Properties

Label 197.2.a
Level $197$
Weight $2$
Character orbit 197.a
Rep. character $\chi_{197}(1,\cdot)$
Character field $\Q$
Dimension $16$
Newform subspaces $3$
Sturm bound $33$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 197.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(33\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(197))\).

Total New Old
Modular forms 17 17 0
Cusp forms 16 16 0
Eisenstein series 1 1 0

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(197\)TotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(6\)\(6\)\(0\)\(6\)\(6\)\(0\)\(0\)\(0\)\(0\)
\(-\)\(11\)\(11\)\(0\)\(10\)\(10\)\(0\)\(1\)\(1\)\(0\)

Trace form

\( 16 q - 2 q^{2} + 2 q^{3} + 12 q^{4} - 2 q^{5} - 6 q^{6} - 2 q^{7} - 6 q^{8} + 22 q^{9} - 12 q^{10} - 2 q^{11} - 8 q^{12} - 2 q^{13} - 6 q^{14} - 2 q^{15} - 8 q^{16} - 2 q^{17} - 4 q^{18} - 2 q^{19} + 2 q^{20}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(197))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 197
197.2.a.a 197.a 1.a $1$ $1.573$ \(\Q\) None 197.2.a.a \(-2\) \(0\) \(0\) \(-3\) $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+2q^{4}-3q^{7}-3q^{9}+4q^{11}+\cdots\)
197.2.a.b 197.a 1.a $5$ $1.573$ 5.5.24217.1 None 197.2.a.b \(0\) \(-8\) \(-4\) \(-10\) $+$ $\mathrm{SU}(2)$ \(q+(-\beta _{1}-\beta _{2})q^{2}+(-2+\beta _{1}+\beta _{2}+\cdots)q^{3}+\cdots\)
197.2.a.c 197.a 1.a $10$ $1.573$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 197.2.a.c \(0\) \(10\) \(2\) \(11\) $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1+\beta _{3})q^{3}+(1+\beta _{2})q^{4}+\cdots\)