Properties

Label 197.10.a.b.1.3
Level $197$
Weight $10$
Character 197.1
Self dual yes
Analytic conductor $101.462$
Analytic rank $0$
Dimension $76$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,10,Mod(1,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 197.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(101.462059724\)
Analytic rank: \(0\)
Dimension: \(76\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Character \(\chi\) \(=\) 197.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-41.6400 q^{2} +9.57611 q^{3} +1221.89 q^{4} +18.3099 q^{5} -398.750 q^{6} +11241.8 q^{7} -29560.0 q^{8} -19591.3 q^{9} +O(q^{10})\) \(q-41.6400 q^{2} +9.57611 q^{3} +1221.89 q^{4} +18.3099 q^{5} -398.750 q^{6} +11241.8 q^{7} -29560.0 q^{8} -19591.3 q^{9} -762.427 q^{10} +79059.0 q^{11} +11701.0 q^{12} -102812. q^{13} -468110. q^{14} +175.338 q^{15} +605269. q^{16} -341756. q^{17} +815782. q^{18} +155870. q^{19} +22372.8 q^{20} +107653. q^{21} -3.29202e6 q^{22} +1.34073e6 q^{23} -283070. q^{24} -1.95279e6 q^{25} +4.28110e6 q^{26} -376095. q^{27} +1.37363e7 q^{28} -1.20356e6 q^{29} -7301.09 q^{30} +8.69177e6 q^{31} -1.00687e7 q^{32} +757078. q^{33} +1.42307e7 q^{34} +205837. q^{35} -2.39385e7 q^{36} +1.00937e7 q^{37} -6.49045e6 q^{38} -984541. q^{39} -541241. q^{40} +1.09113e6 q^{41} -4.48267e6 q^{42} +2.43281e7 q^{43} +9.66016e7 q^{44} -358716. q^{45} -5.58281e7 q^{46} +662485. q^{47} +5.79612e6 q^{48} +8.60248e7 q^{49} +8.13142e7 q^{50} -3.27269e6 q^{51} -1.25625e8 q^{52} +1.65507e7 q^{53} +1.56606e7 q^{54} +1.44757e6 q^{55} -3.32308e8 q^{56} +1.49263e6 q^{57} +5.01164e7 q^{58} -1.42532e8 q^{59} +214244. q^{60} -1.40154e8 q^{61} -3.61926e8 q^{62} -2.20242e8 q^{63} +1.09364e8 q^{64} -1.88249e6 q^{65} -3.15248e7 q^{66} +2.96953e8 q^{67} -4.17589e8 q^{68} +1.28390e7 q^{69} -8.57106e6 q^{70} +1.91980e8 q^{71} +5.79118e8 q^{72} -4.61271e8 q^{73} -4.20302e8 q^{74} -1.87001e7 q^{75} +1.90457e8 q^{76} +8.88767e8 q^{77} +4.09963e7 q^{78} -4.14667e8 q^{79} +1.10824e7 q^{80} +3.82014e8 q^{81} -4.54347e7 q^{82} +1.16968e8 q^{83} +1.31540e8 q^{84} -6.25753e6 q^{85} -1.01302e9 q^{86} -1.15255e7 q^{87} -2.33698e9 q^{88} -4.41361e8 q^{89} +1.49369e7 q^{90} -1.15579e9 q^{91} +1.63823e9 q^{92} +8.32333e7 q^{93} -2.75859e7 q^{94} +2.85398e6 q^{95} -9.64192e7 q^{96} +1.56961e9 q^{97} -3.58207e9 q^{98} -1.54887e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 76 q + 48 q^{2} + 890 q^{3} + 20736 q^{4} + 5171 q^{5} + 2688 q^{6} + 38986 q^{7} + 36507 q^{8} + 518318 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 76 q + 48 q^{2} + 890 q^{3} + 20736 q^{4} + 5171 q^{5} + 2688 q^{6} + 38986 q^{7} + 36507 q^{8} + 518318 q^{9} + 121093 q^{10} + 120464 q^{11} + 415744 q^{12} + 480131 q^{13} + 330849 q^{14} + 544874 q^{15} + 5963776 q^{16} + 942582 q^{17} + 1483945 q^{18} + 3097319 q^{19} + 3237739 q^{20} + 889076 q^{21} + 3791921 q^{22} + 5139200 q^{23} + 1999533 q^{24} + 34080519 q^{25} + 2791454 q^{26} + 24386486 q^{27} + 20891166 q^{28} + 6886818 q^{29} + 14171083 q^{30} + 28002851 q^{31} + 16857332 q^{32} + 30921422 q^{33} + 33506194 q^{34} + 16271736 q^{35} + 151430458 q^{36} + 55950976 q^{37} + 62370882 q^{38} - 11569592 q^{39} + 129854766 q^{40} + 14990859 q^{41} + 82216531 q^{42} + 169867467 q^{43} + 41872434 q^{44} + 205007649 q^{45} + 144032301 q^{46} + 78743342 q^{47} + 156250562 q^{48} + 533861890 q^{49} + 626841163 q^{50} + 477099244 q^{51} + 560784114 q^{52} + 188670216 q^{53} + 525901687 q^{54} + 298497914 q^{55} + 56575048 q^{56} + 213972590 q^{57} + 338315251 q^{58} + 208222151 q^{59} - 615921507 q^{60} - 233556134 q^{61} - 399368105 q^{62} + 329825056 q^{63} + 876517017 q^{64} - 840557006 q^{65} - 2482481592 q^{66} + 1210808414 q^{67} - 1266757099 q^{68} + 327801786 q^{69} - 546384313 q^{70} + 345300221 q^{71} - 1549481681 q^{72} + 1192286460 q^{73} - 1471133595 q^{74} + 761630676 q^{75} - 398699826 q^{76} - 101106252 q^{77} - 2609825943 q^{78} + 955627631 q^{79} + 1059617770 q^{80} + 3387041436 q^{81} + 1062705523 q^{82} + 1538917201 q^{83} + 1394513218 q^{84} + 225481100 q^{85} + 701644810 q^{86} + 1758812842 q^{87} + 3151474875 q^{88} + 855413630 q^{89} + 6070671455 q^{90} + 4652436248 q^{91} + 8082863606 q^{92} + 3462095982 q^{93} + 2660342117 q^{94} + 1036805508 q^{95} + 12370989029 q^{96} + 6393874545 q^{97} + 7510976010 q^{98} + 8731109606 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −41.6400 −1.84025 −0.920124 0.391628i \(-0.871912\pi\)
−0.920124 + 0.391628i \(0.871912\pi\)
\(3\) 9.57611 0.0682564 0.0341282 0.999417i \(-0.489135\pi\)
0.0341282 + 0.999417i \(0.489135\pi\)
\(4\) 1221.89 2.38651
\(5\) 18.3099 0.0131015 0.00655077 0.999979i \(-0.497915\pi\)
0.00655077 + 0.999979i \(0.497915\pi\)
\(6\) −398.750 −0.125609
\(7\) 11241.8 1.76968 0.884841 0.465893i \(-0.154267\pi\)
0.884841 + 0.465893i \(0.154267\pi\)
\(8\) −29560.0 −2.55152
\(9\) −19591.3 −0.995341
\(10\) −762.427 −0.0241101
\(11\) 79059.0 1.62811 0.814056 0.580786i \(-0.197255\pi\)
0.814056 + 0.580786i \(0.197255\pi\)
\(12\) 11701.0 0.162895
\(13\) −102812. −0.998388 −0.499194 0.866490i \(-0.666370\pi\)
−0.499194 + 0.866490i \(0.666370\pi\)
\(14\) −468110. −3.25665
\(15\) 175.338 0.000894264 0
\(16\) 605269. 2.30892
\(17\) −341756. −0.992420 −0.496210 0.868203i \(-0.665275\pi\)
−0.496210 + 0.868203i \(0.665275\pi\)
\(18\) 815782. 1.83167
\(19\) 155870. 0.274393 0.137196 0.990544i \(-0.456191\pi\)
0.137196 + 0.990544i \(0.456191\pi\)
\(20\) 22372.8 0.0312669
\(21\) 107653. 0.120792
\(22\) −3.29202e6 −2.99613
\(23\) 1.34073e6 0.999002 0.499501 0.866313i \(-0.333517\pi\)
0.499501 + 0.866313i \(0.333517\pi\)
\(24\) −283070. −0.174158
\(25\) −1.95279e6 −0.999828
\(26\) 4.28110e6 1.83728
\(27\) −376095. −0.136195
\(28\) 1.37363e7 4.22336
\(29\) −1.20356e6 −0.315993 −0.157997 0.987440i \(-0.550504\pi\)
−0.157997 + 0.987440i \(0.550504\pi\)
\(30\) −7301.09 −0.00164567
\(31\) 8.69177e6 1.69036 0.845182 0.534478i \(-0.179492\pi\)
0.845182 + 0.534478i \(0.179492\pi\)
\(32\) −1.00687e7 −1.69746
\(33\) 757078. 0.111129
\(34\) 1.42307e7 1.82630
\(35\) 205837. 0.0231855
\(36\) −2.39385e7 −2.37539
\(37\) 1.00937e7 0.885406 0.442703 0.896668i \(-0.354020\pi\)
0.442703 + 0.896668i \(0.354020\pi\)
\(38\) −6.49045e6 −0.504950
\(39\) −984541. −0.0681464
\(40\) −541241. −0.0334288
\(41\) 1.09113e6 0.0603045 0.0301522 0.999545i \(-0.490401\pi\)
0.0301522 + 0.999545i \(0.490401\pi\)
\(42\) −4.48267e6 −0.222287
\(43\) 2.43281e7 1.08518 0.542588 0.839999i \(-0.317445\pi\)
0.542588 + 0.839999i \(0.317445\pi\)
\(44\) 9.66016e7 3.88550
\(45\) −358716. −0.0130405
\(46\) −5.58281e7 −1.83841
\(47\) 662485. 0.0198032 0.00990161 0.999951i \(-0.496848\pi\)
0.00990161 + 0.999951i \(0.496848\pi\)
\(48\) 5.79612e6 0.157598
\(49\) 8.60248e7 2.13177
\(50\) 8.13142e7 1.83993
\(51\) −3.27269e6 −0.0677391
\(52\) −1.25625e8 −2.38266
\(53\) 1.65507e7 0.288122 0.144061 0.989569i \(-0.453984\pi\)
0.144061 + 0.989569i \(0.453984\pi\)
\(54\) 1.56606e7 0.250632
\(55\) 1.44757e6 0.0213308
\(56\) −3.32308e8 −4.51538
\(57\) 1.49263e6 0.0187291
\(58\) 5.01164e7 0.581506
\(59\) −1.42532e8 −1.53137 −0.765683 0.643218i \(-0.777599\pi\)
−0.765683 + 0.643218i \(0.777599\pi\)
\(60\) 214244. 0.00213417
\(61\) −1.40154e8 −1.29605 −0.648024 0.761620i \(-0.724404\pi\)
−0.648024 + 0.761620i \(0.724404\pi\)
\(62\) −3.61926e8 −3.11069
\(63\) −2.20242e8 −1.76144
\(64\) 1.09364e8 0.814826
\(65\) −1.88249e6 −0.0130804
\(66\) −3.15248e7 −0.204505
\(67\) 2.96953e8 1.80033 0.900164 0.435552i \(-0.143447\pi\)
0.900164 + 0.435552i \(0.143447\pi\)
\(68\) −4.17589e8 −2.36842
\(69\) 1.28390e7 0.0681883
\(70\) −8.57106e6 −0.0426671
\(71\) 1.91980e8 0.896591 0.448296 0.893885i \(-0.352031\pi\)
0.448296 + 0.893885i \(0.352031\pi\)
\(72\) 5.79118e8 2.53963
\(73\) −4.61271e8 −1.90109 −0.950546 0.310583i \(-0.899476\pi\)
−0.950546 + 0.310583i \(0.899476\pi\)
\(74\) −4.20302e8 −1.62937
\(75\) −1.87001e7 −0.0682447
\(76\) 1.90457e8 0.654841
\(77\) 8.88767e8 2.88124
\(78\) 4.09963e7 0.125406
\(79\) −4.14667e8 −1.19778 −0.598891 0.800831i \(-0.704392\pi\)
−0.598891 + 0.800831i \(0.704392\pi\)
\(80\) 1.10824e7 0.0302504
\(81\) 3.82014e8 0.986045
\(82\) −4.54347e7 −0.110975
\(83\) 1.16968e8 0.270531 0.135266 0.990809i \(-0.456811\pi\)
0.135266 + 0.990809i \(0.456811\pi\)
\(84\) 1.31540e8 0.288272
\(85\) −6.25753e6 −0.0130022
\(86\) −1.01302e9 −1.99699
\(87\) −1.15255e7 −0.0215686
\(88\) −2.33698e9 −4.15416
\(89\) −4.41361e8 −0.745657 −0.372829 0.927900i \(-0.621612\pi\)
−0.372829 + 0.927900i \(0.621612\pi\)
\(90\) 1.49369e7 0.0239977
\(91\) −1.15579e9 −1.76683
\(92\) 1.63823e9 2.38413
\(93\) 8.32333e7 0.115378
\(94\) −2.75859e7 −0.0364428
\(95\) 2.85398e6 0.00359497
\(96\) −9.64192e7 −0.115862
\(97\) 1.56961e9 1.80019 0.900095 0.435693i \(-0.143497\pi\)
0.900095 + 0.435693i \(0.143497\pi\)
\(98\) −3.58207e9 −3.92299
\(99\) −1.54887e9 −1.62053
\(100\) −2.38610e9 −2.38610
\(101\) 3.88793e6 0.00371768 0.00185884 0.999998i \(-0.499408\pi\)
0.00185884 + 0.999998i \(0.499408\pi\)
\(102\) 1.36275e8 0.124657
\(103\) 1.29787e9 1.13622 0.568111 0.822952i \(-0.307674\pi\)
0.568111 + 0.822952i \(0.307674\pi\)
\(104\) 3.03912e9 2.54741
\(105\) 1.97112e6 0.00158256
\(106\) −6.89173e8 −0.530215
\(107\) −2.55046e9 −1.88101 −0.940506 0.339776i \(-0.889649\pi\)
−0.940506 + 0.339776i \(0.889649\pi\)
\(108\) −4.59548e8 −0.325030
\(109\) 1.68336e9 1.14224 0.571119 0.820867i \(-0.306509\pi\)
0.571119 + 0.820867i \(0.306509\pi\)
\(110\) −6.02767e7 −0.0392539
\(111\) 9.66584e7 0.0604346
\(112\) 6.80432e9 4.08605
\(113\) −1.43842e9 −0.829913 −0.414957 0.909841i \(-0.636203\pi\)
−0.414957 + 0.909841i \(0.636203\pi\)
\(114\) −6.21533e7 −0.0344661
\(115\) 2.45487e7 0.0130885
\(116\) −1.47062e9 −0.754121
\(117\) 2.01422e9 0.993737
\(118\) 5.93505e9 2.81809
\(119\) −3.84195e9 −1.75627
\(120\) −5.18299e6 −0.00228173
\(121\) 3.89238e9 1.65075
\(122\) 5.83601e9 2.38505
\(123\) 1.04488e7 0.00411617
\(124\) 1.06204e10 4.03407
\(125\) −7.15171e7 −0.0262008
\(126\) 9.17087e9 3.24148
\(127\) 3.33410e9 1.13726 0.568632 0.822592i \(-0.307473\pi\)
0.568632 + 0.822592i \(0.307473\pi\)
\(128\) 6.01256e8 0.197977
\(129\) 2.32969e8 0.0740702
\(130\) 7.83868e7 0.0240712
\(131\) −5.16158e7 −0.0153130 −0.00765652 0.999971i \(-0.502437\pi\)
−0.00765652 + 0.999971i \(0.502437\pi\)
\(132\) 9.25068e8 0.265211
\(133\) 1.75227e9 0.485588
\(134\) −1.23651e10 −3.31305
\(135\) −6.88628e6 −0.00178436
\(136\) 1.01023e10 2.53218
\(137\) −1.38672e9 −0.336315 −0.168158 0.985760i \(-0.553782\pi\)
−0.168158 + 0.985760i \(0.553782\pi\)
\(138\) −5.34616e8 −0.125483
\(139\) 5.26048e9 1.19525 0.597624 0.801776i \(-0.296111\pi\)
0.597624 + 0.801776i \(0.296111\pi\)
\(140\) 2.51511e8 0.0553325
\(141\) 6.34403e6 0.00135170
\(142\) −7.99407e9 −1.64995
\(143\) −8.12823e9 −1.62549
\(144\) −1.18580e10 −2.29816
\(145\) −2.20372e7 −0.00414000
\(146\) 1.92073e10 3.49848
\(147\) 8.23783e8 0.145507
\(148\) 1.23334e10 2.11303
\(149\) −2.44267e9 −0.406000 −0.203000 0.979179i \(-0.565069\pi\)
−0.203000 + 0.979179i \(0.565069\pi\)
\(150\) 7.78674e8 0.125587
\(151\) 9.21279e9 1.44210 0.721049 0.692884i \(-0.243660\pi\)
0.721049 + 0.692884i \(0.243660\pi\)
\(152\) −4.60752e9 −0.700118
\(153\) 6.69544e9 0.987796
\(154\) −3.70083e10 −5.30219
\(155\) 1.59146e8 0.0221464
\(156\) −1.20300e9 −0.162632
\(157\) 6.84933e9 0.899704 0.449852 0.893103i \(-0.351477\pi\)
0.449852 + 0.893103i \(0.351477\pi\)
\(158\) 1.72668e10 2.20421
\(159\) 1.58492e8 0.0196662
\(160\) −1.84358e8 −0.0222393
\(161\) 1.50722e10 1.76792
\(162\) −1.59071e10 −1.81457
\(163\) −6.06337e9 −0.672775 −0.336388 0.941724i \(-0.609205\pi\)
−0.336388 + 0.941724i \(0.609205\pi\)
\(164\) 1.33324e9 0.143917
\(165\) 1.38621e7 0.00145596
\(166\) −4.87057e9 −0.497844
\(167\) 1.37419e9 0.136717 0.0683584 0.997661i \(-0.478224\pi\)
0.0683584 + 0.997661i \(0.478224\pi\)
\(168\) −3.18221e9 −0.308204
\(169\) −3.41618e7 −0.00322144
\(170\) 2.60564e8 0.0239273
\(171\) −3.05370e9 −0.273114
\(172\) 2.97263e10 2.58978
\(173\) −1.78720e10 −1.51693 −0.758464 0.651715i \(-0.774050\pi\)
−0.758464 + 0.651715i \(0.774050\pi\)
\(174\) 4.79920e8 0.0396915
\(175\) −2.19529e10 −1.76938
\(176\) 4.78520e10 3.75918
\(177\) −1.36491e9 −0.104526
\(178\) 1.83783e10 1.37219
\(179\) 9.97519e9 0.726244 0.363122 0.931742i \(-0.381711\pi\)
0.363122 + 0.931742i \(0.381711\pi\)
\(180\) −4.38312e8 −0.0311213
\(181\) 1.65926e10 1.14911 0.574555 0.818466i \(-0.305175\pi\)
0.574555 + 0.818466i \(0.305175\pi\)
\(182\) 4.81273e10 3.25140
\(183\) −1.34213e9 −0.0884636
\(184\) −3.96320e10 −2.54897
\(185\) 1.84815e8 0.0116002
\(186\) −3.46584e9 −0.212325
\(187\) −2.70189e10 −1.61577
\(188\) 8.09486e8 0.0472606
\(189\) −4.22799e9 −0.241022
\(190\) −1.18840e8 −0.00661562
\(191\) −1.58222e10 −0.860234 −0.430117 0.902773i \(-0.641528\pi\)
−0.430117 + 0.902773i \(0.641528\pi\)
\(192\) 1.04728e9 0.0556171
\(193\) −1.57214e10 −0.815611 −0.407805 0.913069i \(-0.633706\pi\)
−0.407805 + 0.913069i \(0.633706\pi\)
\(194\) −6.53585e10 −3.31280
\(195\) −1.80269e7 −0.000892822 0
\(196\) 1.05113e11 5.08750
\(197\) 1.50614e9 0.0712470
\(198\) 6.44949e10 2.98217
\(199\) 1.56293e10 0.706480 0.353240 0.935533i \(-0.385080\pi\)
0.353240 + 0.935533i \(0.385080\pi\)
\(200\) 5.77244e10 2.55108
\(201\) 2.84366e9 0.122884
\(202\) −1.61893e8 −0.00684145
\(203\) −1.35302e10 −0.559207
\(204\) −3.99888e9 −0.161660
\(205\) 1.99785e7 0.000790081 0
\(206\) −5.40433e10 −2.09093
\(207\) −2.62667e10 −0.994348
\(208\) −6.22290e10 −2.30520
\(209\) 1.23230e10 0.446742
\(210\) −8.20775e7 −0.00291231
\(211\) −2.63294e10 −0.914471 −0.457235 0.889346i \(-0.651160\pi\)
−0.457235 + 0.889346i \(0.651160\pi\)
\(212\) 2.02232e10 0.687605
\(213\) 1.83843e9 0.0611981
\(214\) 1.06201e11 3.46153
\(215\) 4.45446e8 0.0142175
\(216\) 1.11174e10 0.347504
\(217\) 9.77112e10 2.99141
\(218\) −7.00950e10 −2.10200
\(219\) −4.41718e9 −0.129762
\(220\) 1.76877e9 0.0509061
\(221\) 3.51366e10 0.990820
\(222\) −4.02486e9 −0.111215
\(223\) −4.91890e10 −1.33198 −0.665988 0.745963i \(-0.731990\pi\)
−0.665988 + 0.745963i \(0.731990\pi\)
\(224\) −1.13191e11 −3.00396
\(225\) 3.82577e10 0.995170
\(226\) 5.98959e10 1.52725
\(227\) 4.05034e10 1.01245 0.506227 0.862401i \(-0.331040\pi\)
0.506227 + 0.862401i \(0.331040\pi\)
\(228\) 1.82384e9 0.0446971
\(229\) −1.16797e10 −0.280653 −0.140327 0.990105i \(-0.544815\pi\)
−0.140327 + 0.990105i \(0.544815\pi\)
\(230\) −1.02221e9 −0.0240860
\(231\) 8.51093e9 0.196663
\(232\) 3.55773e10 0.806263
\(233\) 4.04904e9 0.0900016 0.0450008 0.998987i \(-0.485671\pi\)
0.0450008 + 0.998987i \(0.485671\pi\)
\(234\) −8.38723e10 −1.82872
\(235\) 1.21301e7 0.000259453 0
\(236\) −1.74159e11 −3.65462
\(237\) −3.97090e9 −0.0817563
\(238\) 1.59979e11 3.23197
\(239\) −4.91622e10 −0.974632 −0.487316 0.873226i \(-0.662024\pi\)
−0.487316 + 0.873226i \(0.662024\pi\)
\(240\) 1.06127e8 0.00206478
\(241\) −1.54268e10 −0.294577 −0.147288 0.989094i \(-0.547055\pi\)
−0.147288 + 0.989094i \(0.547055\pi\)
\(242\) −1.62079e11 −3.03779
\(243\) 1.10609e10 0.203499
\(244\) −1.71253e11 −3.09303
\(245\) 1.57511e9 0.0279295
\(246\) −4.35088e8 −0.00757476
\(247\) −1.60254e10 −0.273950
\(248\) −2.56928e11 −4.31300
\(249\) 1.12010e9 0.0184655
\(250\) 2.97797e9 0.0482160
\(251\) 8.61152e10 1.36946 0.684728 0.728798i \(-0.259921\pi\)
0.684728 + 0.728798i \(0.259921\pi\)
\(252\) −2.69112e11 −4.20369
\(253\) 1.05997e11 1.62649
\(254\) −1.38832e11 −2.09285
\(255\) −5.99228e7 −0.000887485 0
\(256\) −8.10308e10 −1.17915
\(257\) 6.63025e10 0.948049 0.474025 0.880512i \(-0.342801\pi\)
0.474025 + 0.880512i \(0.342801\pi\)
\(258\) −9.70082e9 −0.136307
\(259\) 1.13471e11 1.56689
\(260\) −2.30020e9 −0.0312165
\(261\) 2.35794e10 0.314521
\(262\) 2.14928e9 0.0281798
\(263\) 1.08526e11 1.39873 0.699364 0.714766i \(-0.253467\pi\)
0.699364 + 0.714766i \(0.253467\pi\)
\(264\) −2.23792e10 −0.283548
\(265\) 3.03043e8 0.00377484
\(266\) −7.29644e10 −0.893601
\(267\) −4.22653e9 −0.0508959
\(268\) 3.62845e11 4.29650
\(269\) 1.43596e11 1.67207 0.836037 0.548672i \(-0.184867\pi\)
0.836037 + 0.548672i \(0.184867\pi\)
\(270\) 2.86745e8 0.00328367
\(271\) 9.17668e10 1.03353 0.516766 0.856127i \(-0.327136\pi\)
0.516766 + 0.856127i \(0.327136\pi\)
\(272\) −2.06854e11 −2.29142
\(273\) −1.10680e10 −0.120597
\(274\) 5.77431e10 0.618903
\(275\) −1.54386e11 −1.62783
\(276\) 1.56879e10 0.162732
\(277\) 1.64024e11 1.67397 0.836986 0.547224i \(-0.184315\pi\)
0.836986 + 0.547224i \(0.184315\pi\)
\(278\) −2.19046e11 −2.19955
\(279\) −1.70283e11 −1.68249
\(280\) −6.08454e9 −0.0591584
\(281\) −1.58923e11 −1.52058 −0.760288 0.649586i \(-0.774942\pi\)
−0.760288 + 0.649586i \(0.774942\pi\)
\(282\) −2.64166e8 −0.00248746
\(283\) −1.04623e11 −0.969593 −0.484797 0.874627i \(-0.661106\pi\)
−0.484797 + 0.874627i \(0.661106\pi\)
\(284\) 2.34580e11 2.13972
\(285\) 2.73300e7 0.000245379 0
\(286\) 3.38460e11 2.99130
\(287\) 1.22663e10 0.106720
\(288\) 1.97259e11 1.68955
\(289\) −1.79096e9 −0.0151024
\(290\) 9.17629e8 0.00761861
\(291\) 1.50307e10 0.122875
\(292\) −5.63624e11 −4.53698
\(293\) 1.18366e11 0.938259 0.469129 0.883129i \(-0.344568\pi\)
0.469129 + 0.883129i \(0.344568\pi\)
\(294\) −3.43023e10 −0.267769
\(295\) −2.60976e9 −0.0200633
\(296\) −2.98369e11 −2.25913
\(297\) −2.97337e10 −0.221740
\(298\) 1.01713e11 0.747141
\(299\) −1.37843e11 −0.997392
\(300\) −2.28496e10 −0.162867
\(301\) 2.73492e11 1.92042
\(302\) −3.83621e11 −2.65382
\(303\) 3.72312e7 0.000253755 0
\(304\) 9.43435e10 0.633550
\(305\) −2.56621e9 −0.0169802
\(306\) −2.78798e11 −1.81779
\(307\) −6.01218e9 −0.0386287 −0.0193143 0.999813i \(-0.506148\pi\)
−0.0193143 + 0.999813i \(0.506148\pi\)
\(308\) 1.08598e12 6.87611
\(309\) 1.24285e10 0.0775545
\(310\) −6.62684e9 −0.0407548
\(311\) 2.24310e10 0.135965 0.0679824 0.997687i \(-0.478344\pi\)
0.0679824 + 0.997687i \(0.478344\pi\)
\(312\) 2.91030e10 0.173877
\(313\) 1.00030e11 0.589090 0.294545 0.955638i \(-0.404832\pi\)
0.294545 + 0.955638i \(0.404832\pi\)
\(314\) −2.85206e11 −1.65568
\(315\) −4.03261e9 −0.0230775
\(316\) −5.06679e11 −2.85852
\(317\) 4.25898e10 0.236886 0.118443 0.992961i \(-0.462210\pi\)
0.118443 + 0.992961i \(0.462210\pi\)
\(318\) −6.59960e9 −0.0361906
\(319\) −9.51525e10 −0.514472
\(320\) 2.00245e9 0.0106755
\(321\) −2.44235e10 −0.128391
\(322\) −6.27609e11 −3.25340
\(323\) −5.32696e10 −0.272313
\(324\) 4.66780e11 2.35321
\(325\) 2.00771e11 0.998217
\(326\) 2.52479e11 1.23807
\(327\) 1.61200e10 0.0779651
\(328\) −3.22538e10 −0.153868
\(329\) 7.44754e9 0.0350454
\(330\) −5.77217e8 −0.00267933
\(331\) −8.08377e10 −0.370159 −0.185079 0.982724i \(-0.559254\pi\)
−0.185079 + 0.982724i \(0.559254\pi\)
\(332\) 1.42923e11 0.645625
\(333\) −1.97749e11 −0.881281
\(334\) −5.72212e10 −0.251593
\(335\) 5.43720e9 0.0235871
\(336\) 6.51589e10 0.278899
\(337\) 3.44413e11 1.45461 0.727303 0.686317i \(-0.240774\pi\)
0.727303 + 0.686317i \(0.240774\pi\)
\(338\) 1.42250e9 0.00592825
\(339\) −1.37745e10 −0.0566469
\(340\) −7.64603e9 −0.0310299
\(341\) 6.87162e11 2.75210
\(342\) 1.27156e11 0.502598
\(343\) 5.13427e11 2.00288
\(344\) −7.19138e11 −2.76885
\(345\) 2.35081e8 0.000893371 0
\(346\) 7.44190e11 2.79152
\(347\) 9.48993e10 0.351383 0.175691 0.984445i \(-0.443784\pi\)
0.175691 + 0.984445i \(0.443784\pi\)
\(348\) −1.40829e10 −0.0514736
\(349\) 1.32442e11 0.477873 0.238936 0.971035i \(-0.423201\pi\)
0.238936 + 0.971035i \(0.423201\pi\)
\(350\) 9.14120e11 3.25609
\(351\) 3.86671e10 0.135975
\(352\) −7.96023e11 −2.76365
\(353\) 2.92730e11 1.00342 0.501709 0.865037i \(-0.332705\pi\)
0.501709 + 0.865037i \(0.332705\pi\)
\(354\) 5.68347e10 0.192353
\(355\) 3.51515e9 0.0117467
\(356\) −5.39296e11 −1.77952
\(357\) −3.67910e10 −0.119877
\(358\) −4.15367e11 −1.33647
\(359\) 4.62584e11 1.46982 0.734912 0.678163i \(-0.237224\pi\)
0.734912 + 0.678163i \(0.237224\pi\)
\(360\) 1.06036e10 0.0332731
\(361\) −2.98392e11 −0.924709
\(362\) −6.90918e11 −2.11465
\(363\) 3.72739e10 0.112674
\(364\) −1.41226e12 −4.21655
\(365\) −8.44585e9 −0.0249072
\(366\) 5.58863e10 0.162795
\(367\) −1.04700e11 −0.301265 −0.150633 0.988590i \(-0.548131\pi\)
−0.150633 + 0.988590i \(0.548131\pi\)
\(368\) 8.11503e11 2.30661
\(369\) −2.13767e10 −0.0600235
\(370\) −7.69571e9 −0.0213472
\(371\) 1.86060e11 0.509884
\(372\) 1.01702e11 0.275351
\(373\) −1.12070e11 −0.299778 −0.149889 0.988703i \(-0.547892\pi\)
−0.149889 + 0.988703i \(0.547892\pi\)
\(374\) 1.12507e12 2.97342
\(375\) −6.84856e8 −0.00178837
\(376\) −1.95830e10 −0.0505283
\(377\) 1.23741e11 0.315484
\(378\) 1.76054e11 0.443539
\(379\) 4.61565e11 1.14910 0.574549 0.818470i \(-0.305178\pi\)
0.574549 + 0.818470i \(0.305178\pi\)
\(380\) 3.48726e9 0.00857942
\(381\) 3.19277e10 0.0776256
\(382\) 6.58837e11 1.58304
\(383\) 3.67316e11 0.872260 0.436130 0.899884i \(-0.356349\pi\)
0.436130 + 0.899884i \(0.356349\pi\)
\(384\) 5.75770e9 0.0135132
\(385\) 1.62733e10 0.0377487
\(386\) 6.54639e11 1.50093
\(387\) −4.76619e11 −1.08012
\(388\) 1.91789e12 4.29617
\(389\) 9.77460e9 0.0216434 0.0108217 0.999941i \(-0.496555\pi\)
0.0108217 + 0.999941i \(0.496555\pi\)
\(390\) 7.50640e8 0.00164301
\(391\) −4.58202e11 −0.991430
\(392\) −2.54289e12 −5.43926
\(393\) −4.94278e8 −0.00104521
\(394\) −6.27157e10 −0.131112
\(395\) −7.59253e9 −0.0156928
\(396\) −1.89255e12 −3.86740
\(397\) −4.48800e11 −0.906767 −0.453384 0.891315i \(-0.649783\pi\)
−0.453384 + 0.891315i \(0.649783\pi\)
\(398\) −6.50804e11 −1.30010
\(399\) 1.67799e10 0.0331445
\(400\) −1.18196e12 −2.30852
\(401\) −5.86253e11 −1.13223 −0.566116 0.824326i \(-0.691554\pi\)
−0.566116 + 0.824326i \(0.691554\pi\)
\(402\) −1.18410e11 −0.226137
\(403\) −8.93619e11 −1.68764
\(404\) 4.75063e9 0.00887227
\(405\) 6.99466e9 0.0129187
\(406\) 5.63399e11 1.02908
\(407\) 7.97997e11 1.44154
\(408\) 9.67406e10 0.172838
\(409\) 1.36487e11 0.241178 0.120589 0.992703i \(-0.461522\pi\)
0.120589 + 0.992703i \(0.461522\pi\)
\(410\) −8.31908e8 −0.00145394
\(411\) −1.32794e10 −0.0229557
\(412\) 1.58586e12 2.71161
\(413\) −1.60232e12 −2.71003
\(414\) 1.09374e12 1.82985
\(415\) 2.14169e9 0.00354437
\(416\) 1.03519e12 1.69472
\(417\) 5.03749e10 0.0815834
\(418\) −5.13129e11 −0.822116
\(419\) −2.49774e11 −0.395899 −0.197949 0.980212i \(-0.563428\pi\)
−0.197949 + 0.980212i \(0.563428\pi\)
\(420\) 2.40850e9 0.00377680
\(421\) 2.33264e10 0.0361892 0.0180946 0.999836i \(-0.494240\pi\)
0.0180946 + 0.999836i \(0.494240\pi\)
\(422\) 1.09636e12 1.68285
\(423\) −1.29789e10 −0.0197110
\(424\) −4.89239e11 −0.735148
\(425\) 6.67377e11 0.992250
\(426\) −7.65522e10 −0.112620
\(427\) −1.57558e12 −2.29359
\(428\) −3.11639e12 −4.48906
\(429\) −7.78368e10 −0.110950
\(430\) −1.85484e10 −0.0261636
\(431\) −9.46176e10 −0.132076 −0.0660380 0.997817i \(-0.521036\pi\)
−0.0660380 + 0.997817i \(0.521036\pi\)
\(432\) −2.27639e11 −0.314463
\(433\) 6.50019e11 0.888650 0.444325 0.895866i \(-0.353444\pi\)
0.444325 + 0.895866i \(0.353444\pi\)
\(434\) −4.06870e12 −5.50493
\(435\) −2.11030e8 −0.000282581 0
\(436\) 2.05688e12 2.72596
\(437\) 2.08980e11 0.274119
\(438\) 1.83932e11 0.238794
\(439\) −3.84913e10 −0.0494621 −0.0247310 0.999694i \(-0.507873\pi\)
−0.0247310 + 0.999694i \(0.507873\pi\)
\(440\) −4.27900e10 −0.0544259
\(441\) −1.68534e12 −2.12184
\(442\) −1.46309e12 −1.82335
\(443\) 8.19656e11 1.01115 0.505574 0.862783i \(-0.331281\pi\)
0.505574 + 0.862783i \(0.331281\pi\)
\(444\) 1.18106e11 0.144228
\(445\) −8.08130e9 −0.00976925
\(446\) 2.04823e12 2.45116
\(447\) −2.33913e10 −0.0277121
\(448\) 1.22945e12 1.44198
\(449\) 4.54198e11 0.527395 0.263698 0.964605i \(-0.415058\pi\)
0.263698 + 0.964605i \(0.415058\pi\)
\(450\) −1.59305e12 −1.83136
\(451\) 8.62637e10 0.0981824
\(452\) −1.75759e12 −1.98060
\(453\) 8.82227e10 0.0984324
\(454\) −1.68656e12 −1.86316
\(455\) −2.11625e10 −0.0231482
\(456\) −4.41222e10 −0.0477876
\(457\) −2.51971e11 −0.270227 −0.135113 0.990830i \(-0.543140\pi\)
−0.135113 + 0.990830i \(0.543140\pi\)
\(458\) 4.86341e11 0.516471
\(459\) 1.28533e11 0.135163
\(460\) 2.99959e10 0.0312357
\(461\) 6.49296e11 0.669558 0.334779 0.942297i \(-0.391338\pi\)
0.334779 + 0.942297i \(0.391338\pi\)
\(462\) −3.54395e11 −0.361909
\(463\) 1.74357e12 1.76329 0.881646 0.471911i \(-0.156435\pi\)
0.881646 + 0.471911i \(0.156435\pi\)
\(464\) −7.28479e11 −0.729602
\(465\) 1.52400e9 0.00151163
\(466\) −1.68602e11 −0.165625
\(467\) −9.48810e11 −0.923109 −0.461555 0.887112i \(-0.652708\pi\)
−0.461555 + 0.887112i \(0.652708\pi\)
\(468\) 2.46117e12 2.37156
\(469\) 3.33829e12 3.18601
\(470\) −5.05097e8 −0.000477457 0
\(471\) 6.55899e10 0.0614106
\(472\) 4.21325e12 3.90731
\(473\) 1.92335e12 1.76679
\(474\) 1.65348e11 0.150452
\(475\) −3.04382e11 −0.274346
\(476\) −4.69445e12 −4.19135
\(477\) −3.24250e11 −0.286779
\(478\) 2.04711e12 1.79356
\(479\) 1.55616e12 1.35065 0.675327 0.737519i \(-0.264003\pi\)
0.675327 + 0.737519i \(0.264003\pi\)
\(480\) −1.76543e9 −0.00151798
\(481\) −1.03775e12 −0.883979
\(482\) 6.42372e11 0.542094
\(483\) 1.44334e11 0.120672
\(484\) 4.75607e12 3.93953
\(485\) 2.87394e10 0.0235853
\(486\) −4.60576e11 −0.374488
\(487\) 1.98792e12 1.60147 0.800734 0.599019i \(-0.204443\pi\)
0.800734 + 0.599019i \(0.204443\pi\)
\(488\) 4.14294e12 3.30689
\(489\) −5.80635e10 −0.0459212
\(490\) −6.55876e10 −0.0513972
\(491\) −2.01335e11 −0.156334 −0.0781669 0.996940i \(-0.524907\pi\)
−0.0781669 + 0.996940i \(0.524907\pi\)
\(492\) 1.27673e10 0.00982327
\(493\) 4.11324e11 0.313598
\(494\) 6.67297e11 0.504136
\(495\) −2.83597e10 −0.0212314
\(496\) 5.26086e12 3.90291
\(497\) 2.15821e12 1.58668
\(498\) −4.66411e10 −0.0339811
\(499\) −2.37825e11 −0.171714 −0.0858568 0.996307i \(-0.527363\pi\)
−0.0858568 + 0.996307i \(0.527363\pi\)
\(500\) −8.73862e10 −0.0625285
\(501\) 1.31594e10 0.00933180
\(502\) −3.58584e12 −2.52014
\(503\) 1.70034e12 1.18435 0.592174 0.805810i \(-0.298270\pi\)
0.592174 + 0.805810i \(0.298270\pi\)
\(504\) 6.51034e12 4.49434
\(505\) 7.11877e7 4.87073e−5 0
\(506\) −4.41371e12 −2.99314
\(507\) −3.27137e8 −0.000219884 0
\(508\) 4.07391e12 2.71409
\(509\) −2.38839e12 −1.57716 −0.788579 0.614933i \(-0.789183\pi\)
−0.788579 + 0.614933i \(0.789183\pi\)
\(510\) 2.49519e9 0.00163319
\(511\) −5.18552e12 −3.36433
\(512\) 3.06628e12 1.97196
\(513\) −5.86221e10 −0.0373709
\(514\) −2.76084e12 −1.74464
\(515\) 2.37639e10 0.0148863
\(516\) 2.84663e11 0.176769
\(517\) 5.23754e10 0.0322419
\(518\) −4.72495e12 −2.88346
\(519\) −1.71144e11 −0.103540
\(520\) 5.56462e10 0.0333749
\(521\) 5.23422e10 0.0311230 0.0155615 0.999879i \(-0.495046\pi\)
0.0155615 + 0.999879i \(0.495046\pi\)
\(522\) −9.81845e11 −0.578796
\(523\) 1.80904e12 1.05728 0.528640 0.848846i \(-0.322702\pi\)
0.528640 + 0.848846i \(0.322702\pi\)
\(524\) −6.30689e10 −0.0365447
\(525\) −2.10223e11 −0.120771
\(526\) −4.51903e12 −2.57401
\(527\) −2.97046e12 −1.67755
\(528\) 4.58236e11 0.256588
\(529\) −3.59352e9 −0.00199512
\(530\) −1.26187e10 −0.00694663
\(531\) 2.79239e12 1.52423
\(532\) 2.14108e12 1.15886
\(533\) −1.12181e11 −0.0602072
\(534\) 1.75993e11 0.0936610
\(535\) −4.66988e10 −0.0246442
\(536\) −8.77793e12 −4.59357
\(537\) 9.55235e10 0.0495708
\(538\) −5.97932e12 −3.07703
\(539\) 6.80103e12 3.47077
\(540\) −8.41430e9 −0.00425840
\(541\) −4.40577e11 −0.221123 −0.110561 0.993869i \(-0.535265\pi\)
−0.110561 + 0.993869i \(0.535265\pi\)
\(542\) −3.82117e12 −1.90195
\(543\) 1.58893e11 0.0784342
\(544\) 3.44104e12 1.68459
\(545\) 3.08222e10 0.0149651
\(546\) 4.60873e11 0.221929
\(547\) 1.26833e12 0.605746 0.302873 0.953031i \(-0.402054\pi\)
0.302873 + 0.953031i \(0.402054\pi\)
\(548\) −1.69443e12 −0.802620
\(549\) 2.74580e12 1.29001
\(550\) 6.42862e12 2.99561
\(551\) −1.87600e11 −0.0867062
\(552\) −3.79520e11 −0.173984
\(553\) −4.66161e12 −2.11969
\(554\) −6.82996e12 −3.08052
\(555\) 1.76981e9 0.000791787 0
\(556\) 6.42774e12 2.85247
\(557\) −8.45744e11 −0.372298 −0.186149 0.982522i \(-0.559601\pi\)
−0.186149 + 0.982522i \(0.559601\pi\)
\(558\) 7.09059e12 3.09620
\(559\) −2.50122e12 −1.08343
\(560\) 1.24587e11 0.0535335
\(561\) −2.58736e11 −0.110287
\(562\) 6.61756e12 2.79824
\(563\) 1.00197e10 0.00420307 0.00210154 0.999998i \(-0.499331\pi\)
0.00210154 + 0.999998i \(0.499331\pi\)
\(564\) 7.75173e9 0.00322584
\(565\) −2.63374e10 −0.0108731
\(566\) 4.35652e12 1.78429
\(567\) 4.29453e12 1.74499
\(568\) −5.67494e12 −2.28767
\(569\) −2.50624e12 −1.00234 −0.501172 0.865348i \(-0.667098\pi\)
−0.501172 + 0.865348i \(0.667098\pi\)
\(570\) −1.13802e9 −0.000451559 0
\(571\) −2.66132e12 −1.04769 −0.523847 0.851813i \(-0.675504\pi\)
−0.523847 + 0.851813i \(0.675504\pi\)
\(572\) −9.93182e12 −3.87924
\(573\) −1.51515e11 −0.0587165
\(574\) −5.10769e11 −0.196391
\(575\) −2.61817e12 −0.998830
\(576\) −2.14259e12 −0.811030
\(577\) −1.96260e12 −0.737124 −0.368562 0.929603i \(-0.620150\pi\)
−0.368562 + 0.929603i \(0.620150\pi\)
\(578\) 7.45757e10 0.0277922
\(579\) −1.50550e11 −0.0556707
\(580\) −2.69271e10 −0.00988014
\(581\) 1.31494e12 0.478754
\(582\) −6.25881e11 −0.226120
\(583\) 1.30849e12 0.469094
\(584\) 1.36352e13 4.85068
\(585\) 3.68803e10 0.0130195
\(586\) −4.92877e12 −1.72663
\(587\) 5.04870e11 0.175512 0.0877562 0.996142i \(-0.472030\pi\)
0.0877562 + 0.996142i \(0.472030\pi\)
\(588\) 1.00657e12 0.347254
\(589\) 1.35479e12 0.463824
\(590\) 1.08670e11 0.0369213
\(591\) 1.44230e10 0.00486307
\(592\) 6.10940e12 2.04433
\(593\) −3.55790e12 −1.18154 −0.590769 0.806841i \(-0.701175\pi\)
−0.590769 + 0.806841i \(0.701175\pi\)
\(594\) 1.23811e12 0.408057
\(595\) −7.03460e10 −0.0230098
\(596\) −2.98468e12 −0.968924
\(597\) 1.49668e11 0.0482218
\(598\) 5.73981e12 1.83545
\(599\) −4.62502e12 −1.46789 −0.733944 0.679210i \(-0.762322\pi\)
−0.733944 + 0.679210i \(0.762322\pi\)
\(600\) 5.52775e11 0.174128
\(601\) 5.31850e12 1.66285 0.831426 0.555635i \(-0.187525\pi\)
0.831426 + 0.555635i \(0.187525\pi\)
\(602\) −1.13882e13 −3.53404
\(603\) −5.81770e12 −1.79194
\(604\) 1.12570e13 3.44158
\(605\) 7.12693e10 0.0216273
\(606\) −1.55031e9 −0.000466973 0
\(607\) 5.95088e12 1.77923 0.889616 0.456710i \(-0.150972\pi\)
0.889616 + 0.456710i \(0.150972\pi\)
\(608\) −1.56942e12 −0.465770
\(609\) −1.29567e11 −0.0381695
\(610\) 1.06857e11 0.0312478
\(611\) −6.81115e10 −0.0197713
\(612\) 8.18111e12 2.35739
\(613\) −2.14687e12 −0.614094 −0.307047 0.951694i \(-0.599341\pi\)
−0.307047 + 0.951694i \(0.599341\pi\)
\(614\) 2.50348e11 0.0710863
\(615\) 1.91317e8 5.39281e−5 0
\(616\) −2.62719e13 −7.35154
\(617\) −1.73802e12 −0.482803 −0.241402 0.970425i \(-0.577607\pi\)
−0.241402 + 0.970425i \(0.577607\pi\)
\(618\) −5.17525e11 −0.142719
\(619\) −1.75267e12 −0.479835 −0.239917 0.970793i \(-0.577120\pi\)
−0.239917 + 0.970793i \(0.577120\pi\)
\(620\) 1.94459e11 0.0528525
\(621\) −5.04242e11 −0.136059
\(622\) −9.34027e11 −0.250209
\(623\) −4.96170e12 −1.31958
\(624\) −5.95912e11 −0.157344
\(625\) 3.81273e12 0.999485
\(626\) −4.16526e12 −1.08407
\(627\) 1.18006e11 0.0304930
\(628\) 8.36914e12 2.14715
\(629\) −3.44958e12 −0.878695
\(630\) 1.67918e11 0.0424684
\(631\) −2.82107e12 −0.708405 −0.354203 0.935169i \(-0.615248\pi\)
−0.354203 + 0.935169i \(0.615248\pi\)
\(632\) 1.22575e13 3.05616
\(633\) −2.52133e11 −0.0624185
\(634\) −1.77344e12 −0.435929
\(635\) 6.10471e10 0.0148999
\(636\) 1.93660e11 0.0469335
\(637\) −8.84439e12 −2.12834
\(638\) 3.96215e12 0.946756
\(639\) −3.76115e12 −0.892414
\(640\) 1.10090e10 0.00259380
\(641\) 6.58329e12 1.54022 0.770109 0.637913i \(-0.220202\pi\)
0.770109 + 0.637913i \(0.220202\pi\)
\(642\) 1.01700e12 0.236272
\(643\) 6.63337e12 1.53033 0.765164 0.643835i \(-0.222658\pi\)
0.765164 + 0.643835i \(0.222658\pi\)
\(644\) 1.84167e13 4.21915
\(645\) 4.26564e9 0.000970433 0
\(646\) 2.21815e12 0.501123
\(647\) 7.05174e12 1.58208 0.791038 0.611767i \(-0.209541\pi\)
0.791038 + 0.611767i \(0.209541\pi\)
\(648\) −1.12923e13 −2.51591
\(649\) −1.12685e13 −2.49324
\(650\) −8.36009e12 −1.83697
\(651\) 9.35694e11 0.204183
\(652\) −7.40879e12 −1.60558
\(653\) −1.25730e12 −0.270601 −0.135300 0.990805i \(-0.543200\pi\)
−0.135300 + 0.990805i \(0.543200\pi\)
\(654\) −6.71238e11 −0.143475
\(655\) −9.45082e8 −0.000200624 0
\(656\) 6.60427e11 0.139238
\(657\) 9.03690e12 1.89224
\(658\) −3.10116e11 −0.0644922
\(659\) −4.90612e12 −1.01334 −0.506668 0.862141i \(-0.669123\pi\)
−0.506668 + 0.862141i \(0.669123\pi\)
\(660\) 1.69379e10 0.00347467
\(661\) −3.67929e12 −0.749648 −0.374824 0.927096i \(-0.622297\pi\)
−0.374824 + 0.927096i \(0.622297\pi\)
\(662\) 3.36608e12 0.681183
\(663\) 3.36472e11 0.0676299
\(664\) −3.45758e12 −0.690266
\(665\) 3.20839e10 0.00636194
\(666\) 8.23426e12 1.62177
\(667\) −1.61365e12 −0.315678
\(668\) 1.67911e12 0.326276
\(669\) −4.71039e11 −0.0909159
\(670\) −2.26405e11 −0.0434060
\(671\) −1.10804e13 −2.11011
\(672\) −1.08393e12 −0.205040
\(673\) 2.99155e12 0.562119 0.281059 0.959690i \(-0.409314\pi\)
0.281059 + 0.959690i \(0.409314\pi\)
\(674\) −1.43414e13 −2.67683
\(675\) 7.34435e11 0.136171
\(676\) −4.17421e10 −0.00768801
\(677\) 6.62303e12 1.21174 0.605868 0.795565i \(-0.292826\pi\)
0.605868 + 0.795565i \(0.292826\pi\)
\(678\) 5.73570e11 0.104244
\(679\) 1.76452e13 3.18576
\(680\) 1.84972e11 0.0331754
\(681\) 3.87865e11 0.0691064
\(682\) −2.86135e13 −5.06455
\(683\) −3.50547e12 −0.616387 −0.308193 0.951324i \(-0.599724\pi\)
−0.308193 + 0.951324i \(0.599724\pi\)
\(684\) −3.73130e12 −0.651790
\(685\) −2.53908e10 −0.00440625
\(686\) −2.13791e13 −3.68579
\(687\) −1.11846e11 −0.0191564
\(688\) 1.47250e13 2.50558
\(689\) −1.70162e12 −0.287657
\(690\) −9.78879e9 −0.00164402
\(691\) 8.32278e12 1.38873 0.694364 0.719624i \(-0.255686\pi\)
0.694364 + 0.719624i \(0.255686\pi\)
\(692\) −2.18376e13 −3.62016
\(693\) −1.74121e13 −2.86782
\(694\) −3.95161e12 −0.646631
\(695\) 9.63190e10 0.0156596
\(696\) 3.40692e11 0.0550326
\(697\) −3.72900e11 −0.0598474
\(698\) −5.51490e12 −0.879403
\(699\) 3.87740e10 0.00614319
\(700\) −2.68241e13 −4.22264
\(701\) 5.34082e11 0.0835366 0.0417683 0.999127i \(-0.486701\pi\)
0.0417683 + 0.999127i \(0.486701\pi\)
\(702\) −1.61010e12 −0.250228
\(703\) 1.57331e12 0.242949
\(704\) 8.64622e12 1.32663
\(705\) 1.16159e8 1.77093e−5 0
\(706\) −1.21893e13 −1.84654
\(707\) 4.37073e10 0.00657911
\(708\) −1.66777e12 −0.249451
\(709\) 9.42279e11 0.140046 0.0700232 0.997545i \(-0.477693\pi\)
0.0700232 + 0.997545i \(0.477693\pi\)
\(710\) −1.46371e11 −0.0216169
\(711\) 8.12387e12 1.19220
\(712\) 1.30466e13 1.90256
\(713\) 1.16533e13 1.68868
\(714\) 1.53198e12 0.220603
\(715\) −1.48827e11 −0.0212964
\(716\) 1.21886e13 1.73319
\(717\) −4.70782e11 −0.0665249
\(718\) −1.92620e13 −2.70484
\(719\) 5.63560e12 0.786430 0.393215 0.919447i \(-0.371363\pi\)
0.393215 + 0.919447i \(0.371363\pi\)
\(720\) −2.17119e11 −0.0301094
\(721\) 1.45904e13 2.01075
\(722\) 1.24251e13 1.70169
\(723\) −1.47729e11 −0.0201068
\(724\) 2.02744e13 2.74236
\(725\) 2.35030e12 0.315939
\(726\) −1.55208e12 −0.207348
\(727\) −2.34395e12 −0.311203 −0.155601 0.987820i \(-0.549732\pi\)
−0.155601 + 0.987820i \(0.549732\pi\)
\(728\) 3.41653e13 4.50810
\(729\) −7.41326e12 −0.972155
\(730\) 3.51685e11 0.0458355
\(731\) −8.31426e12 −1.07695
\(732\) −1.63994e12 −0.211119
\(733\) 3.13413e12 0.401004 0.200502 0.979693i \(-0.435743\pi\)
0.200502 + 0.979693i \(0.435743\pi\)
\(734\) 4.35971e12 0.554402
\(735\) 1.50834e10 0.00190637
\(736\) −1.34994e13 −1.69576
\(737\) 2.34768e13 2.93113
\(738\) 8.90125e11 0.110458
\(739\) −9.79933e12 −1.20864 −0.604319 0.796742i \(-0.706555\pi\)
−0.604319 + 0.796742i \(0.706555\pi\)
\(740\) 2.25824e11 0.0276839
\(741\) −1.53461e11 −0.0186989
\(742\) −7.74756e12 −0.938312
\(743\) 1.38593e13 1.66837 0.834186 0.551484i \(-0.185938\pi\)
0.834186 + 0.551484i \(0.185938\pi\)
\(744\) −2.46037e12 −0.294390
\(745\) −4.47251e10 −0.00531923
\(746\) 4.66660e12 0.551665
\(747\) −2.29156e12 −0.269271
\(748\) −3.30142e13 −3.85605
\(749\) −2.86718e13 −3.32879
\(750\) 2.85174e10 0.00329105
\(751\) −3.36991e12 −0.386579 −0.193289 0.981142i \(-0.561916\pi\)
−0.193289 + 0.981142i \(0.561916\pi\)
\(752\) 4.00982e11 0.0457240
\(753\) 8.24649e11 0.0934742
\(754\) −5.15257e12 −0.580568
\(755\) 1.68686e11 0.0188937
\(756\) −5.16615e12 −0.575200
\(757\) 3.82296e12 0.423125 0.211562 0.977364i \(-0.432145\pi\)
0.211562 + 0.977364i \(0.432145\pi\)
\(758\) −1.92196e13 −2.11462
\(759\) 1.01504e12 0.111018
\(760\) −8.43635e10 −0.00917262
\(761\) 4.96673e12 0.536834 0.268417 0.963303i \(-0.413500\pi\)
0.268417 + 0.963303i \(0.413500\pi\)
\(762\) −1.32947e12 −0.142850
\(763\) 1.89240e13 2.02140
\(764\) −1.93330e13 −2.05296
\(765\) 1.22593e11 0.0129416
\(766\) −1.52951e13 −1.60517
\(767\) 1.46540e13 1.52890
\(768\) −7.75960e11 −0.0804848
\(769\) −5.52575e12 −0.569801 −0.284900 0.958557i \(-0.591961\pi\)
−0.284900 + 0.958557i \(0.591961\pi\)
\(770\) −6.77620e11 −0.0694669
\(771\) 6.34920e11 0.0647104
\(772\) −1.92098e13 −1.94646
\(773\) 7.16384e12 0.721670 0.360835 0.932630i \(-0.382492\pi\)
0.360835 + 0.932630i \(0.382492\pi\)
\(774\) 1.98464e13 1.98769
\(775\) −1.69732e13 −1.69007
\(776\) −4.63976e13 −4.59322
\(777\) 1.08662e12 0.106950
\(778\) −4.07015e11 −0.0398292
\(779\) 1.70075e11 0.0165471
\(780\) −2.20269e10 −0.00213073
\(781\) 1.51778e13 1.45975
\(782\) 1.90796e13 1.82448
\(783\) 4.52654e11 0.0430366
\(784\) 5.20681e13 4.92209
\(785\) 1.25411e11 0.0117875
\(786\) 2.05818e10 0.00192345
\(787\) −1.48219e12 −0.137726 −0.0688630 0.997626i \(-0.521937\pi\)
−0.0688630 + 0.997626i \(0.521937\pi\)
\(788\) 1.84034e12 0.170032
\(789\) 1.03926e12 0.0954722
\(790\) 3.16153e11 0.0288786
\(791\) −1.61704e13 −1.46868
\(792\) 4.57845e13 4.13481
\(793\) 1.44095e13 1.29396
\(794\) 1.86881e13 1.66868
\(795\) 2.90198e9 0.000257657 0
\(796\) 1.90973e13 1.68602
\(797\) 1.43743e12 0.126190 0.0630950 0.998008i \(-0.479903\pi\)
0.0630950 + 0.998008i \(0.479903\pi\)
\(798\) −6.98716e11 −0.0609940
\(799\) −2.26408e11 −0.0196531
\(800\) 1.96621e13 1.69717
\(801\) 8.64684e12 0.742183
\(802\) 2.44116e13 2.08359
\(803\) −3.64676e13 −3.09519
\(804\) 3.47465e12 0.293264
\(805\) 2.75972e11 0.0231624
\(806\) 3.72103e13 3.10567
\(807\) 1.37509e12 0.114130
\(808\) −1.14927e11 −0.00948573
\(809\) −1.65622e13 −1.35941 −0.679704 0.733486i \(-0.737892\pi\)
−0.679704 + 0.733486i \(0.737892\pi\)
\(810\) −2.91258e11 −0.0237736
\(811\) 1.06569e13 0.865042 0.432521 0.901624i \(-0.357624\pi\)
0.432521 + 0.901624i \(0.357624\pi\)
\(812\) −1.65325e13 −1.33455
\(813\) 8.78769e11 0.0705452
\(814\) −3.32286e13 −2.65279
\(815\) −1.11020e11 −0.00881439
\(816\) −1.98086e12 −0.156404
\(817\) 3.79203e12 0.297764
\(818\) −5.68333e12 −0.443827
\(819\) 2.26435e13 1.75860
\(820\) 2.44116e10 0.00188554
\(821\) 1.06055e13 0.814678 0.407339 0.913277i \(-0.366457\pi\)
0.407339 + 0.913277i \(0.366457\pi\)
\(822\) 5.52955e11 0.0422441
\(823\) −7.80964e12 −0.593379 −0.296689 0.954974i \(-0.595883\pi\)
−0.296689 + 0.954974i \(0.595883\pi\)
\(824\) −3.83650e13 −2.89910
\(825\) −1.47841e12 −0.111110
\(826\) 6.67207e13 4.98713
\(827\) −5.05136e12 −0.375521 −0.187760 0.982215i \(-0.560123\pi\)
−0.187760 + 0.982215i \(0.560123\pi\)
\(828\) −3.20950e13 −2.37302
\(829\) 1.43161e13 1.05276 0.526381 0.850249i \(-0.323549\pi\)
0.526381 + 0.850249i \(0.323549\pi\)
\(830\) −8.91799e10 −0.00652252
\(831\) 1.57071e12 0.114259
\(832\) −1.12440e13 −0.813513
\(833\) −2.93994e13 −2.11562
\(834\) −2.09761e12 −0.150134
\(835\) 2.51613e10 0.00179120
\(836\) 1.50573e13 1.06615
\(837\) −3.26893e12 −0.230219
\(838\) 1.04006e13 0.728552
\(839\) 1.19309e13 0.831274 0.415637 0.909531i \(-0.363559\pi\)
0.415637 + 0.909531i \(0.363559\pi\)
\(840\) −5.82662e10 −0.00403794
\(841\) −1.30586e13 −0.900148
\(842\) −9.71313e11 −0.0665970
\(843\) −1.52186e12 −0.103789
\(844\) −3.21717e13 −2.18239
\(845\) −6.25501e8 −4.22059e−5 0
\(846\) 5.40444e11 0.0362730
\(847\) 4.37574e13 2.92130
\(848\) 1.00176e13 0.665249
\(849\) −1.00188e12 −0.0661810
\(850\) −2.77896e13 −1.82598
\(851\) 1.35329e13 0.884522
\(852\) 2.24636e12 0.146050
\(853\) −1.48973e13 −0.963470 −0.481735 0.876317i \(-0.659993\pi\)
−0.481735 + 0.876317i \(0.659993\pi\)
\(854\) 6.56074e13 4.22078
\(855\) −5.59132e10 −0.00357822
\(856\) 7.53916e13 4.79944
\(857\) −1.09367e13 −0.692586 −0.346293 0.938126i \(-0.612560\pi\)
−0.346293 + 0.938126i \(0.612560\pi\)
\(858\) 3.24113e12 0.204175
\(859\) 6.04374e12 0.378736 0.189368 0.981906i \(-0.439356\pi\)
0.189368 + 0.981906i \(0.439356\pi\)
\(860\) 5.44287e11 0.0339301
\(861\) 1.17463e11 0.00728431
\(862\) 3.93988e12 0.243053
\(863\) 2.94916e13 1.80988 0.904940 0.425539i \(-0.139915\pi\)
0.904940 + 0.425539i \(0.139915\pi\)
\(864\) 3.78680e12 0.231185
\(865\) −3.27235e11 −0.0198741
\(866\) −2.70668e13 −1.63533
\(867\) −1.71505e10 −0.00103084
\(868\) 1.19393e14 7.13902
\(869\) −3.27832e13 −1.95012
\(870\) 8.78731e9 0.000520019 0
\(871\) −3.05304e13 −1.79743
\(872\) −4.97600e13 −2.91444
\(873\) −3.07507e13 −1.79180
\(874\) −8.70195e12 −0.504446
\(875\) −8.03982e11 −0.0463671
\(876\) −5.39732e12 −0.309678
\(877\) −7.72822e12 −0.441145 −0.220573 0.975371i \(-0.570793\pi\)
−0.220573 + 0.975371i \(0.570793\pi\)
\(878\) 1.60278e12 0.0910225
\(879\) 1.13349e12 0.0640422
\(880\) 8.76167e11 0.0492510
\(881\) 1.71354e13 0.958302 0.479151 0.877732i \(-0.340945\pi\)
0.479151 + 0.877732i \(0.340945\pi\)
\(882\) 7.01775e13 3.90471
\(883\) 2.58779e13 1.43254 0.716268 0.697826i \(-0.245849\pi\)
0.716268 + 0.697826i \(0.245849\pi\)
\(884\) 4.29332e13 2.36460
\(885\) −2.49913e10 −0.00136945
\(886\) −3.41305e13 −1.86076
\(887\) 1.04919e13 0.569110 0.284555 0.958660i \(-0.408154\pi\)
0.284555 + 0.958660i \(0.408154\pi\)
\(888\) −2.85722e12 −0.154200
\(889\) 3.74813e13 2.01260
\(890\) 3.36506e11 0.0179778
\(891\) 3.02016e13 1.60539
\(892\) −6.01037e13 −3.17877
\(893\) 1.03262e11 0.00543386
\(894\) 9.74013e11 0.0509972
\(895\) 1.82645e11 0.00951491
\(896\) 6.75921e12 0.350356
\(897\) −1.32000e12 −0.0680784
\(898\) −1.89128e13 −0.970538
\(899\) −1.04611e13 −0.534144
\(900\) 4.67468e13 2.37498
\(901\) −5.65631e12 −0.285938
\(902\) −3.59202e12 −0.180680
\(903\) 2.61899e12 0.131081
\(904\) 4.25196e13 2.11754
\(905\) 3.03810e11 0.0150551
\(906\) −3.67360e12 −0.181140
\(907\) −2.64175e13 −1.29616 −0.648081 0.761571i \(-0.724428\pi\)
−0.648081 + 0.761571i \(0.724428\pi\)
\(908\) 4.94908e13 2.41623
\(909\) −7.61695e10 −0.00370036
\(910\) 8.81209e11 0.0425984
\(911\) −9.97528e12 −0.479835 −0.239918 0.970793i \(-0.577120\pi\)
−0.239918 + 0.970793i \(0.577120\pi\)
\(912\) 9.03444e11 0.0432439
\(913\) 9.24741e12 0.440455
\(914\) 1.04921e13 0.497284
\(915\) −2.45743e10 −0.00115901
\(916\) −1.42713e13 −0.669782
\(917\) −5.80255e11 −0.0270992
\(918\) −5.35210e12 −0.248732
\(919\) −2.41824e13 −1.11835 −0.559177 0.829048i \(-0.688883\pi\)
−0.559177 + 0.829048i \(0.688883\pi\)
\(920\) −7.25659e11 −0.0333955
\(921\) −5.75733e10 −0.00263665
\(922\) −2.70367e13 −1.23215
\(923\) −1.97379e13 −0.895146
\(924\) 1.03994e13 0.469338
\(925\) −1.97109e13 −0.885254
\(926\) −7.26022e13 −3.24489
\(927\) −2.54269e13 −1.13093
\(928\) 1.21183e13 0.536385
\(929\) −1.86264e13 −0.820461 −0.410231 0.911982i \(-0.634552\pi\)
−0.410231 + 0.911982i \(0.634552\pi\)
\(930\) −6.34593e10 −0.00278178
\(931\) 1.34087e13 0.584943
\(932\) 4.94749e12 0.214790
\(933\) 2.14802e11 0.00928048
\(934\) 3.95085e13 1.69875
\(935\) −4.94714e11 −0.0211691
\(936\) −5.95404e13 −2.53554
\(937\) 1.83167e13 0.776281 0.388140 0.921600i \(-0.373118\pi\)
0.388140 + 0.921600i \(0.373118\pi\)
\(938\) −1.39007e14 −5.86304
\(939\) 9.57900e11 0.0402092
\(940\) 1.48216e10 0.000619186 0
\(941\) 4.53813e13 1.88679 0.943396 0.331668i \(-0.107611\pi\)
0.943396 + 0.331668i \(0.107611\pi\)
\(942\) −2.73117e12 −0.113011
\(943\) 1.46291e12 0.0602443
\(944\) −8.62703e13 −3.53580
\(945\) −7.74143e10 −0.00315775
\(946\) −8.00886e13 −3.25133
\(947\) 9.18185e11 0.0370984 0.0185492 0.999828i \(-0.494095\pi\)
0.0185492 + 0.999828i \(0.494095\pi\)
\(948\) −4.85201e12 −0.195112
\(949\) 4.74243e13 1.89803
\(950\) 1.26745e13 0.504864
\(951\) 4.07845e11 0.0161690
\(952\) 1.13568e14 4.48115
\(953\) 4.09918e13 1.60983 0.804913 0.593393i \(-0.202212\pi\)
0.804913 + 0.593393i \(0.202212\pi\)
\(954\) 1.35018e13 0.527745
\(955\) −2.89704e11 −0.0112704
\(956\) −6.00709e13 −2.32597
\(957\) −9.11191e11 −0.0351160
\(958\) −6.47985e13 −2.48554
\(959\) −1.55893e13 −0.595171
\(960\) 1.91757e10 0.000728670 0
\(961\) 4.91072e13 1.85733
\(962\) 4.32121e13 1.62674
\(963\) 4.99669e13 1.87225
\(964\) −1.88499e13 −0.703011
\(965\) −2.87858e11 −0.0106858
\(966\) −6.01005e12 −0.222066
\(967\) −2.76762e13 −1.01786 −0.508929 0.860808i \(-0.669959\pi\)
−0.508929 + 0.860808i \(0.669959\pi\)
\(968\) −1.15059e14 −4.21192
\(969\) −5.10116e11 −0.0185871
\(970\) −1.19671e12 −0.0434027
\(971\) −6.07375e12 −0.219266 −0.109633 0.993972i \(-0.534967\pi\)
−0.109633 + 0.993972i \(0.534967\pi\)
\(972\) 1.35152e13 0.485652
\(973\) 5.91373e13 2.11521
\(974\) −8.27771e13 −2.94710
\(975\) 1.92260e12 0.0681347
\(976\) −8.48308e13 −2.99247
\(977\) −3.01355e13 −1.05816 −0.529082 0.848570i \(-0.677464\pi\)
−0.529082 + 0.848570i \(0.677464\pi\)
\(978\) 2.41777e12 0.0845064
\(979\) −3.48936e13 −1.21401
\(980\) 1.92461e12 0.0666540
\(981\) −3.29791e13 −1.13692
\(982\) 8.38360e12 0.287693
\(983\) −1.52100e13 −0.519562 −0.259781 0.965668i \(-0.583650\pi\)
−0.259781 + 0.965668i \(0.583650\pi\)
\(984\) −3.08866e11 −0.0105025
\(985\) 2.75773e10 0.000933446 0
\(986\) −1.71276e13 −0.577098
\(987\) 7.13184e10 0.00239207
\(988\) −1.95813e13 −0.653785
\(989\) 3.26174e13 1.08409
\(990\) 1.18090e12 0.0390710
\(991\) −2.11126e13 −0.695360 −0.347680 0.937613i \(-0.613030\pi\)
−0.347680 + 0.937613i \(0.613030\pi\)
\(992\) −8.75150e13 −2.86933
\(993\) −7.74111e11 −0.0252657
\(994\) −8.98679e13 −2.91989
\(995\) 2.86171e11 0.00925598
\(996\) 1.36865e12 0.0440681
\(997\) 4.02750e13 1.29094 0.645472 0.763784i \(-0.276661\pi\)
0.645472 + 0.763784i \(0.276661\pi\)
\(998\) 9.90304e12 0.315996
\(999\) −3.79619e12 −0.120588
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 197.10.a.b.1.3 76
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
197.10.a.b.1.3 76 1.1 even 1 trivial