Properties

Label 197.2.e
Level $197$
Weight $2$
Character orbit 197.e
Rep. character $\chi_{197}(6,\cdot)$
Character field $\Q(\zeta_{14})$
Dimension $96$
Newform subspaces $2$
Sturm bound $33$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 197.e (of order \(14\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 197 \)
Character field: \(\Q(\zeta_{14})\)
Newform subspaces: \( 2 \)
Sturm bound: \(33\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(197, [\chi])\).

Total New Old
Modular forms 108 108 0
Cusp forms 96 96 0
Eisenstein series 12 12 0

Trace form

\( 96 q - 7 q^{2} - 7 q^{3} + 23 q^{4} - 7 q^{5} - 18 q^{6} + 5 q^{7} - 21 q^{8} + 11 q^{9} + 3 q^{10} - 21 q^{11} - 21 q^{12} - 7 q^{13} + 14 q^{15} - 9 q^{16} - 7 q^{17} - 28 q^{18} - 28 q^{19} - 7 q^{21}+ \cdots - 63 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(197, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
197.2.e.a 197.e 197.e $6$ $1.573$ \(\Q(\zeta_{14})\) None 197.2.e.a \(0\) \(-7\) \(7\) \(-1\) $\mathrm{SU}(2)[C_{14}]$ \(q+(-\zeta_{14}^{4}-\zeta_{14}^{5})q^{2}+(-1-\zeta_{14}^{5})q^{3}+\cdots\)
197.2.e.b 197.e 197.e $90$ $1.573$ None 197.2.e.b \(-7\) \(0\) \(-14\) \(6\) $\mathrm{SU}(2)[C_{14}]$