Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [197,14,Mod(1,197)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(197, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 14, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("197.1");
S:= CuspForms(chi, 14);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 197 \) |
Weight: | \( k \) | \(=\) | \( 14 \) |
Character orbit: | \([\chi]\) | \(=\) | 197.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(211.244930035\) |
Analytic rank: | \(1\) |
Dimension: | \(104\) |
Twist minimal: | yes |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −178.085 | −2212.53 | 23522.4 | 69269.3 | 394020. | −342836. | −2.73012e6 | 3.30098e6 | −1.23359e7 | ||||||||||||||||||
1.2 | −174.990 | 1982.02 | 22429.6 | −59494.1 | −346834. | −613520. | −2.49144e6 | 2.33409e6 | 1.04109e7 | ||||||||||||||||||
1.3 | −169.954 | −1349.68 | 20692.5 | −8715.05 | 229384. | −22887.7 | −2.12452e6 | 227318. | 1.48116e6 | ||||||||||||||||||
1.4 | −168.777 | −2402.96 | 20293.8 | −64762.9 | 405565. | −252510. | −2.04252e6 | 4.17988e6 | 1.09305e7 | ||||||||||||||||||
1.5 | −167.056 | 2054.37 | 19715.7 | 12824.5 | −343195. | 34898.6 | −1.92511e6 | 2.62611e6 | −2.14242e6 | ||||||||||||||||||
1.6 | −164.231 | −1747.83 | 18780.0 | −30963.6 | 287048. | 120554. | −1.73888e6 | 1.46057e6 | 5.08520e6 | ||||||||||||||||||
1.7 | −164.173 | −6.28213 | 18760.6 | 49948.6 | 1031.35 | 199919. | −1.73508e6 | −1.59428e6 | −8.20019e6 | ||||||||||||||||||
1.8 | −162.329 | −746.765 | 18158.7 | 42494.0 | 121222. | 350398. | −1.61789e6 | −1.03666e6 | −6.89802e6 | ||||||||||||||||||
1.9 | −156.355 | 1756.50 | 16255.0 | −30943.3 | −274637. | 65618.9 | −1.26069e6 | 1.49095e6 | 4.83814e6 | ||||||||||||||||||
1.10 | −156.182 | 145.398 | 16200.7 | −42219.2 | −22708.4 | 140720. | −1.25081e6 | −1.57318e6 | 6.59387e6 | ||||||||||||||||||
1.11 | −154.569 | 1022.51 | 15699.6 | −29720.6 | −158048. | 28477.1 | −1.16045e6 | −548801. | 4.59389e6 | ||||||||||||||||||
1.12 | −147.901 | 534.557 | 13682.8 | −7800.19 | −79061.7 | 515509. | −812098. | −1.30857e6 | 1.15366e6 | ||||||||||||||||||
1.13 | −146.034 | −203.966 | 13133.8 | −50263.7 | 29785.9 | −418854. | −721672. | −1.55272e6 | 7.34019e6 | ||||||||||||||||||
1.14 | −145.508 | −1012.29 | 12980.6 | 58530.7 | 147296. | 112683. | −696787. | −569599. | −8.51670e6 | ||||||||||||||||||
1.15 | −140.225 | −1671.46 | 11470.9 | 31759.0 | 234379. | −135007. | −459789. | 1.19945e6 | −4.45339e6 | ||||||||||||||||||
1.16 | −138.688 | 508.810 | 11042.3 | 10487.4 | −70565.7 | 498775. | −395298. | −1.33544e6 | −1.45448e6 | ||||||||||||||||||
1.17 | −136.815 | 1868.60 | 10526.4 | 67606.5 | −255652. | 369826. | −319377. | 1.89733e6 | −9.24960e6 | ||||||||||||||||||
1.18 | −135.981 | 2210.13 | 10298.9 | 24727.3 | −300537. | −333758. | −286501. | 3.29036e6 | −3.36245e6 | ||||||||||||||||||
1.19 | −130.362 | −354.130 | 8802.19 | 43213.6 | 46165.1 | −431996. | −79545.1 | −1.46891e6 | −5.63341e6 | ||||||||||||||||||
1.20 | −130.183 | 784.591 | 8755.73 | −22486.1 | −102141. | −529213. | −73387.7 | −978739. | 2.92731e6 | ||||||||||||||||||
See next 80 embeddings (of 104 total) |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(197\) | \( +1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 197.14.a.a | ✓ | 104 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
197.14.a.a | ✓ | 104 | 1.a | even | 1 | 1 | trivial |