Properties

Label 197.2.a.b.1.3
Level $197$
Weight $2$
Character 197.1
Self dual yes
Analytic conductor $1.573$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [197,2,Mod(1,197)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("197.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(197, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 197.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.57305291982\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.24217.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 5x^{3} - x^{2} + 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.369680\) of defining polynomial
Character \(\chi\) \(=\) 197.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.369680 q^{2} -1.84170 q^{3} -1.86334 q^{4} +2.08422 q^{5} -0.680841 q^{6} -2.69034 q^{7} -1.42820 q^{8} +0.391870 q^{9} +0.770496 q^{10} -5.51936 q^{11} +3.43171 q^{12} -1.36818 q^{13} -0.994567 q^{14} -3.83852 q^{15} +3.19870 q^{16} -2.19326 q^{17} +0.144867 q^{18} +2.15894 q^{19} -3.88361 q^{20} +4.95481 q^{21} -2.04040 q^{22} -1.22088 q^{23} +2.63032 q^{24} -0.656022 q^{25} -0.505788 q^{26} +4.80340 q^{27} +5.01301 q^{28} +0.0544508 q^{29} -1.41902 q^{30} -1.16756 q^{31} +4.03889 q^{32} +10.1650 q^{33} -0.810806 q^{34} -5.60727 q^{35} -0.730185 q^{36} +8.96440 q^{37} +0.798118 q^{38} +2.51977 q^{39} -2.97668 q^{40} +11.5962 q^{41} +1.83170 q^{42} -11.6431 q^{43} +10.2844 q^{44} +0.816743 q^{45} -0.451337 q^{46} -2.96225 q^{47} -5.89105 q^{48} +0.237945 q^{49} -0.242518 q^{50} +4.03934 q^{51} +2.54937 q^{52} -11.8606 q^{53} +1.77572 q^{54} -11.5036 q^{55} +3.84235 q^{56} -3.97613 q^{57} +0.0201294 q^{58} +2.48247 q^{59} +7.15245 q^{60} -10.5295 q^{61} -0.431624 q^{62} -1.05426 q^{63} -4.90429 q^{64} -2.85158 q^{65} +3.75781 q^{66} -0.126518 q^{67} +4.08679 q^{68} +2.24851 q^{69} -2.07290 q^{70} -2.87827 q^{71} -0.559668 q^{72} -8.64347 q^{73} +3.31396 q^{74} +1.20820 q^{75} -4.02283 q^{76} +14.8490 q^{77} +0.931511 q^{78} +4.85353 q^{79} +6.66679 q^{80} -10.0220 q^{81} +4.28690 q^{82} +7.80634 q^{83} -9.23248 q^{84} -4.57124 q^{85} -4.30422 q^{86} -0.100282 q^{87} +7.88275 q^{88} +11.1013 q^{89} +0.301934 q^{90} +3.68086 q^{91} +2.27492 q^{92} +2.15030 q^{93} -1.09509 q^{94} +4.49971 q^{95} -7.43844 q^{96} -13.8478 q^{97} +0.0879637 q^{98} -2.16287 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 8 q^{3} - 4 q^{5} - 2 q^{6} - 10 q^{7} - 3 q^{8} + 13 q^{9} - 10 q^{10} - 8 q^{11} - 12 q^{12} - 8 q^{13} - 3 q^{14} - q^{15} - 2 q^{16} + 9 q^{17} - q^{18} - 16 q^{19} + 4 q^{20} + 14 q^{21} + 9 q^{22}+ \cdots + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.369680 0.261404 0.130702 0.991422i \(-0.458277\pi\)
0.130702 + 0.991422i \(0.458277\pi\)
\(3\) −1.84170 −1.06331 −0.531654 0.846962i \(-0.678429\pi\)
−0.531654 + 0.846962i \(0.678429\pi\)
\(4\) −1.86334 −0.931668
\(5\) 2.08422 0.932092 0.466046 0.884760i \(-0.345678\pi\)
0.466046 + 0.884760i \(0.345678\pi\)
\(6\) −0.680841 −0.277952
\(7\) −2.69034 −1.01685 −0.508427 0.861105i \(-0.669773\pi\)
−0.508427 + 0.861105i \(0.669773\pi\)
\(8\) −1.42820 −0.504945
\(9\) 0.391870 0.130623
\(10\) 0.770496 0.243652
\(11\) −5.51936 −1.66415 −0.832075 0.554664i \(-0.812847\pi\)
−0.832075 + 0.554664i \(0.812847\pi\)
\(12\) 3.43171 0.990650
\(13\) −1.36818 −0.379464 −0.189732 0.981836i \(-0.560762\pi\)
−0.189732 + 0.981836i \(0.560762\pi\)
\(14\) −0.994567 −0.265809
\(15\) −3.83852 −0.991101
\(16\) 3.19870 0.799674
\(17\) −2.19326 −0.531944 −0.265972 0.963981i \(-0.585693\pi\)
−0.265972 + 0.963981i \(0.585693\pi\)
\(18\) 0.144867 0.0341454
\(19\) 2.15894 0.495295 0.247648 0.968850i \(-0.420343\pi\)
0.247648 + 0.968850i \(0.420343\pi\)
\(20\) −3.88361 −0.868401
\(21\) 4.95481 1.08123
\(22\) −2.04040 −0.435014
\(23\) −1.22088 −0.254572 −0.127286 0.991866i \(-0.540627\pi\)
−0.127286 + 0.991866i \(0.540627\pi\)
\(24\) 2.63032 0.536912
\(25\) −0.656022 −0.131204
\(26\) −0.505788 −0.0991932
\(27\) 4.80340 0.924415
\(28\) 5.01301 0.947371
\(29\) 0.0544508 0.0101113 0.00505563 0.999987i \(-0.498391\pi\)
0.00505563 + 0.999987i \(0.498391\pi\)
\(30\) −1.41902 −0.259077
\(31\) −1.16756 −0.209700 −0.104850 0.994488i \(-0.533436\pi\)
−0.104850 + 0.994488i \(0.533436\pi\)
\(32\) 4.03889 0.713982
\(33\) 10.1650 1.76950
\(34\) −0.810806 −0.139052
\(35\) −5.60727 −0.947802
\(36\) −0.730185 −0.121698
\(37\) 8.96440 1.47374 0.736869 0.676035i \(-0.236303\pi\)
0.736869 + 0.676035i \(0.236303\pi\)
\(38\) 0.798118 0.129472
\(39\) 2.51977 0.403487
\(40\) −2.97668 −0.470655
\(41\) 11.5962 1.81103 0.905513 0.424318i \(-0.139486\pi\)
0.905513 + 0.424318i \(0.139486\pi\)
\(42\) 1.83170 0.282637
\(43\) −11.6431 −1.77556 −0.887778 0.460272i \(-0.847752\pi\)
−0.887778 + 0.460272i \(0.847752\pi\)
\(44\) 10.2844 1.55043
\(45\) 0.816743 0.121753
\(46\) −0.451337 −0.0665460
\(47\) −2.96225 −0.432089 −0.216045 0.976383i \(-0.569316\pi\)
−0.216045 + 0.976383i \(0.569316\pi\)
\(48\) −5.89105 −0.850299
\(49\) 0.237945 0.0339922
\(50\) −0.242518 −0.0342973
\(51\) 4.03934 0.565620
\(52\) 2.54937 0.353534
\(53\) −11.8606 −1.62917 −0.814586 0.580042i \(-0.803036\pi\)
−0.814586 + 0.580042i \(0.803036\pi\)
\(54\) 1.77572 0.241645
\(55\) −11.5036 −1.55114
\(56\) 3.84235 0.513455
\(57\) −3.97613 −0.526651
\(58\) 0.0201294 0.00264312
\(59\) 2.48247 0.323190 0.161595 0.986857i \(-0.448336\pi\)
0.161595 + 0.986857i \(0.448336\pi\)
\(60\) 7.15245 0.923377
\(61\) −10.5295 −1.34816 −0.674082 0.738656i \(-0.735461\pi\)
−0.674082 + 0.738656i \(0.735461\pi\)
\(62\) −0.431624 −0.0548163
\(63\) −1.05426 −0.132825
\(64\) −4.90429 −0.613036
\(65\) −2.85158 −0.353695
\(66\) 3.75781 0.462554
\(67\) −0.126518 −0.0154566 −0.00772832 0.999970i \(-0.502460\pi\)
−0.00772832 + 0.999970i \(0.502460\pi\)
\(68\) 4.08679 0.495596
\(69\) 2.24851 0.270688
\(70\) −2.07290 −0.247759
\(71\) −2.87827 −0.341588 −0.170794 0.985307i \(-0.554633\pi\)
−0.170794 + 0.985307i \(0.554633\pi\)
\(72\) −0.559668 −0.0659576
\(73\) −8.64347 −1.01164 −0.505821 0.862638i \(-0.668810\pi\)
−0.505821 + 0.862638i \(0.668810\pi\)
\(74\) 3.31396 0.385240
\(75\) 1.20820 0.139511
\(76\) −4.02283 −0.461451
\(77\) 14.8490 1.69220
\(78\) 0.931511 0.105473
\(79\) 4.85353 0.546065 0.273032 0.962005i \(-0.411973\pi\)
0.273032 + 0.962005i \(0.411973\pi\)
\(80\) 6.66679 0.745370
\(81\) −10.0220 −1.11356
\(82\) 4.28690 0.473409
\(83\) 7.80634 0.856857 0.428429 0.903576i \(-0.359067\pi\)
0.428429 + 0.903576i \(0.359067\pi\)
\(84\) −9.23248 −1.00735
\(85\) −4.57124 −0.495821
\(86\) −4.30422 −0.464136
\(87\) −0.100282 −0.0107514
\(88\) 7.88275 0.840303
\(89\) 11.1013 1.17674 0.588368 0.808593i \(-0.299771\pi\)
0.588368 + 0.808593i \(0.299771\pi\)
\(90\) 0.301934 0.0318266
\(91\) 3.68086 0.385859
\(92\) 2.27492 0.237177
\(93\) 2.15030 0.222976
\(94\) −1.09509 −0.112950
\(95\) 4.49971 0.461661
\(96\) −7.43844 −0.759183
\(97\) −13.8478 −1.40603 −0.703015 0.711175i \(-0.748163\pi\)
−0.703015 + 0.711175i \(0.748163\pi\)
\(98\) 0.0879637 0.00888568
\(99\) −2.16287 −0.217377
\(100\) 1.22239 0.122239
\(101\) −0.697280 −0.0693820 −0.0346910 0.999398i \(-0.511045\pi\)
−0.0346910 + 0.999398i \(0.511045\pi\)
\(102\) 1.49326 0.147855
\(103\) −11.3184 −1.11523 −0.557615 0.830099i \(-0.688284\pi\)
−0.557615 + 0.830099i \(0.688284\pi\)
\(104\) 1.95403 0.191608
\(105\) 10.3269 1.00780
\(106\) −4.38461 −0.425871
\(107\) −0.854213 −0.0825799 −0.0412899 0.999147i \(-0.513147\pi\)
−0.0412899 + 0.999147i \(0.513147\pi\)
\(108\) −8.95035 −0.861248
\(109\) −2.64628 −0.253468 −0.126734 0.991937i \(-0.540449\pi\)
−0.126734 + 0.991937i \(0.540449\pi\)
\(110\) −4.25264 −0.405473
\(111\) −16.5098 −1.56704
\(112\) −8.60559 −0.813152
\(113\) −7.03821 −0.662099 −0.331050 0.943613i \(-0.607403\pi\)
−0.331050 + 0.943613i \(0.607403\pi\)
\(114\) −1.46990 −0.137668
\(115\) −2.54459 −0.237285
\(116\) −0.101460 −0.00942033
\(117\) −0.536147 −0.0495668
\(118\) 0.917721 0.0844831
\(119\) 5.90063 0.540910
\(120\) 5.48217 0.500451
\(121\) 19.4633 1.76939
\(122\) −3.89255 −0.352415
\(123\) −21.3568 −1.92568
\(124\) 2.17556 0.195371
\(125\) −11.7884 −1.05439
\(126\) −0.389741 −0.0347209
\(127\) 6.79531 0.602986 0.301493 0.953468i \(-0.402515\pi\)
0.301493 + 0.953468i \(0.402515\pi\)
\(128\) −9.89081 −0.874232
\(129\) 21.4431 1.88796
\(130\) −1.05417 −0.0924572
\(131\) −12.8701 −1.12446 −0.562231 0.826980i \(-0.690057\pi\)
−0.562231 + 0.826980i \(0.690057\pi\)
\(132\) −18.9408 −1.64859
\(133\) −5.80829 −0.503643
\(134\) −0.0467712 −0.00404042
\(135\) 10.0114 0.861640
\(136\) 3.13242 0.268603
\(137\) 20.7664 1.77419 0.887095 0.461588i \(-0.152720\pi\)
0.887095 + 0.461588i \(0.152720\pi\)
\(138\) 0.831229 0.0707589
\(139\) 6.99896 0.593644 0.296822 0.954933i \(-0.404073\pi\)
0.296822 + 0.954933i \(0.404073\pi\)
\(140\) 10.4482 0.883037
\(141\) 5.45559 0.459444
\(142\) −1.06404 −0.0892923
\(143\) 7.55145 0.631484
\(144\) 1.25347 0.104456
\(145\) 0.113487 0.00942462
\(146\) −3.19532 −0.264447
\(147\) −0.438225 −0.0361442
\(148\) −16.7037 −1.37304
\(149\) 6.57006 0.538240 0.269120 0.963107i \(-0.413267\pi\)
0.269120 + 0.963107i \(0.413267\pi\)
\(150\) 0.446647 0.0364686
\(151\) 17.9588 1.46147 0.730734 0.682662i \(-0.239178\pi\)
0.730734 + 0.682662i \(0.239178\pi\)
\(152\) −3.08340 −0.250097
\(153\) −0.859473 −0.0694843
\(154\) 5.48937 0.442346
\(155\) −2.43345 −0.195460
\(156\) −4.69519 −0.375916
\(157\) −20.3422 −1.62349 −0.811743 0.584015i \(-0.801481\pi\)
−0.811743 + 0.584015i \(0.801481\pi\)
\(158\) 1.79426 0.142743
\(159\) 21.8436 1.73231
\(160\) 8.41795 0.665497
\(161\) 3.28460 0.258863
\(162\) −3.70495 −0.291089
\(163\) −22.7176 −1.77938 −0.889691 0.456563i \(-0.849080\pi\)
−0.889691 + 0.456563i \(0.849080\pi\)
\(164\) −21.6077 −1.68728
\(165\) 21.1861 1.64934
\(166\) 2.88585 0.223986
\(167\) 7.06734 0.546887 0.273444 0.961888i \(-0.411837\pi\)
0.273444 + 0.961888i \(0.411837\pi\)
\(168\) −7.07646 −0.545961
\(169\) −11.1281 −0.856007
\(170\) −1.68990 −0.129609
\(171\) 0.846024 0.0646971
\(172\) 21.6950 1.65423
\(173\) −11.6957 −0.889209 −0.444605 0.895727i \(-0.646656\pi\)
−0.444605 + 0.895727i \(0.646656\pi\)
\(174\) −0.0370723 −0.00281045
\(175\) 1.76492 0.133416
\(176\) −17.6547 −1.33078
\(177\) −4.57198 −0.343651
\(178\) 4.10393 0.307603
\(179\) 18.0811 1.35144 0.675721 0.737157i \(-0.263832\pi\)
0.675721 + 0.737157i \(0.263832\pi\)
\(180\) −1.52187 −0.113433
\(181\) 19.0117 1.41313 0.706566 0.707647i \(-0.250243\pi\)
0.706566 + 0.707647i \(0.250243\pi\)
\(182\) 1.36074 0.100865
\(183\) 19.3922 1.43351
\(184\) 1.74367 0.128545
\(185\) 18.6838 1.37366
\(186\) 0.794924 0.0582866
\(187\) 12.1054 0.885235
\(188\) 5.51968 0.402564
\(189\) −12.9228 −0.939995
\(190\) 1.66345 0.120680
\(191\) −14.2662 −1.03227 −0.516134 0.856508i \(-0.672629\pi\)
−0.516134 + 0.856508i \(0.672629\pi\)
\(192\) 9.03225 0.651846
\(193\) 2.03306 0.146343 0.0731713 0.997319i \(-0.476688\pi\)
0.0731713 + 0.997319i \(0.476688\pi\)
\(194\) −5.11925 −0.367541
\(195\) 5.25177 0.376087
\(196\) −0.443372 −0.0316694
\(197\) −1.00000 −0.0712470
\(198\) −0.799571 −0.0568230
\(199\) −11.8599 −0.840724 −0.420362 0.907356i \(-0.638097\pi\)
−0.420362 + 0.907356i \(0.638097\pi\)
\(200\) 0.936930 0.0662509
\(201\) 0.233009 0.0164352
\(202\) −0.257771 −0.0181367
\(203\) −0.146491 −0.0102817
\(204\) −7.52665 −0.526971
\(205\) 24.1691 1.68804
\(206\) −4.18418 −0.291525
\(207\) −0.478428 −0.0332530
\(208\) −4.37638 −0.303447
\(209\) −11.9160 −0.824245
\(210\) 3.81766 0.263444
\(211\) 13.3471 0.918851 0.459425 0.888216i \(-0.348055\pi\)
0.459425 + 0.888216i \(0.348055\pi\)
\(212\) 22.1002 1.51785
\(213\) 5.30092 0.363213
\(214\) −0.315786 −0.0215867
\(215\) −24.2668 −1.65498
\(216\) −6.86022 −0.466779
\(217\) 3.14114 0.213234
\(218\) −0.978279 −0.0662574
\(219\) 15.9187 1.07569
\(220\) 21.4350 1.44515
\(221\) 3.00077 0.201854
\(222\) −6.10334 −0.409629
\(223\) −1.41717 −0.0949009 −0.0474504 0.998874i \(-0.515110\pi\)
−0.0474504 + 0.998874i \(0.515110\pi\)
\(224\) −10.8660 −0.726016
\(225\) −0.257075 −0.0171383
\(226\) −2.60189 −0.173075
\(227\) −12.3080 −0.816909 −0.408454 0.912779i \(-0.633932\pi\)
−0.408454 + 0.912779i \(0.633932\pi\)
\(228\) 7.40886 0.490664
\(229\) −22.3257 −1.47533 −0.737663 0.675169i \(-0.764071\pi\)
−0.737663 + 0.675169i \(0.764071\pi\)
\(230\) −0.940687 −0.0620270
\(231\) −27.3474 −1.79933
\(232\) −0.0777666 −0.00510562
\(233\) 24.1532 1.58233 0.791164 0.611604i \(-0.209476\pi\)
0.791164 + 0.611604i \(0.209476\pi\)
\(234\) −0.198203 −0.0129569
\(235\) −6.17399 −0.402747
\(236\) −4.62568 −0.301106
\(237\) −8.93876 −0.580635
\(238\) 2.18135 0.141396
\(239\) 27.3434 1.76869 0.884347 0.466830i \(-0.154604\pi\)
0.884347 + 0.466830i \(0.154604\pi\)
\(240\) −12.2782 −0.792557
\(241\) 19.9610 1.28580 0.642899 0.765951i \(-0.277731\pi\)
0.642899 + 0.765951i \(0.277731\pi\)
\(242\) 7.19520 0.462525
\(243\) 4.04743 0.259643
\(244\) 19.6200 1.25604
\(245\) 0.495931 0.0316839
\(246\) −7.89519 −0.503379
\(247\) −2.95381 −0.187947
\(248\) 1.66751 0.105887
\(249\) −14.3770 −0.911103
\(250\) −4.35794 −0.275620
\(251\) −0.253768 −0.0160177 −0.00800885 0.999968i \(-0.502549\pi\)
−0.00800885 + 0.999968i \(0.502549\pi\)
\(252\) 1.96445 0.123749
\(253\) 6.73850 0.423646
\(254\) 2.51209 0.157623
\(255\) 8.41887 0.527210
\(256\) 6.15214 0.384509
\(257\) 17.2961 1.07890 0.539450 0.842017i \(-0.318632\pi\)
0.539450 + 0.842017i \(0.318632\pi\)
\(258\) 7.92710 0.493520
\(259\) −24.1173 −1.49858
\(260\) 5.31346 0.329527
\(261\) 0.0213376 0.00132076
\(262\) −4.75781 −0.293938
\(263\) 11.6896 0.720811 0.360406 0.932796i \(-0.382638\pi\)
0.360406 + 0.932796i \(0.382638\pi\)
\(264\) −14.5177 −0.893501
\(265\) −24.7200 −1.51854
\(266\) −2.14721 −0.131654
\(267\) −20.4453 −1.25123
\(268\) 0.235746 0.0144005
\(269\) −17.6582 −1.07664 −0.538319 0.842741i \(-0.680940\pi\)
−0.538319 + 0.842741i \(0.680940\pi\)
\(270\) 3.70100 0.225236
\(271\) −22.3777 −1.35935 −0.679676 0.733513i \(-0.737879\pi\)
−0.679676 + 0.733513i \(0.737879\pi\)
\(272\) −7.01558 −0.425382
\(273\) −6.77906 −0.410287
\(274\) 7.67691 0.463779
\(275\) 3.62082 0.218344
\(276\) −4.18973 −0.252192
\(277\) −16.4690 −0.989526 −0.494763 0.869028i \(-0.664745\pi\)
−0.494763 + 0.869028i \(0.664745\pi\)
\(278\) 2.58738 0.155181
\(279\) −0.457532 −0.0273917
\(280\) 8.00830 0.478588
\(281\) −18.6299 −1.11137 −0.555684 0.831393i \(-0.687544\pi\)
−0.555684 + 0.831393i \(0.687544\pi\)
\(282\) 2.01683 0.120100
\(283\) −27.1399 −1.61330 −0.806651 0.591028i \(-0.798722\pi\)
−0.806651 + 0.591028i \(0.798722\pi\)
\(284\) 5.36319 0.318247
\(285\) −8.28713 −0.490887
\(286\) 2.79162 0.165072
\(287\) −31.1978 −1.84155
\(288\) 1.58272 0.0932627
\(289\) −12.1896 −0.717035
\(290\) 0.0419541 0.00246363
\(291\) 25.5035 1.49504
\(292\) 16.1057 0.942515
\(293\) −14.6116 −0.853617 −0.426808 0.904342i \(-0.640362\pi\)
−0.426808 + 0.904342i \(0.640362\pi\)
\(294\) −0.162003 −0.00944821
\(295\) 5.17402 0.301243
\(296\) −12.8030 −0.744157
\(297\) −26.5117 −1.53836
\(298\) 2.42882 0.140698
\(299\) 1.67039 0.0966009
\(300\) −2.25128 −0.129978
\(301\) 31.3239 1.80548
\(302\) 6.63903 0.382033
\(303\) 1.28418 0.0737744
\(304\) 6.90579 0.396075
\(305\) −21.9458 −1.25661
\(306\) −0.317730 −0.0181634
\(307\) −11.6878 −0.667060 −0.333530 0.942739i \(-0.608240\pi\)
−0.333530 + 0.942739i \(0.608240\pi\)
\(308\) −27.6686 −1.57657
\(309\) 20.8451 1.18583
\(310\) −0.899600 −0.0510939
\(311\) 29.1819 1.65475 0.827376 0.561649i \(-0.189833\pi\)
0.827376 + 0.561649i \(0.189833\pi\)
\(312\) −3.59874 −0.203739
\(313\) −3.72412 −0.210500 −0.105250 0.994446i \(-0.533564\pi\)
−0.105250 + 0.994446i \(0.533564\pi\)
\(314\) −7.52012 −0.424385
\(315\) −2.19732 −0.123805
\(316\) −9.04376 −0.508751
\(317\) 10.7996 0.606565 0.303283 0.952901i \(-0.401917\pi\)
0.303283 + 0.952901i \(0.401917\pi\)
\(318\) 8.07516 0.452832
\(319\) −0.300533 −0.0168266
\(320\) −10.2216 −0.571406
\(321\) 1.57321 0.0878078
\(322\) 1.21425 0.0676676
\(323\) −4.73512 −0.263469
\(324\) 18.6744 1.03747
\(325\) 0.897553 0.0497873
\(326\) −8.39826 −0.465137
\(327\) 4.87367 0.269514
\(328\) −16.5617 −0.914468
\(329\) 7.96948 0.439372
\(330\) 7.83210 0.431143
\(331\) 15.9334 0.875779 0.437890 0.899029i \(-0.355726\pi\)
0.437890 + 0.899029i \(0.355726\pi\)
\(332\) −14.5458 −0.798307
\(333\) 3.51288 0.192505
\(334\) 2.61266 0.142958
\(335\) −0.263692 −0.0144070
\(336\) 15.8489 0.864630
\(337\) 3.99362 0.217546 0.108773 0.994067i \(-0.465308\pi\)
0.108773 + 0.994067i \(0.465308\pi\)
\(338\) −4.11384 −0.223763
\(339\) 12.9623 0.704015
\(340\) 8.51777 0.461941
\(341\) 6.44418 0.348972
\(342\) 0.312758 0.0169120
\(343\) 18.1922 0.982289
\(344\) 16.6287 0.896558
\(345\) 4.68639 0.252307
\(346\) −4.32368 −0.232442
\(347\) −8.14943 −0.437484 −0.218742 0.975783i \(-0.570195\pi\)
−0.218742 + 0.975783i \(0.570195\pi\)
\(348\) 0.186859 0.0100167
\(349\) 22.7359 1.21702 0.608512 0.793545i \(-0.291767\pi\)
0.608512 + 0.793545i \(0.291767\pi\)
\(350\) 0.652457 0.0348753
\(351\) −6.57190 −0.350782
\(352\) −22.2921 −1.18817
\(353\) 11.9315 0.635050 0.317525 0.948250i \(-0.397148\pi\)
0.317525 + 0.948250i \(0.397148\pi\)
\(354\) −1.69017 −0.0898315
\(355\) −5.99895 −0.318391
\(356\) −20.6855 −1.09633
\(357\) −10.8672 −0.575153
\(358\) 6.68421 0.353272
\(359\) 27.4199 1.44716 0.723582 0.690238i \(-0.242494\pi\)
0.723582 + 0.690238i \(0.242494\pi\)
\(360\) −1.16647 −0.0614785
\(361\) −14.3390 −0.754683
\(362\) 7.02827 0.369397
\(363\) −35.8456 −1.88141
\(364\) −6.85869 −0.359493
\(365\) −18.0149 −0.942944
\(366\) 7.16892 0.374726
\(367\) −12.3902 −0.646764 −0.323382 0.946269i \(-0.604820\pi\)
−0.323382 + 0.946269i \(0.604820\pi\)
\(368\) −3.90524 −0.203575
\(369\) 4.54421 0.236562
\(370\) 6.90703 0.359080
\(371\) 31.9090 1.65663
\(372\) −4.00673 −0.207739
\(373\) 11.3500 0.587683 0.293841 0.955854i \(-0.405066\pi\)
0.293841 + 0.955854i \(0.405066\pi\)
\(374\) 4.47513 0.231403
\(375\) 21.7107 1.12114
\(376\) 4.23069 0.218181
\(377\) −0.0744982 −0.00383685
\(378\) −4.77730 −0.245718
\(379\) −15.6182 −0.802252 −0.401126 0.916023i \(-0.631381\pi\)
−0.401126 + 0.916023i \(0.631381\pi\)
\(380\) −8.38448 −0.430115
\(381\) −12.5149 −0.641160
\(382\) −5.27395 −0.269839
\(383\) 13.7178 0.700948 0.350474 0.936573i \(-0.386021\pi\)
0.350474 + 0.936573i \(0.386021\pi\)
\(384\) 18.2159 0.929578
\(385\) 30.9485 1.57728
\(386\) 0.751581 0.0382545
\(387\) −4.56258 −0.231929
\(388\) 25.8031 1.30995
\(389\) 8.40818 0.426312 0.213156 0.977018i \(-0.431626\pi\)
0.213156 + 0.977018i \(0.431626\pi\)
\(390\) 1.94148 0.0983104
\(391\) 2.67772 0.135418
\(392\) −0.339834 −0.0171642
\(393\) 23.7028 1.19565
\(394\) −0.369680 −0.0186242
\(395\) 10.1158 0.508983
\(396\) 4.03015 0.202523
\(397\) −9.13081 −0.458262 −0.229131 0.973396i \(-0.573588\pi\)
−0.229131 + 0.973396i \(0.573588\pi\)
\(398\) −4.38436 −0.219768
\(399\) 10.6971 0.535527
\(400\) −2.09841 −0.104921
\(401\) −34.6333 −1.72950 −0.864752 0.502200i \(-0.832524\pi\)
−0.864752 + 0.502200i \(0.832524\pi\)
\(402\) 0.0861387 0.00429621
\(403\) 1.59743 0.0795736
\(404\) 1.29927 0.0646410
\(405\) −20.8882 −1.03794
\(406\) −0.0541549 −0.00268766
\(407\) −49.4777 −2.45252
\(408\) −5.76898 −0.285607
\(409\) 31.9688 1.58076 0.790378 0.612620i \(-0.209884\pi\)
0.790378 + 0.612620i \(0.209884\pi\)
\(410\) 8.93484 0.441260
\(411\) −38.2455 −1.88651
\(412\) 21.0899 1.03903
\(413\) −6.67870 −0.328637
\(414\) −0.176865 −0.00869246
\(415\) 16.2701 0.798670
\(416\) −5.52592 −0.270930
\(417\) −12.8900 −0.631226
\(418\) −4.40510 −0.215460
\(419\) −10.2045 −0.498524 −0.249262 0.968436i \(-0.580188\pi\)
−0.249262 + 0.968436i \(0.580188\pi\)
\(420\) −19.2425 −0.938940
\(421\) 12.5538 0.611834 0.305917 0.952058i \(-0.401037\pi\)
0.305917 + 0.952058i \(0.401037\pi\)
\(422\) 4.93415 0.240191
\(423\) −1.16082 −0.0564409
\(424\) 16.9392 0.822642
\(425\) 1.43883 0.0697934
\(426\) 1.95965 0.0949452
\(427\) 28.3280 1.37089
\(428\) 1.59169 0.0769370
\(429\) −13.9075 −0.671462
\(430\) −8.97096 −0.432618
\(431\) −26.6306 −1.28275 −0.641376 0.767226i \(-0.721636\pi\)
−0.641376 + 0.767226i \(0.721636\pi\)
\(432\) 15.3646 0.739230
\(433\) 3.63953 0.174905 0.0874524 0.996169i \(-0.472127\pi\)
0.0874524 + 0.996169i \(0.472127\pi\)
\(434\) 1.16122 0.0557402
\(435\) −0.209010 −0.0100213
\(436\) 4.93091 0.236148
\(437\) −2.63582 −0.126088
\(438\) 5.88484 0.281188
\(439\) −5.49176 −0.262107 −0.131054 0.991375i \(-0.541836\pi\)
−0.131054 + 0.991375i \(0.541836\pi\)
\(440\) 16.4294 0.783240
\(441\) 0.0932436 0.00444017
\(442\) 1.10933 0.0527652
\(443\) −1.29657 −0.0616021 −0.0308011 0.999526i \(-0.509806\pi\)
−0.0308011 + 0.999526i \(0.509806\pi\)
\(444\) 30.7632 1.45996
\(445\) 23.1376 1.09683
\(446\) −0.523901 −0.0248074
\(447\) −12.1001 −0.572315
\(448\) 13.1942 0.623369
\(449\) −6.31230 −0.297896 −0.148948 0.988845i \(-0.547589\pi\)
−0.148948 + 0.988845i \(0.547589\pi\)
\(450\) −0.0950356 −0.00448002
\(451\) −64.0037 −3.01382
\(452\) 13.1146 0.616857
\(453\) −33.0748 −1.55399
\(454\) −4.55002 −0.213543
\(455\) 7.67173 0.359656
\(456\) 5.67871 0.265930
\(457\) −30.8675 −1.44392 −0.721960 0.691935i \(-0.756758\pi\)
−0.721960 + 0.691935i \(0.756758\pi\)
\(458\) −8.25338 −0.385655
\(459\) −10.5351 −0.491737
\(460\) 4.74144 0.221071
\(461\) 11.4272 0.532216 0.266108 0.963943i \(-0.414262\pi\)
0.266108 + 0.963943i \(0.414262\pi\)
\(462\) −10.1098 −0.470350
\(463\) 39.2302 1.82318 0.911591 0.411098i \(-0.134855\pi\)
0.911591 + 0.411098i \(0.134855\pi\)
\(464\) 0.174171 0.00808570
\(465\) 4.48170 0.207834
\(466\) 8.92896 0.413626
\(467\) 20.4058 0.944267 0.472133 0.881527i \(-0.343484\pi\)
0.472133 + 0.881527i \(0.343484\pi\)
\(468\) 0.999022 0.0461798
\(469\) 0.340377 0.0157171
\(470\) −2.28240 −0.105279
\(471\) 37.4643 1.72627
\(472\) −3.54547 −0.163193
\(473\) 64.2624 2.95479
\(474\) −3.30449 −0.151780
\(475\) −1.41631 −0.0649849
\(476\) −10.9949 −0.503948
\(477\) −4.64779 −0.212808
\(478\) 10.1083 0.462343
\(479\) 13.5572 0.619445 0.309722 0.950827i \(-0.399764\pi\)
0.309722 + 0.950827i \(0.399764\pi\)
\(480\) −15.5034 −0.707628
\(481\) −12.2649 −0.559231
\(482\) 7.37918 0.336112
\(483\) −6.04926 −0.275251
\(484\) −36.2667 −1.64849
\(485\) −28.8618 −1.31055
\(486\) 1.49626 0.0678716
\(487\) 8.77738 0.397741 0.198871 0.980026i \(-0.436273\pi\)
0.198871 + 0.980026i \(0.436273\pi\)
\(488\) 15.0382 0.680749
\(489\) 41.8391 1.89203
\(490\) 0.183336 0.00828227
\(491\) 22.3336 1.00790 0.503950 0.863733i \(-0.331880\pi\)
0.503950 + 0.863733i \(0.331880\pi\)
\(492\) 39.7949 1.79409
\(493\) −0.119425 −0.00537862
\(494\) −1.09197 −0.0491299
\(495\) −4.50790 −0.202615
\(496\) −3.73467 −0.167692
\(497\) 7.74354 0.347345
\(498\) −5.31488 −0.238166
\(499\) −4.87943 −0.218433 −0.109217 0.994018i \(-0.534834\pi\)
−0.109217 + 0.994018i \(0.534834\pi\)
\(500\) 21.9658 0.982338
\(501\) −13.0159 −0.581509
\(502\) −0.0938131 −0.00418708
\(503\) −13.2190 −0.589404 −0.294702 0.955589i \(-0.595220\pi\)
−0.294702 + 0.955589i \(0.595220\pi\)
\(504\) 1.50570 0.0670692
\(505\) −1.45329 −0.0646704
\(506\) 2.49109 0.110743
\(507\) 20.4946 0.910199
\(508\) −12.6619 −0.561783
\(509\) −33.5341 −1.48637 −0.743187 0.669084i \(-0.766686\pi\)
−0.743187 + 0.669084i \(0.766686\pi\)
\(510\) 3.11229 0.137815
\(511\) 23.2539 1.02869
\(512\) 22.0559 0.974744
\(513\) 10.3703 0.457858
\(514\) 6.39403 0.282028
\(515\) −23.5900 −1.03950
\(516\) −39.9558 −1.75895
\(517\) 16.3497 0.719061
\(518\) −8.91570 −0.391733
\(519\) 21.5401 0.945503
\(520\) 4.07263 0.178597
\(521\) 26.4469 1.15866 0.579329 0.815094i \(-0.303315\pi\)
0.579329 + 0.815094i \(0.303315\pi\)
\(522\) 0.00788810 0.000345253 0
\(523\) −18.7465 −0.819727 −0.409864 0.912147i \(-0.634424\pi\)
−0.409864 + 0.912147i \(0.634424\pi\)
\(524\) 23.9812 1.04763
\(525\) −3.25046 −0.141862
\(526\) 4.32141 0.188423
\(527\) 2.56077 0.111549
\(528\) 32.5148 1.41502
\(529\) −21.5094 −0.935193
\(530\) −9.13851 −0.396951
\(531\) 0.972806 0.0422162
\(532\) 10.8228 0.469228
\(533\) −15.8657 −0.687219
\(534\) −7.55823 −0.327077
\(535\) −1.78037 −0.0769720
\(536\) 0.180693 0.00780475
\(537\) −33.2999 −1.43700
\(538\) −6.52788 −0.281437
\(539\) −1.31331 −0.0565681
\(540\) −18.6545 −0.802762
\(541\) −4.39395 −0.188911 −0.0944554 0.995529i \(-0.530111\pi\)
−0.0944554 + 0.995529i \(0.530111\pi\)
\(542\) −8.27261 −0.355339
\(543\) −35.0140 −1.50259
\(544\) −8.85836 −0.379799
\(545\) −5.51544 −0.236255
\(546\) −2.50608 −0.107251
\(547\) −28.0599 −1.19975 −0.599876 0.800093i \(-0.704784\pi\)
−0.599876 + 0.800093i \(0.704784\pi\)
\(548\) −38.6947 −1.65296
\(549\) −4.12619 −0.176102
\(550\) 1.33855 0.0570758
\(551\) 0.117556 0.00500805
\(552\) −3.21132 −0.136683
\(553\) −13.0577 −0.555268
\(554\) −6.08827 −0.258666
\(555\) −34.4100 −1.46062
\(556\) −13.0414 −0.553079
\(557\) −41.6001 −1.76265 −0.881326 0.472509i \(-0.843348\pi\)
−0.881326 + 0.472509i \(0.843348\pi\)
\(558\) −0.169141 −0.00716029
\(559\) 15.9298 0.673759
\(560\) −17.9359 −0.757932
\(561\) −22.2946 −0.941277
\(562\) −6.88712 −0.290516
\(563\) 8.03483 0.338628 0.169314 0.985562i \(-0.445845\pi\)
0.169314 + 0.985562i \(0.445845\pi\)
\(564\) −10.1656 −0.428049
\(565\) −14.6692 −0.617137
\(566\) −10.0331 −0.421723
\(567\) 26.9627 1.13233
\(568\) 4.11075 0.172483
\(569\) −8.77486 −0.367861 −0.183931 0.982939i \(-0.558882\pi\)
−0.183931 + 0.982939i \(0.558882\pi\)
\(570\) −3.06359 −0.128320
\(571\) 36.6397 1.53332 0.766662 0.642051i \(-0.221916\pi\)
0.766662 + 0.642051i \(0.221916\pi\)
\(572\) −14.0709 −0.588334
\(573\) 26.2742 1.09762
\(574\) −11.5332 −0.481387
\(575\) 0.800927 0.0334010
\(576\) −1.92184 −0.0800768
\(577\) 15.8285 0.658948 0.329474 0.944165i \(-0.393129\pi\)
0.329474 + 0.944165i \(0.393129\pi\)
\(578\) −4.50626 −0.187436
\(579\) −3.74428 −0.155607
\(580\) −0.211465 −0.00878062
\(581\) −21.0017 −0.871299
\(582\) 9.42814 0.390809
\(583\) 65.4627 2.71119
\(584\) 12.3446 0.510823
\(585\) −1.11745 −0.0462008
\(586\) −5.40161 −0.223138
\(587\) −21.8995 −0.903890 −0.451945 0.892046i \(-0.649270\pi\)
−0.451945 + 0.892046i \(0.649270\pi\)
\(588\) 0.816560 0.0336744
\(589\) −2.52069 −0.103863
\(590\) 1.91273 0.0787460
\(591\) 1.84170 0.0757575
\(592\) 28.6744 1.17851
\(593\) −19.3491 −0.794572 −0.397286 0.917695i \(-0.630048\pi\)
−0.397286 + 0.917695i \(0.630048\pi\)
\(594\) −9.80085 −0.402134
\(595\) 12.2982 0.504178
\(596\) −12.2422 −0.501461
\(597\) 21.8424 0.893948
\(598\) 0.617509 0.0252518
\(599\) −0.290418 −0.0118662 −0.00593308 0.999982i \(-0.501889\pi\)
−0.00593308 + 0.999982i \(0.501889\pi\)
\(600\) −1.72555 −0.0704451
\(601\) 19.3586 0.789654 0.394827 0.918755i \(-0.370805\pi\)
0.394827 + 0.918755i \(0.370805\pi\)
\(602\) 11.5798 0.471959
\(603\) −0.0495786 −0.00201900
\(604\) −33.4633 −1.36160
\(605\) 40.5659 1.64924
\(606\) 0.474737 0.0192849
\(607\) 14.4997 0.588523 0.294262 0.955725i \(-0.404926\pi\)
0.294262 + 0.955725i \(0.404926\pi\)
\(608\) 8.71973 0.353632
\(609\) 0.269793 0.0109326
\(610\) −8.11294 −0.328483
\(611\) 4.05289 0.163962
\(612\) 1.60149 0.0647363
\(613\) −42.1567 −1.70269 −0.851347 0.524603i \(-0.824214\pi\)
−0.851347 + 0.524603i \(0.824214\pi\)
\(614\) −4.32076 −0.174372
\(615\) −44.5123 −1.79491
\(616\) −21.2073 −0.854466
\(617\) −5.73258 −0.230785 −0.115393 0.993320i \(-0.536813\pi\)
−0.115393 + 0.993320i \(0.536813\pi\)
\(618\) 7.70601 0.309981
\(619\) −47.3091 −1.90151 −0.950756 0.309941i \(-0.899691\pi\)
−0.950756 + 0.309941i \(0.899691\pi\)
\(620\) 4.53434 0.182104
\(621\) −5.86440 −0.235330
\(622\) 10.7880 0.432558
\(623\) −29.8663 −1.19657
\(624\) 8.05999 0.322658
\(625\) −21.2895 −0.851581
\(626\) −1.37673 −0.0550254
\(627\) 21.9457 0.876426
\(628\) 37.9044 1.51255
\(629\) −19.6613 −0.783947
\(630\) −0.812306 −0.0323631
\(631\) 27.1545 1.08100 0.540502 0.841343i \(-0.318234\pi\)
0.540502 + 0.841343i \(0.318234\pi\)
\(632\) −6.93181 −0.275733
\(633\) −24.5813 −0.977021
\(634\) 3.99239 0.158558
\(635\) 14.1629 0.562039
\(636\) −40.7020 −1.61394
\(637\) −0.325551 −0.0128988
\(638\) −0.111101 −0.00439854
\(639\) −1.12791 −0.0446193
\(640\) −20.6146 −0.814865
\(641\) −10.6107 −0.419096 −0.209548 0.977798i \(-0.567199\pi\)
−0.209548 + 0.977798i \(0.567199\pi\)
\(642\) 0.581583 0.0229533
\(643\) 2.66367 0.105045 0.0525224 0.998620i \(-0.483274\pi\)
0.0525224 + 0.998620i \(0.483274\pi\)
\(644\) −6.12031 −0.241174
\(645\) 44.6922 1.75975
\(646\) −1.75048 −0.0688718
\(647\) 33.7430 1.32657 0.663287 0.748365i \(-0.269161\pi\)
0.663287 + 0.748365i \(0.269161\pi\)
\(648\) 14.3135 0.562287
\(649\) −13.7017 −0.537837
\(650\) 0.331808 0.0130146
\(651\) −5.78504 −0.226734
\(652\) 42.3306 1.65779
\(653\) 22.4953 0.880309 0.440155 0.897922i \(-0.354924\pi\)
0.440155 + 0.897922i \(0.354924\pi\)
\(654\) 1.80170 0.0704520
\(655\) −26.8240 −1.04810
\(656\) 37.0928 1.44823
\(657\) −3.38712 −0.132144
\(658\) 2.94616 0.114853
\(659\) −31.2559 −1.21756 −0.608778 0.793340i \(-0.708340\pi\)
−0.608778 + 0.793340i \(0.708340\pi\)
\(660\) −39.4769 −1.53664
\(661\) 22.4183 0.871971 0.435985 0.899954i \(-0.356400\pi\)
0.435985 + 0.899954i \(0.356400\pi\)
\(662\) 5.89027 0.228932
\(663\) −5.52653 −0.214633
\(664\) −11.1490 −0.432666
\(665\) −12.1058 −0.469441
\(666\) 1.29864 0.0503214
\(667\) −0.0664781 −0.00257404
\(668\) −13.1688 −0.509517
\(669\) 2.61001 0.100909
\(670\) −0.0974816 −0.00376604
\(671\) 58.1161 2.24355
\(672\) 20.0120 0.771978
\(673\) −13.1023 −0.505056 −0.252528 0.967590i \(-0.581262\pi\)
−0.252528 + 0.967590i \(0.581262\pi\)
\(674\) 1.47636 0.0568674
\(675\) −3.15113 −0.121287
\(676\) 20.7354 0.797515
\(677\) −0.0599496 −0.00230405 −0.00115203 0.999999i \(-0.500367\pi\)
−0.00115203 + 0.999999i \(0.500367\pi\)
\(678\) 4.79191 0.184032
\(679\) 37.2553 1.42973
\(680\) 6.52865 0.250362
\(681\) 22.6676 0.868626
\(682\) 2.38229 0.0912225
\(683\) 25.6834 0.982748 0.491374 0.870949i \(-0.336495\pi\)
0.491374 + 0.870949i \(0.336495\pi\)
\(684\) −1.57643 −0.0602762
\(685\) 43.2817 1.65371
\(686\) 6.72532 0.256774
\(687\) 41.1174 1.56873
\(688\) −37.2427 −1.41987
\(689\) 16.2273 0.618212
\(690\) 1.73247 0.0659538
\(691\) −36.5687 −1.39114 −0.695569 0.718459i \(-0.744848\pi\)
−0.695569 + 0.718459i \(0.744848\pi\)
\(692\) 21.7931 0.828448
\(693\) 5.81886 0.221040
\(694\) −3.01268 −0.114360
\(695\) 14.5874 0.553331
\(696\) 0.143223 0.00542885
\(697\) −25.4336 −0.963365
\(698\) 8.40501 0.318134
\(699\) −44.4830 −1.68250
\(700\) −3.28865 −0.124299
\(701\) −23.5154 −0.888163 −0.444081 0.895986i \(-0.646470\pi\)
−0.444081 + 0.895986i \(0.646470\pi\)
\(702\) −2.42950 −0.0916957
\(703\) 19.3536 0.729935
\(704\) 27.0685 1.02018
\(705\) 11.3707 0.428244
\(706\) 4.41084 0.166004
\(707\) 1.87592 0.0705513
\(708\) 8.51913 0.320169
\(709\) 34.1961 1.28426 0.642131 0.766595i \(-0.278051\pi\)
0.642131 + 0.766595i \(0.278051\pi\)
\(710\) −2.21770 −0.0832286
\(711\) 1.90195 0.0713288
\(712\) −15.8549 −0.594187
\(713\) 1.42546 0.0533838
\(714\) −4.01739 −0.150347
\(715\) 15.7389 0.588602
\(716\) −33.6911 −1.25910
\(717\) −50.3583 −1.88067
\(718\) 10.1366 0.378294
\(719\) −15.4110 −0.574734 −0.287367 0.957821i \(-0.592780\pi\)
−0.287367 + 0.957821i \(0.592780\pi\)
\(720\) 2.61251 0.0973626
\(721\) 30.4503 1.13403
\(722\) −5.30084 −0.197277
\(723\) −36.7622 −1.36720
\(724\) −35.4253 −1.31657
\(725\) −0.0357209 −0.00132664
\(726\) −13.2514 −0.491807
\(727\) 1.42579 0.0528797 0.0264398 0.999650i \(-0.491583\pi\)
0.0264398 + 0.999650i \(0.491583\pi\)
\(728\) −5.25701 −0.194838
\(729\) 22.6120 0.837481
\(730\) −6.65976 −0.246489
\(731\) 25.5364 0.944497
\(732\) −36.1342 −1.33556
\(733\) 20.6291 0.761952 0.380976 0.924585i \(-0.375588\pi\)
0.380976 + 0.924585i \(0.375588\pi\)
\(734\) −4.58042 −0.169066
\(735\) −0.913357 −0.0336897
\(736\) −4.93103 −0.181760
\(737\) 0.698298 0.0257221
\(738\) 1.67991 0.0618382
\(739\) −7.89620 −0.290467 −0.145233 0.989397i \(-0.546393\pi\)
−0.145233 + 0.989397i \(0.546393\pi\)
\(740\) −34.8142 −1.27980
\(741\) 5.44004 0.199845
\(742\) 11.7961 0.433049
\(743\) 40.8710 1.49941 0.749705 0.661772i \(-0.230195\pi\)
0.749705 + 0.661772i \(0.230195\pi\)
\(744\) −3.07106 −0.112590
\(745\) 13.6935 0.501689
\(746\) 4.19589 0.153622
\(747\) 3.05907 0.111926
\(748\) −22.5564 −0.824745
\(749\) 2.29812 0.0839717
\(750\) 8.02603 0.293069
\(751\) −32.4930 −1.18569 −0.592844 0.805317i \(-0.701995\pi\)
−0.592844 + 0.805317i \(0.701995\pi\)
\(752\) −9.47535 −0.345530
\(753\) 0.467365 0.0170317
\(754\) −0.0275405 −0.00100297
\(755\) 37.4302 1.36222
\(756\) 24.0795 0.875764
\(757\) 38.8168 1.41082 0.705409 0.708800i \(-0.250763\pi\)
0.705409 + 0.708800i \(0.250763\pi\)
\(758\) −5.77373 −0.209711
\(759\) −12.4103 −0.450466
\(760\) −6.42649 −0.233113
\(761\) −46.5786 −1.68847 −0.844236 0.535971i \(-0.819946\pi\)
−0.844236 + 0.535971i \(0.819946\pi\)
\(762\) −4.62653 −0.167601
\(763\) 7.11941 0.257740
\(764\) 26.5828 0.961732
\(765\) −1.79133 −0.0647658
\(766\) 5.07121 0.183230
\(767\) −3.39646 −0.122639
\(768\) −11.3304 −0.408851
\(769\) −3.36376 −0.121300 −0.0606502 0.998159i \(-0.519317\pi\)
−0.0606502 + 0.998159i \(0.519317\pi\)
\(770\) 11.4411 0.412307
\(771\) −31.8543 −1.14720
\(772\) −3.78827 −0.136343
\(773\) −10.8980 −0.391973 −0.195987 0.980607i \(-0.562791\pi\)
−0.195987 + 0.980607i \(0.562791\pi\)
\(774\) −1.68670 −0.0606270
\(775\) 0.765945 0.0275136
\(776\) 19.7774 0.709967
\(777\) 44.4169 1.59345
\(778\) 3.10834 0.111439
\(779\) 25.0356 0.896992
\(780\) −9.78581 −0.350388
\(781\) 15.8862 0.568453
\(782\) 0.989901 0.0353988
\(783\) 0.261549 0.00934699
\(784\) 0.761115 0.0271827
\(785\) −42.3977 −1.51324
\(786\) 8.76247 0.312547
\(787\) −38.5611 −1.37455 −0.687277 0.726396i \(-0.741194\pi\)
−0.687277 + 0.726396i \(0.741194\pi\)
\(788\) 1.86334 0.0663786
\(789\) −21.5288 −0.766444
\(790\) 3.73962 0.133050
\(791\) 18.9352 0.673258
\(792\) 3.08901 0.109763
\(793\) 14.4062 0.511580
\(794\) −3.37548 −0.119791
\(795\) 45.5269 1.61467
\(796\) 22.0989 0.783276
\(797\) 32.1764 1.13975 0.569874 0.821732i \(-0.306992\pi\)
0.569874 + 0.821732i \(0.306992\pi\)
\(798\) 3.95453 0.139989
\(799\) 6.49700 0.229847
\(800\) −2.64960 −0.0936776
\(801\) 4.35027 0.153709
\(802\) −12.8032 −0.452098
\(803\) 47.7064 1.68352
\(804\) −0.434173 −0.0153121
\(805\) 6.84583 0.241284
\(806\) 0.590538 0.0208008
\(807\) 32.5211 1.14480
\(808\) 0.995855 0.0350341
\(809\) −17.5995 −0.618764 −0.309382 0.950938i \(-0.600122\pi\)
−0.309382 + 0.950938i \(0.600122\pi\)
\(810\) −7.72194 −0.271321
\(811\) −21.3236 −0.748772 −0.374386 0.927273i \(-0.622147\pi\)
−0.374386 + 0.927273i \(0.622147\pi\)
\(812\) 0.272962 0.00957910
\(813\) 41.2132 1.44541
\(814\) −18.2910 −0.641098
\(815\) −47.3486 −1.65855
\(816\) 12.9206 0.452312
\(817\) −25.1368 −0.879424
\(818\) 11.8182 0.413215
\(819\) 1.44242 0.0504022
\(820\) −45.0352 −1.57270
\(821\) 15.8320 0.552542 0.276271 0.961080i \(-0.410901\pi\)
0.276271 + 0.961080i \(0.410901\pi\)
\(822\) −14.1386 −0.493140
\(823\) −11.4679 −0.399745 −0.199872 0.979822i \(-0.564053\pi\)
−0.199872 + 0.979822i \(0.564053\pi\)
\(824\) 16.1649 0.563130
\(825\) −6.66847 −0.232166
\(826\) −2.46898 −0.0859070
\(827\) 19.8489 0.690215 0.345107 0.938563i \(-0.387843\pi\)
0.345107 + 0.938563i \(0.387843\pi\)
\(828\) 0.891472 0.0309808
\(829\) −38.9377 −1.35236 −0.676182 0.736735i \(-0.736367\pi\)
−0.676182 + 0.736735i \(0.736367\pi\)
\(830\) 6.01475 0.208775
\(831\) 30.3310 1.05217
\(832\) 6.70993 0.232625
\(833\) −0.521877 −0.0180820
\(834\) −4.76518 −0.165005
\(835\) 14.7299 0.509749
\(836\) 22.2035 0.767923
\(837\) −5.60826 −0.193850
\(838\) −3.77241 −0.130316
\(839\) −16.1190 −0.556489 −0.278245 0.960510i \(-0.589753\pi\)
−0.278245 + 0.960510i \(0.589753\pi\)
\(840\) −14.7489 −0.508886
\(841\) −28.9970 −0.999898
\(842\) 4.64089 0.159936
\(843\) 34.3108 1.18173
\(844\) −24.8701 −0.856064
\(845\) −23.1934 −0.797878
\(846\) −0.429132 −0.0147539
\(847\) −52.3630 −1.79921
\(848\) −37.9383 −1.30281
\(849\) 49.9837 1.71544
\(850\) 0.531906 0.0182442
\(851\) −10.9445 −0.375173
\(852\) −9.87740 −0.338394
\(853\) −31.5353 −1.07975 −0.539875 0.841746i \(-0.681528\pi\)
−0.539875 + 0.841746i \(0.681528\pi\)
\(854\) 10.4723 0.358355
\(855\) 1.76330 0.0603036
\(856\) 1.21999 0.0416983
\(857\) −6.17995 −0.211103 −0.105552 0.994414i \(-0.533661\pi\)
−0.105552 + 0.994414i \(0.533661\pi\)
\(858\) −5.14134 −0.175523
\(859\) 29.7096 1.01368 0.506838 0.862041i \(-0.330814\pi\)
0.506838 + 0.862041i \(0.330814\pi\)
\(860\) 45.2172 1.54189
\(861\) 57.4571 1.95813
\(862\) −9.84482 −0.335316
\(863\) 2.19434 0.0746962 0.0373481 0.999302i \(-0.488109\pi\)
0.0373481 + 0.999302i \(0.488109\pi\)
\(864\) 19.4004 0.660016
\(865\) −24.3765 −0.828825
\(866\) 1.34546 0.0457207
\(867\) 22.4496 0.762429
\(868\) −5.85300 −0.198664
\(869\) −26.7884 −0.908733
\(870\) −0.0772669 −0.00261959
\(871\) 0.173099 0.00586523
\(872\) 3.77942 0.127987
\(873\) −5.42653 −0.183660
\(874\) −0.974410 −0.0329599
\(875\) 31.7148 1.07216
\(876\) −29.6619 −1.00218
\(877\) −36.7668 −1.24153 −0.620763 0.783998i \(-0.713177\pi\)
−0.620763 + 0.783998i \(0.713177\pi\)
\(878\) −2.03020 −0.0685158
\(879\) 26.9102 0.907657
\(880\) −36.7964 −1.24041
\(881\) −39.4161 −1.32796 −0.663981 0.747749i \(-0.731134\pi\)
−0.663981 + 0.747749i \(0.731134\pi\)
\(882\) 0.0344703 0.00116068
\(883\) −54.7269 −1.84171 −0.920853 0.389911i \(-0.872506\pi\)
−0.920853 + 0.389911i \(0.872506\pi\)
\(884\) −5.59144 −0.188061
\(885\) −9.52901 −0.320314
\(886\) −0.479318 −0.0161030
\(887\) 21.8797 0.734647 0.367324 0.930093i \(-0.380274\pi\)
0.367324 + 0.930093i \(0.380274\pi\)
\(888\) 23.5792 0.791268
\(889\) −18.2817 −0.613149
\(890\) 8.55351 0.286714
\(891\) 55.3153 1.85313
\(892\) 2.64067 0.0884161
\(893\) −6.39533 −0.214012
\(894\) −4.47317 −0.149605
\(895\) 37.6849 1.25967
\(896\) 26.6097 0.888967
\(897\) −3.07635 −0.102716
\(898\) −2.33353 −0.0778710
\(899\) −0.0635746 −0.00212033
\(900\) 0.479017 0.0159672
\(901\) 26.0133 0.866629
\(902\) −23.6609 −0.787822
\(903\) −57.6894 −1.91978
\(904\) 10.0520 0.334324
\(905\) 39.6247 1.31717
\(906\) −12.2271 −0.406219
\(907\) 12.6765 0.420916 0.210458 0.977603i \(-0.432504\pi\)
0.210458 + 0.977603i \(0.432504\pi\)
\(908\) 22.9339 0.761088
\(909\) −0.273243 −0.00906290
\(910\) 2.83609 0.0940155
\(911\) −14.6425 −0.485127 −0.242564 0.970135i \(-0.577988\pi\)
−0.242564 + 0.970135i \(0.577988\pi\)
\(912\) −12.7184 −0.421149
\(913\) −43.0860 −1.42594
\(914\) −11.4111 −0.377446
\(915\) 40.4177 1.33617
\(916\) 41.6003 1.37451
\(917\) 34.6249 1.14341
\(918\) −3.89463 −0.128542
\(919\) 25.5944 0.844281 0.422140 0.906531i \(-0.361279\pi\)
0.422140 + 0.906531i \(0.361279\pi\)
\(920\) 3.63419 0.119816
\(921\) 21.5255 0.709290
\(922\) 4.22440 0.139123
\(923\) 3.93798 0.129620
\(924\) 50.9574 1.67637
\(925\) −5.88084 −0.193361
\(926\) 14.5026 0.476586
\(927\) −4.43532 −0.145675
\(928\) 0.219921 0.00721926
\(929\) −27.2525 −0.894126 −0.447063 0.894502i \(-0.647530\pi\)
−0.447063 + 0.894502i \(0.647530\pi\)
\(930\) 1.65680 0.0543285
\(931\) 0.513710 0.0168362
\(932\) −45.0055 −1.47420
\(933\) −53.7443 −1.75951
\(934\) 7.54362 0.246835
\(935\) 25.2303 0.825120
\(936\) 0.765725 0.0250285
\(937\) 12.6954 0.414740 0.207370 0.978263i \(-0.433510\pi\)
0.207370 + 0.978263i \(0.433510\pi\)
\(938\) 0.125831 0.00410852
\(939\) 6.85873 0.223826
\(940\) 11.5042 0.375226
\(941\) 46.6415 1.52047 0.760235 0.649648i \(-0.225084\pi\)
0.760235 + 0.649648i \(0.225084\pi\)
\(942\) 13.8498 0.451252
\(943\) −14.1577 −0.461037
\(944\) 7.94067 0.258447
\(945\) −26.9340 −0.876162
\(946\) 23.7566 0.772392
\(947\) −8.47754 −0.275483 −0.137742 0.990468i \(-0.543984\pi\)
−0.137742 + 0.990468i \(0.543984\pi\)
\(948\) 16.6559 0.540959
\(949\) 11.8258 0.383882
\(950\) −0.523583 −0.0169873
\(951\) −19.8896 −0.644965
\(952\) −8.42728 −0.273130
\(953\) 51.2700 1.66080 0.830400 0.557168i \(-0.188112\pi\)
0.830400 + 0.557168i \(0.188112\pi\)
\(954\) −1.71820 −0.0556287
\(955\) −29.7340 −0.962169
\(956\) −50.9499 −1.64784
\(957\) 0.553493 0.0178919
\(958\) 5.01184 0.161925
\(959\) −55.8686 −1.80409
\(960\) 18.8252 0.607581
\(961\) −29.6368 −0.956026
\(962\) −4.53409 −0.146185
\(963\) −0.334740 −0.0107869
\(964\) −37.1940 −1.19794
\(965\) 4.23734 0.136405
\(966\) −2.23629 −0.0719515
\(967\) 32.1289 1.03320 0.516598 0.856228i \(-0.327198\pi\)
0.516598 + 0.856228i \(0.327198\pi\)
\(968\) −27.7975 −0.893445
\(969\) 8.72069 0.280149
\(970\) −10.6697 −0.342582
\(971\) −59.9704 −1.92454 −0.962270 0.272095i \(-0.912283\pi\)
−0.962270 + 0.272095i \(0.912283\pi\)
\(972\) −7.54173 −0.241901
\(973\) −18.8296 −0.603650
\(974\) 3.24483 0.103971
\(975\) −1.65303 −0.0529392
\(976\) −33.6807 −1.07809
\(977\) −32.1540 −1.02870 −0.514349 0.857581i \(-0.671966\pi\)
−0.514349 + 0.857581i \(0.671966\pi\)
\(978\) 15.4671 0.494584
\(979\) −61.2721 −1.95826
\(980\) −0.924086 −0.0295188
\(981\) −1.03700 −0.0331088
\(982\) 8.25629 0.263469
\(983\) 5.29443 0.168866 0.0844331 0.996429i \(-0.473092\pi\)
0.0844331 + 0.996429i \(0.473092\pi\)
\(984\) 30.5018 0.972361
\(985\) −2.08422 −0.0664088
\(986\) −0.0441490 −0.00140599
\(987\) −14.6774 −0.467187
\(988\) 5.50395 0.175104
\(989\) 14.2149 0.452007
\(990\) −1.66648 −0.0529643
\(991\) −45.3057 −1.43918 −0.719591 0.694398i \(-0.755671\pi\)
−0.719591 + 0.694398i \(0.755671\pi\)
\(992\) −4.71565 −0.149722
\(993\) −29.3446 −0.931223
\(994\) 2.86263 0.0907972
\(995\) −24.7186 −0.783632
\(996\) 26.7891 0.848846
\(997\) 16.7483 0.530425 0.265212 0.964190i \(-0.414558\pi\)
0.265212 + 0.964190i \(0.414558\pi\)
\(998\) −1.80383 −0.0570992
\(999\) 43.0596 1.36235
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 197.2.a.b.1.3 5
3.2 odd 2 1773.2.a.e.1.3 5
4.3 odd 2 3152.2.a.j.1.3 5
5.4 even 2 4925.2.a.h.1.3 5
7.6 odd 2 9653.2.a.h.1.3 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
197.2.a.b.1.3 5 1.1 even 1 trivial
1773.2.a.e.1.3 5 3.2 odd 2
3152.2.a.j.1.3 5 4.3 odd 2
4925.2.a.h.1.3 5 5.4 even 2
9653.2.a.h.1.3 5 7.6 odd 2