.54602i | |||||||||
See all 64 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
197.c | odd | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 197.3.c.a | ✓ | 64 |
197.c | odd | 4 | 1 | inner | 197.3.c.a | ✓ | 64 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
197.3.c.a | ✓ | 64 | 1.a | even | 1 | 1 | trivial |
197.3.c.a | ✓ | 64 | 197.c | odd | 4 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(197, [\chi])\).