Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [197,2,Mod(16,197)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(197, base_ring=CyclotomicField(98))
chi = DirichletCharacter(H, H._module([2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("197.16");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 197 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 197.g (of order \(49\), degree \(42\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.57305291982\) |
Analytic rank: | \(0\) |
Dimension: | \(630\) |
Relative dimension: | \(15\) over \(\Q(\zeta_{49})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{49}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16.1 | −2.48397 | − | 0.159476i | −1.29377 | + | 1.85472i | 4.16109 | + | 0.536513i | −0.977512 | + | 0.636290i | 3.50947 | − | 4.40074i | 5.00407 | − | 0.321272i | −5.36410 | − | 1.04466i | −0.730042 | − | 1.98376i | 2.52958 | − | 1.42464i |
16.2 | −2.15065 | − | 0.138077i | −0.639435 | + | 0.916678i | 2.62267 | + | 0.338156i | −0.0368843 | + | 0.0240090i | 1.50178 | − | 1.88317i | −3.79102 | + | 0.243391i | −1.36308 | − | 0.265461i | 0.604674 | + | 1.64309i | 0.0826405 | − | 0.0465422i |
16.3 | −2.04022 | − | 0.130987i | 0.485195 | − | 0.695563i | 2.16177 | + | 0.278730i | −1.49439 | + | 0.972737i | −1.08102 | + | 1.35555i | −0.633099 | + | 0.0406463i | −0.360546 | − | 0.0702164i | 0.787701 | + | 2.14044i | 3.17630 | − | 1.78886i |
16.4 | −1.70486 | − | 0.109455i | 1.44109 | − | 2.06591i | 0.910971 | + | 0.117457i | 1.97200 | − | 1.28363i | −2.68298 | + | 3.36435i | 1.14000 | − | 0.0731907i | 1.81351 | + | 0.353180i | −1.15516 | − | 3.13893i | −3.50247 | + | 1.97255i |
16.5 | −1.15219 | − | 0.0739728i | −1.26737 | + | 1.81686i | −0.661518 | − | 0.0852934i | 3.21973 | − | 2.09581i | 1.59464 | − | 1.99962i | −0.487946 | + | 0.0313272i | 3.02242 | + | 0.588616i | −0.658685 | − | 1.78986i | −3.86476 | + | 2.17659i |
16.6 | −0.506206 | − | 0.0324995i | 1.73419 | − | 2.48609i | −1.72839 | − | 0.222851i | −3.12927 | + | 2.03693i | −0.958653 | + | 1.20211i | −4.30048 | + | 0.276100i | 1.86347 | + | 0.362910i | −2.13714 | − | 5.80729i | 1.65025 | − | 0.929406i |
16.7 | −0.484111 | − | 0.0310810i | 0.216468 | − | 0.310323i | −1.75018 | − | 0.225661i | −2.33159 | + | 1.51769i | −0.114440 | + | 0.143503i | 2.93627 | − | 0.188515i | 1.79259 | + | 0.349107i | 0.986653 | + | 2.68106i | 1.17592 | − | 0.662265i |
16.8 | −0.335970 | − | 0.0215700i | 0.0454721 | − | 0.0651877i | −1.87117 | − | 0.241261i | 0.983419 | − | 0.640135i | −0.0166834 | + | 0.0209203i | 2.21855 | − | 0.142436i | 1.28436 | + | 0.250129i | 1.03391 | + | 2.80948i | −0.344207 | + | 0.193854i |
16.9 | 0.791569 | + | 0.0508204i | −0.962249 | + | 1.37946i | −1.35958 | − | 0.175299i | −1.15157 | + | 0.749590i | −0.831792 | + | 1.04303i | −2.60996 | + | 0.167565i | −2.62444 | − | 0.511109i | 0.0591181 | + | 0.160643i | −0.949643 | + | 0.534829i |
16.10 | 1.01041 | + | 0.0648703i | 1.00307 | − | 1.43798i | −0.966867 | − | 0.124664i | 2.59562 | − | 1.68956i | 1.10679 | − | 1.38788i | −2.13216 | + | 0.136889i | −2.95647 | − | 0.575773i | −0.0255388 | − | 0.0693973i | 2.73224 | − | 1.53877i |
16.11 | 1.37861 | + | 0.0885098i | 1.41762 | − | 2.03227i | −0.0908444 | − | 0.0117131i | −0.970092 | + | 0.631460i | 2.13422 | − | 2.67623i | 2.91441 | − | 0.187111i | −2.83615 | − | 0.552341i | −1.08436 | − | 2.94655i | −1.39327 | + | 0.784675i |
16.12 | 1.55472 | + | 0.0998163i | −0.748244 | + | 1.07266i | 0.423609 | + | 0.0546184i | 2.57534 | − | 1.67636i | −1.27038 | + | 1.59300i | 2.62646 | − | 0.168624i | −2.40524 | − | 0.468420i | 0.445357 | + | 1.21018i | 4.17126 | − | 2.34921i |
16.13 | 2.18236 | + | 0.140112i | −1.06546 | + | 1.52741i | 2.75947 | + | 0.355794i | −3.47190 | + | 2.25995i | −2.53922 | + | 3.18408i | 4.33586 | − | 0.278371i | 1.67925 | + | 0.327034i | −0.161699 | − | 0.439389i | −7.89356 | + | 4.44557i |
16.14 | 2.30859 | + | 0.148217i | 0.781712 | − | 1.12064i | 3.32405 | + | 0.428589i | −1.06628 | + | 0.694069i | 1.97075 | − | 2.47124i | −3.00952 | + | 0.193218i | 3.06898 | + | 0.597684i | 0.391328 | + | 1.06337i | −2.56447 | + | 1.44428i |
16.15 | 2.56869 | + | 0.164915i | −1.80293 | + | 2.58464i | 4.58739 | + | 0.591479i | 1.88168 | − | 1.22484i | −5.05742 | + | 6.34180i | −4.01439 | + | 0.257732i | 6.63302 | + | 1.29178i | −2.39370 | − | 6.50444i | 5.03544 | − | 2.83591i |
23.1 | −0.871876 | + | 2.36917i | 1.75406 | − | 1.14176i | −3.32991 | − | 2.83479i | −0.0953576 | − | 2.97360i | 1.17571 | + | 5.15114i | −1.06898 | − | 2.90477i | 5.22007 | − | 2.93989i | 0.558739 | − | 1.26220i | 7.12811 | + | 2.36670i |
23.2 | −0.835546 | + | 2.27045i | 0.441713 | − | 0.287523i | −2.93391 | − | 2.49767i | 0.0569457 | + | 1.77578i | 0.283735 | + | 1.24313i | 0.530984 | + | 1.44285i | 3.90627 | − | 2.19997i | −1.10191 | + | 2.48923i | −4.07939 | − | 1.35445i |
23.3 | −0.612843 | + | 1.66529i | −1.31213 | + | 0.854099i | −0.874733 | − | 0.744671i | 0.0995611 | + | 3.10468i | −0.618198 | − | 2.70850i | −0.901602 | − | 2.44994i | −1.31610 | + | 0.741216i | −0.222161 | + | 0.501866i | −5.23122 | − | 1.73689i |
23.4 | −0.567149 | + | 1.54113i | −1.88076 | + | 1.22424i | −0.530525 | − | 0.451643i | −0.112394 | − | 3.50484i | −0.820039 | − | 3.59283i | −1.15309 | − | 3.13332i | −1.86479 | + | 1.05023i | 0.824156 | − | 1.86178i | 5.46516 | + | 1.81456i |
23.5 | −0.556348 | + | 1.51178i | −0.127734 | + | 0.0831453i | −0.453058 | − | 0.385694i | −0.0999221 | − | 3.11594i | −0.0546329 | − | 0.239363i | 1.75292 | + | 4.76324i | −1.97207 | + | 1.11065i | −1.20495 | + | 2.72200i | 4.76620 | + | 1.58249i |
See next 80 embeddings (of 630 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
197.g | even | 49 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 197.2.g.a | ✓ | 630 |
197.g | even | 49 | 1 | inner | 197.2.g.a | ✓ | 630 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
197.2.g.a | ✓ | 630 | 1.a | even | 1 | 1 | trivial |
197.2.g.a | ✓ | 630 | 197.g | even | 49 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(197, [\chi])\).