Properties

Label 197.2.a.c
Level $197$
Weight $2$
Character orbit 197.a
Self dual yes
Analytic conductor $1.573$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,2,Mod(1,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 197.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.57305291982\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 15x^{8} - x^{7} + 78x^{6} + 7x^{5} - 165x^{4} - 15x^{3} + 123x^{2} + 9x - 26 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{3} + 1) q^{3} + (\beta_{2} + 1) q^{4} - \beta_{4} q^{5} + (\beta_{9} + \beta_{6} - \beta_1) q^{6} + (\beta_{8} + 1) q^{7} + ( - \beta_{9} - \beta_{8} + \cdots - \beta_{2}) q^{8}+ \cdots + ( - \beta_{9} - \beta_{8} - \beta_{6} + \cdots + 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{2} + (\beta_{3} + 1) q^{3} + (\beta_{2} + 1) q^{4} - \beta_{4} q^{5} + (\beta_{9} + \beta_{6} - \beta_1) q^{6} + (\beta_{8} + 1) q^{7} + ( - \beta_{9} - \beta_{8} + \cdots - \beta_{2}) q^{8}+ \cdots + (\beta_{9} + 2 \beta_{8} + 5 \beta_{7} + \cdots - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 10 q^{3} + 10 q^{4} + 2 q^{5} - 4 q^{6} + 11 q^{7} - 3 q^{8} + 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 10 q + 10 q^{3} + 10 q^{4} + 2 q^{5} - 4 q^{6} + 11 q^{7} - 3 q^{8} + 12 q^{9} - 2 q^{10} + 2 q^{11} + 4 q^{12} + 8 q^{13} - 9 q^{14} - q^{15} - 2 q^{16} - 3 q^{17} - 9 q^{18} + 17 q^{19} - 2 q^{20} - 2 q^{21} + 3 q^{22} - 4 q^{23} - 15 q^{24} + 6 q^{25} - 13 q^{26} + 19 q^{27} + 16 q^{28} - 9 q^{29} - 19 q^{30} + 20 q^{31} - 16 q^{32} - 2 q^{33} - 8 q^{34} - 12 q^{35} - 12 q^{36} + 12 q^{37} - 15 q^{38} - 9 q^{39} - 15 q^{40} - 18 q^{41} - 31 q^{42} + 11 q^{43} - 24 q^{44} - 15 q^{45} - 13 q^{46} + 5 q^{47} - 22 q^{48} + q^{49} - 24 q^{50} - 13 q^{51} + 9 q^{52} - 6 q^{53} - 15 q^{54} - 17 q^{55} - 6 q^{56} + 3 q^{57} - 15 q^{58} - q^{59} - 23 q^{60} + 4 q^{61} - 16 q^{62} - 11 q^{63} - 17 q^{64} - 17 q^{65} + 24 q^{66} + 46 q^{67} + 15 q^{68} - 21 q^{69} + 25 q^{70} - 5 q^{71} + 7 q^{72} + 25 q^{73} + 3 q^{74} + 46 q^{75} + 49 q^{76} - 14 q^{77} + 15 q^{78} - q^{79} + 9 q^{80} + 22 q^{81} + 52 q^{82} + 28 q^{83} - 14 q^{84} - 30 q^{85} + 27 q^{86} - 7 q^{87} + 9 q^{88} - 6 q^{89} - 10 q^{90} + 51 q^{91} + 32 q^{92} + 15 q^{93} - 3 q^{94} - 13 q^{95} + 75 q^{96} + 2 q^{97} + 22 q^{98} - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{10} - 15x^{8} - x^{7} + 78x^{6} + 7x^{5} - 165x^{4} - 15x^{3} + 123x^{2} + 9x - 26 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{8} - 2\nu^{7} - 10\nu^{6} + 17\nu^{5} + 30\nu^{4} - 36\nu^{3} - 27\nu^{2} + 7\nu + 6 ) / 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{8} - 10\nu^{6} - 3\nu^{5} + 26\nu^{4} + 14\nu^{3} - 11\nu^{2} - 9\nu - 2 ) / 2 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{8} - 12\nu^{6} - \nu^{5} + 44\nu^{4} + 2\nu^{3} - 53\nu^{2} + 5\nu + 16 ) / 2 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{9} - 14\nu^{7} + \nu^{6} + 64\nu^{5} - 12\nu^{4} - 107\nu^{3} + 29\nu^{2} + 44\nu - 8 ) / 4 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{9} - \nu^{8} - 12\nu^{7} + 11\nu^{6} + 47\nu^{5} - 46\nu^{4} - 67\nu^{3} + 80\nu^{2} + 21\nu - 30 ) / 4 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( \nu^{7} - \nu^{6} - 10\nu^{5} + 8\nu^{4} + 27\nu^{3} - 18\nu^{2} - 14\nu + 8 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( -\nu^{9} + \nu^{8} + 12\nu^{7} - 9\nu^{6} - 47\nu^{5} + 24\nu^{4} + 67\nu^{3} - 18\nu^{2} - 25\nu + 4 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{9} + \beta_{8} + \beta_{7} + \beta_{6} - \beta_{4} + \beta_{3} + \beta_{2} + 4\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{9} + \beta_{8} + 2\beta_{6} - \beta_{4} + 7\beta_{2} + 14 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 9\beta_{9} + 8\beta_{8} + 8\beta_{7} + 10\beta_{6} + \beta_{5} - 9\beta_{4} + 6\beta_{3} + 10\beta_{2} + 19\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 12\beta_{9} + 11\beta_{8} + 2\beta_{7} + 22\beta_{6} - 11\beta_{4} + 46\beta_{2} + 2\beta _1 + 74 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 67 \beta_{9} + 57 \beta_{8} + 55 \beta_{7} + 79 \beta_{6} + 10 \beta_{5} - 66 \beta_{4} + 33 \beta_{3} + \cdots + 28 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( 107 \beta_{9} + 94 \beta_{8} + 30 \beta_{7} + 184 \beta_{6} + 3 \beta_{5} - 95 \beta_{4} + 4 \beta_{3} + \cdots + 417 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 469 \beta_{9} + 394 \beta_{8} + 363 \beta_{7} + 579 \beta_{6} + 76 \beta_{5} - 456 \beta_{4} + \cdots + 279 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.62911
1.94873
1.85218
0.931586
0.530276
−0.669007
−0.896375
−1.82964
−2.22583
−2.27104
−2.62911 0.0119479 4.91223 0.817206 −0.0314124 2.54267 −7.65657 −2.99986 −2.14853
1.2 −1.94873 2.99027 1.79756 3.37189 −5.82723 −0.532209 0.394492 5.94168 −6.57091
1.3 −1.85218 2.60828 1.43059 −3.95640 −4.83102 3.45456 1.05466 3.80315 7.32799
1.4 −0.931586 −2.17005 −1.13215 −1.44818 2.02159 1.12960 2.91786 1.70911 1.34911
1.5 −0.530276 0.899248 −1.71881 3.03207 −0.476849 0.743459 1.97199 −2.19135 −1.60783
1.6 0.669007 1.75170 −1.55243 0.170148 1.17190 5.01834 −2.37660 0.0684478 0.113830
1.7 0.896375 3.41221 −1.19651 −0.448431 3.05862 −2.39168 −2.86527 8.64317 −0.401962
1.8 1.82964 0.661864 1.34760 2.39480 1.21098 −2.47846 −1.19366 −2.56194 4.38163
1.9 2.22583 −1.75215 2.95430 1.17649 −3.89998 3.66330 2.12410 0.0700264 2.61867
1.10 2.27104 1.58668 3.15762 −3.10959 3.60342 −0.149594 2.62899 −0.482441 −7.06199
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.10
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(197\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 197.2.a.c 10
3.b odd 2 1 1773.2.a.f 10
4.b odd 2 1 3152.2.a.m 10
5.b even 2 1 4925.2.a.i 10
7.b odd 2 1 9653.2.a.j 10
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
197.2.a.c 10 1.a even 1 1 trivial
1773.2.a.f 10 3.b odd 2 1
3152.2.a.m 10 4.b odd 2 1
4925.2.a.i 10 5.b even 2 1
9653.2.a.j 10 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{10} - 15T_{2}^{8} + T_{2}^{7} + 78T_{2}^{6} - 7T_{2}^{5} - 165T_{2}^{4} + 15T_{2}^{3} + 123T_{2}^{2} - 9T_{2} - 26 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(197))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{10} - 15 T^{8} + \cdots - 26 \) Copy content Toggle raw display
$3$ \( T^{10} - 10 T^{9} + \cdots + 2 \) Copy content Toggle raw display
$5$ \( T^{10} - 2 T^{9} + \cdots + 32 \) Copy content Toggle raw display
$7$ \( T^{10} - 11 T^{9} + \cdots + 64 \) Copy content Toggle raw display
$11$ \( T^{10} - 2 T^{9} + \cdots - 5906 \) Copy content Toggle raw display
$13$ \( T^{10} - 8 T^{9} + \cdots + 448 \) Copy content Toggle raw display
$17$ \( T^{10} + 3 T^{9} + \cdots - 11008 \) Copy content Toggle raw display
$19$ \( T^{10} - 17 T^{9} + \cdots - 26944 \) Copy content Toggle raw display
$23$ \( T^{10} + 4 T^{9} + \cdots - 55696 \) Copy content Toggle raw display
$29$ \( T^{10} + 9 T^{9} + \cdots - 1849 \) Copy content Toggle raw display
$31$ \( T^{10} - 20 T^{9} + \cdots - 1018 \) Copy content Toggle raw display
$37$ \( T^{10} - 12 T^{9} + \cdots - 1031837 \) Copy content Toggle raw display
$41$ \( T^{10} + 18 T^{9} + \cdots - 12249251 \) Copy content Toggle raw display
$43$ \( T^{10} - 11 T^{9} + \cdots + 958064 \) Copy content Toggle raw display
$47$ \( T^{10} - 5 T^{9} + \cdots - 6076144 \) Copy content Toggle raw display
$53$ \( T^{10} + 6 T^{9} + \cdots + 24986 \) Copy content Toggle raw display
$59$ \( T^{10} + T^{9} + \cdots - 2663552 \) Copy content Toggle raw display
$61$ \( T^{10} - 4 T^{9} + \cdots + 7550167 \) Copy content Toggle raw display
$67$ \( T^{10} + \cdots + 142552394 \) Copy content Toggle raw display
$71$ \( T^{10} + \cdots - 112062458 \) Copy content Toggle raw display
$73$ \( T^{10} - 25 T^{9} + \cdots + 28387712 \) Copy content Toggle raw display
$79$ \( T^{10} + T^{9} + \cdots - 29837000 \) Copy content Toggle raw display
$83$ \( T^{10} - 28 T^{9} + \cdots + 303296 \) Copy content Toggle raw display
$89$ \( T^{10} + 6 T^{9} + \cdots + 57477472 \) Copy content Toggle raw display
$97$ \( T^{10} + \cdots - 151216646 \) Copy content Toggle raw display
show more
show less