Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [197,2,Mod(36,197)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(197, base_ring=CyclotomicField(14))
chi = DirichletCharacter(H, H._module([12]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("197.36");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 197 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 197.d (of order \(7\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.57305291982\) |
Analytic rank: | \(0\) |
Dimension: | \(90\) |
Relative dimension: | \(15\) over \(\Q(\zeta_{7})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{7}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
36.1 | −2.45864 | + | 1.18402i | 0.124979 | + | 0.0601869i | 3.39601 | − | 4.25846i | −0.578930 | − | 0.725956i | −0.378541 | −0.626559 | − | 0.301735i | −2.09300 | + | 9.17002i | −1.85847 | − | 2.33045i | 2.28292 | + | 1.09940i | ||
36.2 | −2.08071 | + | 1.00202i | 2.19341 | + | 1.05629i | 2.07835 | − | 2.60617i | 2.34290 | + | 2.93790i | −5.62228 | −0.184771 | − | 0.0889812i | −0.685233 | + | 3.00220i | 1.82483 | + | 2.28827i | −7.81874 | − | 3.76531i | ||
36.3 | −1.81302 | + | 0.873105i | −1.68155 | − | 0.809790i | 1.27775 | − | 1.60225i | 1.13035 | + | 1.41742i | 3.75571 | −2.93980 | − | 1.41573i | −0.0221004 | + | 0.0968284i | 0.301366 | + | 0.377901i | −3.28690 | − | 1.58289i | ||
36.4 | −1.70417 | + | 0.820685i | 0.577242 | + | 0.277985i | 0.983693 | − | 1.23351i | −1.63883 | − | 2.05503i | −1.21186 | 1.92605 | + | 0.927536i | 0.177735 | − | 0.778708i | −1.61454 | − | 2.02456i | 4.47938 | + | 2.15715i | ||
36.5 | −0.948843 | + | 0.456939i | −1.49781 | − | 0.721309i | −0.555469 | + | 0.696537i | 0.812989 | + | 1.01946i | 1.75078 | −0.337287 | − | 0.162429i | 0.677469 | − | 2.96818i | −0.147309 | − | 0.184720i | −1.23723 | − | 0.595818i | ||
36.6 | −0.593780 | + | 0.285950i | 2.71133 | + | 1.30571i | −0.976172 | + | 1.22408i | −0.811676 | − | 1.01781i | −1.98330 | 1.33888 | + | 0.644768i | 0.522910 | − | 2.29102i | 3.77595 | + | 4.73489i | 0.773000 | + | 0.372257i | ||
36.7 | −0.448644 | + | 0.216056i | −2.62086 | − | 1.26214i | −1.09238 | + | 1.36980i | −1.50240 | − | 1.88395i | 1.44852 | 3.49725 | + | 1.68419i | 0.415748 | − | 1.82151i | 3.40543 | + | 4.27028i | 1.08108 | + | 0.520620i | ||
36.8 | −0.120109 | + | 0.0578412i | −0.0851283 | − | 0.0409956i | −1.23590 | + | 1.54977i | −1.69772 | − | 2.12888i | 0.0125959 | −3.18358 | − | 1.53313i | 0.118130 | − | 0.517563i | −1.86490 | − | 2.33851i | 0.327048 | + | 0.157498i | ||
36.9 | −0.0351696 | + | 0.0169368i | 1.43946 | + | 0.693208i | −1.24603 | + | 1.56247i | 1.82344 | + | 2.28652i | −0.0623661 | −1.43652 | − | 0.691792i | 0.0347315 | − | 0.152169i | −0.278956 | − | 0.349800i | −0.102856 | − | 0.0495329i | ||
36.10 | 0.857171 | − | 0.412792i | −2.30589 | − | 1.11046i | −0.682634 | + | 0.855996i | 2.52569 | + | 3.16712i | −2.43493 | 0.566338 | + | 0.272734i | −0.655194 | + | 2.87059i | 2.21355 | + | 2.77571i | 3.47231 | + | 1.67218i | ||
36.11 | 0.887644 | − | 0.427467i | 0.442784 | + | 0.213234i | −0.641795 | + | 0.804785i | 0.198374 | + | 0.248753i | 0.484186 | 3.85822 | + | 1.85802i | −0.664127 | + | 2.90973i | −1.71988 | − | 2.15666i | 0.282420 | + | 0.136006i | ||
36.12 | 1.52637 | − | 0.735059i | −2.33495 | − | 1.12445i | 0.542502 | − | 0.680276i | −1.58350 | − | 1.98564i | −4.39053 | −1.94366 | − | 0.936020i | −0.425949 | + | 1.86621i | 2.31713 | + | 2.90559i | −3.87657 | − | 1.86686i | ||
36.13 | 1.66827 | − | 0.803398i | 2.04773 | + | 0.986133i | 0.890709 | − | 1.11691i | −1.79031 | − | 2.24498i | 4.20843 | 0.174909 | + | 0.0842317i | −0.235439 | + | 1.03153i | 1.35026 | + | 1.69317i | −4.79034 | − | 2.30690i | ||
36.14 | 1.85821 | − | 0.894867i | 0.813278 | + | 0.391654i | 1.40518 | − | 1.76204i | 1.13765 | + | 1.42657i | 1.86172 | −3.23536 | − | 1.55807i | 0.116449 | − | 0.510195i | −1.36244 | − | 1.70845i | 3.39059 | + | 1.63282i | ||
36.15 | 2.28193 | − | 1.09892i | −1.44751 | − | 0.697085i | 2.75260 | − | 3.45165i | 0.532937 | + | 0.668281i | −4.06916 | 1.25930 | + | 0.606448i | 1.36097 | − | 5.96281i | −0.261106 | − | 0.327417i | 1.95051 | + | 0.939317i | ||
104.1 | −2.45864 | − | 1.18402i | 0.124979 | − | 0.0601869i | 3.39601 | + | 4.25846i | −0.578930 | + | 0.725956i | −0.378541 | −0.626559 | + | 0.301735i | −2.09300 | − | 9.17002i | −1.85847 | + | 2.33045i | 2.28292 | − | 1.09940i | ||
104.2 | −2.08071 | − | 1.00202i | 2.19341 | − | 1.05629i | 2.07835 | + | 2.60617i | 2.34290 | − | 2.93790i | −5.62228 | −0.184771 | + | 0.0889812i | −0.685233 | − | 3.00220i | 1.82483 | − | 2.28827i | −7.81874 | + | 3.76531i | ||
104.3 | −1.81302 | − | 0.873105i | −1.68155 | + | 0.809790i | 1.27775 | + | 1.60225i | 1.13035 | − | 1.41742i | 3.75571 | −2.93980 | + | 1.41573i | −0.0221004 | − | 0.0968284i | 0.301366 | − | 0.377901i | −3.28690 | + | 1.58289i | ||
104.4 | −1.70417 | − | 0.820685i | 0.577242 | − | 0.277985i | 0.983693 | + | 1.23351i | −1.63883 | + | 2.05503i | −1.21186 | 1.92605 | − | 0.927536i | 0.177735 | + | 0.778708i | −1.61454 | + | 2.02456i | 4.47938 | − | 2.15715i | ||
104.5 | −0.948843 | − | 0.456939i | −1.49781 | + | 0.721309i | −0.555469 | − | 0.696537i | 0.812989 | − | 1.01946i | 1.75078 | −0.337287 | + | 0.162429i | 0.677469 | + | 2.96818i | −0.147309 | + | 0.184720i | −1.23723 | + | 0.595818i | ||
See all 90 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
197.d | even | 7 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 197.2.d.a | ✓ | 90 |
197.d | even | 7 | 1 | inner | 197.2.d.a | ✓ | 90 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
197.2.d.a | ✓ | 90 | 1.a | even | 1 | 1 | trivial |
197.2.d.a | ✓ | 90 | 197.d | even | 7 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(197, [\chi])\).