Properties

Label 197.10.a.b.1.17
Level $197$
Weight $10$
Character 197.1
Self dual yes
Analytic conductor $101.462$
Analytic rank $0$
Dimension $76$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [197,10,Mod(1,197)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(197, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("197.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 197 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 197.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(101.462059724\)
Analytic rank: \(0\)
Dimension: \(76\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.17
Character \(\chi\) \(=\) 197.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-28.5607 q^{2} -17.8798 q^{3} +303.711 q^{4} -2276.73 q^{5} +510.659 q^{6} +4449.75 q^{7} +5948.86 q^{8} -19363.3 q^{9} +O(q^{10})\) \(q-28.5607 q^{2} -17.8798 q^{3} +303.711 q^{4} -2276.73 q^{5} +510.659 q^{6} +4449.75 q^{7} +5948.86 q^{8} -19363.3 q^{9} +65025.0 q^{10} +83081.5 q^{11} -5430.29 q^{12} +187916. q^{13} -127088. q^{14} +40707.5 q^{15} -325404. q^{16} +667853. q^{17} +553029. q^{18} +411794. q^{19} -691470. q^{20} -79560.6 q^{21} -2.37286e6 q^{22} -775674. q^{23} -106364. q^{24} +3.23040e6 q^{25} -5.36702e6 q^{26} +698140. q^{27} +1.35144e6 q^{28} -3.43186e6 q^{29} -1.16263e6 q^{30} +8.79207e6 q^{31} +6.24792e6 q^{32} -1.48548e6 q^{33} -1.90743e7 q^{34} -1.01309e7 q^{35} -5.88086e6 q^{36} -814093. q^{37} -1.17611e7 q^{38} -3.35991e6 q^{39} -1.35440e7 q^{40} +4.73614e6 q^{41} +2.27230e6 q^{42} +3.02898e7 q^{43} +2.52328e7 q^{44} +4.40851e7 q^{45} +2.21538e7 q^{46} +2.02845e7 q^{47} +5.81815e6 q^{48} -2.05533e7 q^{49} -9.22622e7 q^{50} -1.19411e7 q^{51} +5.70723e7 q^{52} -3.68644e7 q^{53} -1.99393e7 q^{54} -1.89155e8 q^{55} +2.64710e7 q^{56} -7.36279e6 q^{57} +9.80162e7 q^{58} +1.23982e8 q^{59} +1.23633e7 q^{60} +9.31762e7 q^{61} -2.51107e8 q^{62} -8.61619e7 q^{63} -1.18382e7 q^{64} -4.27836e8 q^{65} +4.24263e7 q^{66} +3.56808e7 q^{67} +2.02834e8 q^{68} +1.38689e7 q^{69} +2.89345e8 q^{70} +4.86785e7 q^{71} -1.15190e8 q^{72} -1.24674e8 q^{73} +2.32510e7 q^{74} -5.77588e7 q^{75} +1.25066e8 q^{76} +3.69692e8 q^{77} +9.59611e7 q^{78} -1.55200e8 q^{79} +7.40858e8 q^{80} +3.68645e8 q^{81} -1.35267e8 q^{82} -6.28307e8 q^{83} -2.41634e7 q^{84} -1.52052e9 q^{85} -8.65097e8 q^{86} +6.13609e7 q^{87} +4.94241e8 q^{88} -1.00624e8 q^{89} -1.25910e9 q^{90} +8.36181e8 q^{91} -2.35581e8 q^{92} -1.57200e8 q^{93} -5.79339e8 q^{94} -9.37546e8 q^{95} -1.11712e8 q^{96} -1.05417e9 q^{97} +5.87017e8 q^{98} -1.60873e9 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 76 q + 48 q^{2} + 890 q^{3} + 20736 q^{4} + 5171 q^{5} + 2688 q^{6} + 38986 q^{7} + 36507 q^{8} + 518318 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 76 q + 48 q^{2} + 890 q^{3} + 20736 q^{4} + 5171 q^{5} + 2688 q^{6} + 38986 q^{7} + 36507 q^{8} + 518318 q^{9} + 121093 q^{10} + 120464 q^{11} + 415744 q^{12} + 480131 q^{13} + 330849 q^{14} + 544874 q^{15} + 5963776 q^{16} + 942582 q^{17} + 1483945 q^{18} + 3097319 q^{19} + 3237739 q^{20} + 889076 q^{21} + 3791921 q^{22} + 5139200 q^{23} + 1999533 q^{24} + 34080519 q^{25} + 2791454 q^{26} + 24386486 q^{27} + 20891166 q^{28} + 6886818 q^{29} + 14171083 q^{30} + 28002851 q^{31} + 16857332 q^{32} + 30921422 q^{33} + 33506194 q^{34} + 16271736 q^{35} + 151430458 q^{36} + 55950976 q^{37} + 62370882 q^{38} - 11569592 q^{39} + 129854766 q^{40} + 14990859 q^{41} + 82216531 q^{42} + 169867467 q^{43} + 41872434 q^{44} + 205007649 q^{45} + 144032301 q^{46} + 78743342 q^{47} + 156250562 q^{48} + 533861890 q^{49} + 626841163 q^{50} + 477099244 q^{51} + 560784114 q^{52} + 188670216 q^{53} + 525901687 q^{54} + 298497914 q^{55} + 56575048 q^{56} + 213972590 q^{57} + 338315251 q^{58} + 208222151 q^{59} - 615921507 q^{60} - 233556134 q^{61} - 399368105 q^{62} + 329825056 q^{63} + 876517017 q^{64} - 840557006 q^{65} - 2482481592 q^{66} + 1210808414 q^{67} - 1266757099 q^{68} + 327801786 q^{69} - 546384313 q^{70} + 345300221 q^{71} - 1549481681 q^{72} + 1192286460 q^{73} - 1471133595 q^{74} + 761630676 q^{75} - 398699826 q^{76} - 101106252 q^{77} - 2609825943 q^{78} + 955627631 q^{79} + 1059617770 q^{80} + 3387041436 q^{81} + 1062705523 q^{82} + 1538917201 q^{83} + 1394513218 q^{84} + 225481100 q^{85} + 701644810 q^{86} + 1758812842 q^{87} + 3151474875 q^{88} + 855413630 q^{89} + 6070671455 q^{90} + 4652436248 q^{91} + 8082863606 q^{92} + 3462095982 q^{93} + 2660342117 q^{94} + 1036805508 q^{95} + 12370989029 q^{96} + 6393874545 q^{97} + 7510976010 q^{98} + 8731109606 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −28.5607 −1.26221 −0.631107 0.775695i \(-0.717399\pi\)
−0.631107 + 0.775695i \(0.717399\pi\)
\(3\) −17.8798 −0.127443 −0.0637216 0.997968i \(-0.520297\pi\)
−0.0637216 + 0.997968i \(0.520297\pi\)
\(4\) 303.711 0.593186
\(5\) −2276.73 −1.62910 −0.814549 0.580094i \(-0.803016\pi\)
−0.814549 + 0.580094i \(0.803016\pi\)
\(6\) 510.659 0.160861
\(7\) 4449.75 0.700478 0.350239 0.936660i \(-0.386100\pi\)
0.350239 + 0.936660i \(0.386100\pi\)
\(8\) 5948.86 0.513487
\(9\) −19363.3 −0.983758
\(10\) 65025.0 2.05627
\(11\) 83081.5 1.71095 0.855475 0.517845i \(-0.173265\pi\)
0.855475 + 0.517845i \(0.173265\pi\)
\(12\) −5430.29 −0.0755975
\(13\) 187916. 1.82482 0.912409 0.409280i \(-0.134220\pi\)
0.912409 + 0.409280i \(0.134220\pi\)
\(14\) −127088. −0.884153
\(15\) 40707.5 0.207618
\(16\) −325404. −1.24132
\(17\) 667853. 1.93937 0.969685 0.244358i \(-0.0785773\pi\)
0.969685 + 0.244358i \(0.0785773\pi\)
\(18\) 553029. 1.24171
\(19\) 411794. 0.724918 0.362459 0.932000i \(-0.381937\pi\)
0.362459 + 0.932000i \(0.381937\pi\)
\(20\) −691470. −0.966359
\(21\) −79560.6 −0.0892712
\(22\) −2.37286e6 −2.15959
\(23\) −775674. −0.577968 −0.288984 0.957334i \(-0.593317\pi\)
−0.288984 + 0.957334i \(0.593317\pi\)
\(24\) −106364. −0.0654404
\(25\) 3.23040e6 1.65396
\(26\) −5.36702e6 −2.30331
\(27\) 698140. 0.252817
\(28\) 1.35144e6 0.415514
\(29\) −3.43186e6 −0.901029 −0.450514 0.892769i \(-0.648759\pi\)
−0.450514 + 0.892769i \(0.648759\pi\)
\(30\) −1.16263e6 −0.262058
\(31\) 8.79207e6 1.70987 0.854935 0.518734i \(-0.173597\pi\)
0.854935 + 0.518734i \(0.173597\pi\)
\(32\) 6.24792e6 1.05332
\(33\) −1.48548e6 −0.218049
\(34\) −1.90743e7 −2.44790
\(35\) −1.01309e7 −1.14115
\(36\) −5.88086e6 −0.583552
\(37\) −814093. −0.0714112 −0.0357056 0.999362i \(-0.511368\pi\)
−0.0357056 + 0.999362i \(0.511368\pi\)
\(38\) −1.17611e7 −0.915002
\(39\) −3.35991e6 −0.232561
\(40\) −1.35440e7 −0.836520
\(41\) 4.73614e6 0.261756 0.130878 0.991398i \(-0.458220\pi\)
0.130878 + 0.991398i \(0.458220\pi\)
\(42\) 2.27230e6 0.112679
\(43\) 3.02898e7 1.35110 0.675552 0.737313i \(-0.263906\pi\)
0.675552 + 0.737313i \(0.263906\pi\)
\(44\) 2.52328e7 1.01491
\(45\) 4.40851e7 1.60264
\(46\) 2.21538e7 0.729520
\(47\) 2.02845e7 0.606351 0.303176 0.952935i \(-0.401953\pi\)
0.303176 + 0.952935i \(0.401953\pi\)
\(48\) 5.81815e6 0.158197
\(49\) −2.05533e7 −0.509331
\(50\) −9.22622e7 −2.08766
\(51\) −1.19411e7 −0.247160
\(52\) 5.70723e7 1.08246
\(53\) −3.68644e7 −0.641750 −0.320875 0.947122i \(-0.603977\pi\)
−0.320875 + 0.947122i \(0.603977\pi\)
\(54\) −1.99393e7 −0.319109
\(55\) −1.89155e8 −2.78731
\(56\) 2.64710e7 0.359686
\(57\) −7.36279e6 −0.0923859
\(58\) 9.80162e7 1.13729
\(59\) 1.23982e8 1.33206 0.666031 0.745924i \(-0.267992\pi\)
0.666031 + 0.745924i \(0.267992\pi\)
\(60\) 1.23633e7 0.123156
\(61\) 9.31762e7 0.861630 0.430815 0.902440i \(-0.358226\pi\)
0.430815 + 0.902440i \(0.358226\pi\)
\(62\) −2.51107e8 −2.15822
\(63\) −8.61619e7 −0.689101
\(64\) −1.18382e7 −0.0882011
\(65\) −4.27836e8 −2.97281
\(66\) 4.24263e7 0.275225
\(67\) 3.56808e7 0.216321 0.108160 0.994133i \(-0.465504\pi\)
0.108160 + 0.994133i \(0.465504\pi\)
\(68\) 2.02834e8 1.15041
\(69\) 1.38689e7 0.0736581
\(70\) 2.89345e8 1.44037
\(71\) 4.86785e7 0.227339 0.113670 0.993519i \(-0.463739\pi\)
0.113670 + 0.993519i \(0.463739\pi\)
\(72\) −1.15190e8 −0.505147
\(73\) −1.24674e8 −0.513833 −0.256917 0.966434i \(-0.582707\pi\)
−0.256917 + 0.966434i \(0.582707\pi\)
\(74\) 2.32510e7 0.0901363
\(75\) −5.77588e7 −0.210786
\(76\) 1.25066e8 0.430011
\(77\) 3.69692e8 1.19848
\(78\) 9.59611e7 0.293542
\(79\) −1.55200e8 −0.448302 −0.224151 0.974554i \(-0.571961\pi\)
−0.224151 + 0.974554i \(0.571961\pi\)
\(80\) 7.40858e8 2.02223
\(81\) 3.68645e8 0.951538
\(82\) −1.35267e8 −0.330393
\(83\) −6.28307e8 −1.45318 −0.726592 0.687069i \(-0.758897\pi\)
−0.726592 + 0.687069i \(0.758897\pi\)
\(84\) −2.41634e7 −0.0529544
\(85\) −1.52052e9 −3.15943
\(86\) −8.65097e8 −1.70538
\(87\) 6.13609e7 0.114830
\(88\) 4.94241e8 0.878550
\(89\) −1.00624e8 −0.169998 −0.0849992 0.996381i \(-0.527089\pi\)
−0.0849992 + 0.996381i \(0.527089\pi\)
\(90\) −1.25910e9 −2.02287
\(91\) 8.36181e8 1.27824
\(92\) −2.35581e8 −0.342843
\(93\) −1.57200e8 −0.217911
\(94\) −5.79339e8 −0.765345
\(95\) −9.37546e8 −1.18096
\(96\) −1.11712e8 −0.134239
\(97\) −1.05417e9 −1.20903 −0.604515 0.796594i \(-0.706633\pi\)
−0.604515 + 0.796594i \(0.706633\pi\)
\(98\) 5.87017e8 0.642885
\(99\) −1.60873e9 −1.68316
\(100\) 9.81107e8 0.981107
\(101\) −8.92308e8 −0.853235 −0.426617 0.904432i \(-0.640295\pi\)
−0.426617 + 0.904432i \(0.640295\pi\)
\(102\) 3.41045e8 0.311968
\(103\) −1.65210e9 −1.44633 −0.723167 0.690673i \(-0.757314\pi\)
−0.723167 + 0.690673i \(0.757314\pi\)
\(104\) 1.11789e9 0.937020
\(105\) 1.81138e8 0.145432
\(106\) 1.05287e9 0.810026
\(107\) 1.26800e9 0.935172 0.467586 0.883948i \(-0.345124\pi\)
0.467586 + 0.883948i \(0.345124\pi\)
\(108\) 2.12033e8 0.149967
\(109\) 1.86438e9 1.26507 0.632535 0.774532i \(-0.282015\pi\)
0.632535 + 0.774532i \(0.282015\pi\)
\(110\) 5.40238e9 3.51818
\(111\) 1.45558e7 0.00910087
\(112\) −1.44796e9 −0.869514
\(113\) 2.92077e9 1.68517 0.842586 0.538562i \(-0.181032\pi\)
0.842586 + 0.538562i \(0.181032\pi\)
\(114\) 2.10286e8 0.116611
\(115\) 1.76600e9 0.941567
\(116\) −1.04229e9 −0.534478
\(117\) −3.63868e9 −1.79518
\(118\) −3.54101e9 −1.68135
\(119\) 2.97178e9 1.35849
\(120\) 2.42164e8 0.106609
\(121\) 4.54459e9 1.92735
\(122\) −2.66117e9 −1.08756
\(123\) −8.46812e7 −0.0333591
\(124\) 2.67025e9 1.01427
\(125\) −2.90801e9 −1.06537
\(126\) 2.46084e9 0.869793
\(127\) 3.37479e9 1.15114 0.575572 0.817751i \(-0.304779\pi\)
0.575572 + 0.817751i \(0.304779\pi\)
\(128\) −2.86083e9 −0.941992
\(129\) −5.41575e8 −0.172189
\(130\) 1.22193e10 3.75232
\(131\) 1.95325e9 0.579478 0.289739 0.957106i \(-0.406431\pi\)
0.289739 + 0.957106i \(0.406431\pi\)
\(132\) −4.51157e8 −0.129344
\(133\) 1.83238e9 0.507789
\(134\) −1.01907e9 −0.273043
\(135\) −1.58948e9 −0.411863
\(136\) 3.97297e9 0.995841
\(137\) 1.92199e9 0.466131 0.233066 0.972461i \(-0.425124\pi\)
0.233066 + 0.972461i \(0.425124\pi\)
\(138\) −3.96104e8 −0.0929724
\(139\) 4.63980e9 1.05422 0.527112 0.849796i \(-0.323275\pi\)
0.527112 + 0.849796i \(0.323275\pi\)
\(140\) −3.07687e9 −0.676913
\(141\) −3.62683e8 −0.0772753
\(142\) −1.39029e9 −0.286951
\(143\) 1.56124e10 3.12217
\(144\) 6.30089e9 1.22116
\(145\) 7.81344e9 1.46786
\(146\) 3.56076e9 0.648568
\(147\) 3.67489e8 0.0649108
\(148\) −2.47249e8 −0.0423601
\(149\) −4.27800e9 −0.711054 −0.355527 0.934666i \(-0.615699\pi\)
−0.355527 + 0.934666i \(0.615699\pi\)
\(150\) 1.64963e9 0.266058
\(151\) 8.83292e9 1.38264 0.691318 0.722550i \(-0.257030\pi\)
0.691318 + 0.722550i \(0.257030\pi\)
\(152\) 2.44971e9 0.372236
\(153\) −1.29318e10 −1.90787
\(154\) −1.05586e10 −1.51274
\(155\) −2.00172e10 −2.78555
\(156\) −1.02044e9 −0.137952
\(157\) 6.34702e9 0.833722 0.416861 0.908970i \(-0.363130\pi\)
0.416861 + 0.908970i \(0.363130\pi\)
\(158\) 4.43262e9 0.565853
\(159\) 6.59128e8 0.0817867
\(160\) −1.42249e10 −1.71596
\(161\) −3.45155e9 −0.404854
\(162\) −1.05288e10 −1.20105
\(163\) −8.68239e9 −0.963374 −0.481687 0.876343i \(-0.659976\pi\)
−0.481687 + 0.876343i \(0.659976\pi\)
\(164\) 1.43842e9 0.155270
\(165\) 3.38204e9 0.355223
\(166\) 1.79449e10 1.83423
\(167\) 2.39365e9 0.238142 0.119071 0.992886i \(-0.462008\pi\)
0.119071 + 0.992886i \(0.462008\pi\)
\(168\) −4.73295e8 −0.0458395
\(169\) 2.47081e10 2.32996
\(170\) 4.34272e10 3.98787
\(171\) −7.97370e9 −0.713144
\(172\) 9.19935e9 0.801455
\(173\) −2.31540e10 −1.96525 −0.982627 0.185592i \(-0.940580\pi\)
−0.982627 + 0.185592i \(0.940580\pi\)
\(174\) −1.75251e9 −0.144940
\(175\) 1.43744e10 1.15856
\(176\) −2.70350e10 −2.12383
\(177\) −2.21677e9 −0.169762
\(178\) 2.87388e9 0.214575
\(179\) −1.77579e10 −1.29286 −0.646431 0.762973i \(-0.723739\pi\)
−0.646431 + 0.762973i \(0.723739\pi\)
\(180\) 1.33891e10 0.950663
\(181\) 1.60839e9 0.111388 0.0556941 0.998448i \(-0.482263\pi\)
0.0556941 + 0.998448i \(0.482263\pi\)
\(182\) −2.38819e10 −1.61342
\(183\) −1.66597e9 −0.109809
\(184\) −4.61438e9 −0.296779
\(185\) 1.85347e9 0.116336
\(186\) 4.48974e9 0.275051
\(187\) 5.54862e10 3.31816
\(188\) 6.16063e9 0.359679
\(189\) 3.10655e9 0.177092
\(190\) 2.67769e10 1.49063
\(191\) −1.53967e10 −0.837100 −0.418550 0.908194i \(-0.637462\pi\)
−0.418550 + 0.908194i \(0.637462\pi\)
\(192\) 2.11664e8 0.0112406
\(193\) −2.25922e10 −1.17206 −0.586032 0.810288i \(-0.699311\pi\)
−0.586032 + 0.810288i \(0.699311\pi\)
\(194\) 3.01077e10 1.52606
\(195\) 7.64961e9 0.378864
\(196\) −6.24228e9 −0.302128
\(197\) 1.50614e9 0.0712470
\(198\) 4.59465e10 2.12451
\(199\) −1.33320e10 −0.602636 −0.301318 0.953524i \(-0.597427\pi\)
−0.301318 + 0.953524i \(0.597427\pi\)
\(200\) 1.92172e10 0.849288
\(201\) −6.37966e8 −0.0275686
\(202\) 2.54849e10 1.07697
\(203\) −1.52709e10 −0.631151
\(204\) −3.62664e9 −0.146612
\(205\) −1.07829e10 −0.426427
\(206\) 4.71850e10 1.82558
\(207\) 1.50196e10 0.568581
\(208\) −6.11487e10 −2.26518
\(209\) 3.42125e10 1.24030
\(210\) −5.17343e9 −0.183566
\(211\) −3.47005e10 −1.20522 −0.602609 0.798037i \(-0.705872\pi\)
−0.602609 + 0.798037i \(0.705872\pi\)
\(212\) −1.11961e10 −0.380677
\(213\) −8.70362e8 −0.0289729
\(214\) −3.62149e10 −1.18039
\(215\) −6.89619e10 −2.20108
\(216\) 4.15314e9 0.129818
\(217\) 3.91225e10 1.19773
\(218\) −5.32478e10 −1.59679
\(219\) 2.22914e9 0.0654846
\(220\) −5.74483e10 −1.65339
\(221\) 1.25500e11 3.53900
\(222\) −4.15724e8 −0.0114873
\(223\) 5.02537e10 1.36081 0.680403 0.732838i \(-0.261805\pi\)
0.680403 + 0.732838i \(0.261805\pi\)
\(224\) 2.78017e10 0.737828
\(225\) −6.25512e10 −1.62710
\(226\) −8.34191e10 −2.12705
\(227\) −1.30521e10 −0.326260 −0.163130 0.986605i \(-0.552159\pi\)
−0.163130 + 0.986605i \(0.552159\pi\)
\(228\) −2.23616e9 −0.0548020
\(229\) 1.58312e10 0.380412 0.190206 0.981744i \(-0.439084\pi\)
0.190206 + 0.981744i \(0.439084\pi\)
\(230\) −5.04382e10 −1.18846
\(231\) −6.61001e9 −0.152738
\(232\) −2.04157e10 −0.462666
\(233\) 3.20284e10 0.711924 0.355962 0.934500i \(-0.384153\pi\)
0.355962 + 0.934500i \(0.384153\pi\)
\(234\) 1.03923e11 2.26590
\(235\) −4.61824e10 −0.987806
\(236\) 3.76547e10 0.790161
\(237\) 2.77495e9 0.0571330
\(238\) −8.48759e10 −1.71470
\(239\) −1.53258e10 −0.303832 −0.151916 0.988393i \(-0.548544\pi\)
−0.151916 + 0.988393i \(0.548544\pi\)
\(240\) −1.32464e10 −0.257719
\(241\) 4.42326e10 0.844628 0.422314 0.906450i \(-0.361218\pi\)
0.422314 + 0.906450i \(0.361218\pi\)
\(242\) −1.29796e11 −2.43273
\(243\) −2.03328e10 −0.374084
\(244\) 2.82987e10 0.511107
\(245\) 4.67945e10 0.829750
\(246\) 2.41855e9 0.0421063
\(247\) 7.73828e10 1.32284
\(248\) 5.23028e10 0.877996
\(249\) 1.12340e10 0.185199
\(250\) 8.30546e10 1.34473
\(251\) −4.58474e10 −0.729094 −0.364547 0.931185i \(-0.618776\pi\)
−0.364547 + 0.931185i \(0.618776\pi\)
\(252\) −2.61683e10 −0.408765
\(253\) −6.44441e10 −0.988874
\(254\) −9.63862e10 −1.45299
\(255\) 2.71867e10 0.402647
\(256\) 8.77684e10 1.27720
\(257\) −8.03885e9 −0.114946 −0.0574732 0.998347i \(-0.518304\pi\)
−0.0574732 + 0.998347i \(0.518304\pi\)
\(258\) 1.54678e10 0.217339
\(259\) −3.62251e9 −0.0500220
\(260\) −1.29939e11 −1.76343
\(261\) 6.64522e10 0.886394
\(262\) −5.57861e10 −0.731426
\(263\) −1.17791e11 −1.51813 −0.759066 0.651014i \(-0.774344\pi\)
−0.759066 + 0.651014i \(0.774344\pi\)
\(264\) −8.83692e9 −0.111965
\(265\) 8.39305e10 1.04547
\(266\) −5.23340e10 −0.640939
\(267\) 1.79913e9 0.0216651
\(268\) 1.08367e10 0.128318
\(269\) −8.42977e10 −0.981591 −0.490796 0.871275i \(-0.663294\pi\)
−0.490796 + 0.871275i \(0.663294\pi\)
\(270\) 4.53966e10 0.519860
\(271\) −8.41800e10 −0.948084 −0.474042 0.880502i \(-0.657206\pi\)
−0.474042 + 0.880502i \(0.657206\pi\)
\(272\) −2.17322e11 −2.40737
\(273\) −1.49507e10 −0.162904
\(274\) −5.48933e10 −0.588358
\(275\) 2.68386e11 2.82985
\(276\) 4.21214e9 0.0436930
\(277\) 7.75886e10 0.791843 0.395921 0.918284i \(-0.370425\pi\)
0.395921 + 0.918284i \(0.370425\pi\)
\(278\) −1.32516e11 −1.33066
\(279\) −1.70244e11 −1.68210
\(280\) −6.02673e10 −0.585964
\(281\) 1.00820e11 0.964647 0.482324 0.875993i \(-0.339793\pi\)
0.482324 + 0.875993i \(0.339793\pi\)
\(282\) 1.03585e10 0.0975381
\(283\) 9.78661e10 0.906971 0.453485 0.891264i \(-0.350180\pi\)
0.453485 + 0.891264i \(0.350180\pi\)
\(284\) 1.47842e10 0.134855
\(285\) 1.67631e10 0.150506
\(286\) −4.45900e11 −3.94085
\(287\) 2.10746e10 0.183354
\(288\) −1.20981e11 −1.03621
\(289\) 3.27440e11 2.76116
\(290\) −2.23157e11 −1.85276
\(291\) 1.88483e10 0.154083
\(292\) −3.78648e10 −0.304799
\(293\) −1.72306e11 −1.36582 −0.682912 0.730500i \(-0.739287\pi\)
−0.682912 + 0.730500i \(0.739287\pi\)
\(294\) −1.04957e10 −0.0819313
\(295\) −2.82274e11 −2.17006
\(296\) −4.84293e9 −0.0366687
\(297\) 5.80025e10 0.432556
\(298\) 1.22182e11 0.897502
\(299\) −1.45762e11 −1.05469
\(300\) −1.75420e10 −0.125036
\(301\) 1.34782e11 0.946418
\(302\) −2.52274e11 −1.74518
\(303\) 1.59543e10 0.108739
\(304\) −1.33999e11 −0.899853
\(305\) −2.12137e11 −1.40368
\(306\) 3.69342e11 2.40814
\(307\) −1.14465e10 −0.0735442 −0.0367721 0.999324i \(-0.511708\pi\)
−0.0367721 + 0.999324i \(0.511708\pi\)
\(308\) 1.12280e11 0.710923
\(309\) 2.95392e10 0.184325
\(310\) 5.71704e11 3.51596
\(311\) 1.67055e11 1.01260 0.506299 0.862358i \(-0.331013\pi\)
0.506299 + 0.862358i \(0.331013\pi\)
\(312\) −1.99876e10 −0.119417
\(313\) 1.96521e11 1.15734 0.578668 0.815563i \(-0.303573\pi\)
0.578668 + 0.815563i \(0.303573\pi\)
\(314\) −1.81275e11 −1.05234
\(315\) 1.96168e11 1.12261
\(316\) −4.71360e10 −0.265926
\(317\) 2.50443e10 0.139297 0.0696486 0.997572i \(-0.477812\pi\)
0.0696486 + 0.997572i \(0.477812\pi\)
\(318\) −1.88251e10 −0.103232
\(319\) −2.85124e11 −1.54161
\(320\) 2.69523e10 0.143688
\(321\) −2.26715e10 −0.119181
\(322\) 9.85786e10 0.511012
\(323\) 2.75018e11 1.40588
\(324\) 1.11962e11 0.564439
\(325\) 6.07044e11 3.01818
\(326\) 2.47975e11 1.21598
\(327\) −3.33347e10 −0.161225
\(328\) 2.81747e10 0.134408
\(329\) 9.02610e10 0.424735
\(330\) −9.65934e10 −0.448368
\(331\) 1.35131e11 0.618772 0.309386 0.950937i \(-0.399877\pi\)
0.309386 + 0.950937i \(0.399877\pi\)
\(332\) −1.90824e11 −0.862008
\(333\) 1.57635e10 0.0702513
\(334\) −6.83642e10 −0.300586
\(335\) −8.12358e10 −0.352408
\(336\) 2.58893e10 0.110814
\(337\) −3.48004e11 −1.46977 −0.734885 0.678191i \(-0.762764\pi\)
−0.734885 + 0.678191i \(0.762764\pi\)
\(338\) −7.05679e11 −2.94091
\(339\) −5.22227e10 −0.214764
\(340\) −4.61800e11 −1.87413
\(341\) 7.30458e11 2.92550
\(342\) 2.27734e11 0.900141
\(343\) −2.71021e11 −1.05725
\(344\) 1.80190e11 0.693773
\(345\) −3.15758e10 −0.119996
\(346\) 6.61294e11 2.48057
\(347\) −2.52200e11 −0.933820 −0.466910 0.884305i \(-0.654633\pi\)
−0.466910 + 0.884305i \(0.654633\pi\)
\(348\) 1.86360e10 0.0681156
\(349\) 2.30487e10 0.0831633 0.0415816 0.999135i \(-0.486760\pi\)
0.0415816 + 0.999135i \(0.486760\pi\)
\(350\) −4.10544e11 −1.46236
\(351\) 1.31192e11 0.461344
\(352\) 5.19087e11 1.80218
\(353\) 1.13444e11 0.388863 0.194431 0.980916i \(-0.437714\pi\)
0.194431 + 0.980916i \(0.437714\pi\)
\(354\) 6.33125e10 0.214277
\(355\) −1.10828e11 −0.370358
\(356\) −3.05605e10 −0.100841
\(357\) −5.31348e10 −0.173130
\(358\) 5.07176e11 1.63187
\(359\) −9.87214e10 −0.313679 −0.156840 0.987624i \(-0.550131\pi\)
−0.156840 + 0.987624i \(0.550131\pi\)
\(360\) 2.62256e11 0.822934
\(361\) −1.53113e11 −0.474494
\(362\) −4.59368e10 −0.140596
\(363\) −8.12563e10 −0.245627
\(364\) 2.53957e11 0.758237
\(365\) 2.83849e11 0.837085
\(366\) 4.75812e10 0.138602
\(367\) −2.68609e11 −0.772899 −0.386449 0.922311i \(-0.626299\pi\)
−0.386449 + 0.922311i \(0.626299\pi\)
\(368\) 2.52407e11 0.717441
\(369\) −9.17073e10 −0.257505
\(370\) −5.29364e10 −0.146841
\(371\) −1.64037e11 −0.449532
\(372\) −4.77435e10 −0.129262
\(373\) 1.42556e11 0.381326 0.190663 0.981656i \(-0.438936\pi\)
0.190663 + 0.981656i \(0.438936\pi\)
\(374\) −1.58472e12 −4.18824
\(375\) 5.19945e10 0.135774
\(376\) 1.20670e11 0.311353
\(377\) −6.44903e11 −1.64421
\(378\) −8.87250e10 −0.223529
\(379\) −1.99498e11 −0.496664 −0.248332 0.968675i \(-0.579882\pi\)
−0.248332 + 0.968675i \(0.579882\pi\)
\(380\) −2.84743e11 −0.700531
\(381\) −6.03405e10 −0.146706
\(382\) 4.39740e11 1.05660
\(383\) −3.17762e11 −0.754585 −0.377292 0.926094i \(-0.623145\pi\)
−0.377292 + 0.926094i \(0.623145\pi\)
\(384\) 5.11511e10 0.120051
\(385\) −8.41690e11 −1.95245
\(386\) 6.45249e11 1.47940
\(387\) −5.86511e11 −1.32916
\(388\) −3.20163e11 −0.717180
\(389\) 6.17930e11 1.36825 0.684126 0.729364i \(-0.260184\pi\)
0.684126 + 0.729364i \(0.260184\pi\)
\(390\) −2.18478e11 −0.478208
\(391\) −5.18036e11 −1.12089
\(392\) −1.22269e11 −0.261535
\(393\) −3.49237e10 −0.0738506
\(394\) −4.30163e10 −0.0899291
\(395\) 3.53350e11 0.730327
\(396\) −4.88590e11 −0.998427
\(397\) −3.96920e11 −0.801947 −0.400973 0.916090i \(-0.631328\pi\)
−0.400973 + 0.916090i \(0.631328\pi\)
\(398\) 3.80769e11 0.760656
\(399\) −3.27626e10 −0.0647143
\(400\) −1.05118e12 −2.05309
\(401\) −1.57677e11 −0.304521 −0.152261 0.988340i \(-0.548655\pi\)
−0.152261 + 0.988340i \(0.548655\pi\)
\(402\) 1.82207e10 0.0347975
\(403\) 1.65217e12 3.12020
\(404\) −2.71004e11 −0.506127
\(405\) −8.39308e11 −1.55015
\(406\) 4.36147e11 0.796647
\(407\) −6.76361e10 −0.122181
\(408\) −7.10358e10 −0.126913
\(409\) −3.65264e10 −0.0645435 −0.0322717 0.999479i \(-0.510274\pi\)
−0.0322717 + 0.999479i \(0.510274\pi\)
\(410\) 3.07968e11 0.538242
\(411\) −3.43648e10 −0.0594053
\(412\) −5.01761e11 −0.857945
\(413\) 5.51689e11 0.933080
\(414\) −4.28970e11 −0.717671
\(415\) 1.43049e12 2.36738
\(416\) 1.17409e12 1.92212
\(417\) −8.29587e10 −0.134354
\(418\) −9.77130e11 −1.56552
\(419\) −5.44859e10 −0.0863617 −0.0431809 0.999067i \(-0.513749\pi\)
−0.0431809 + 0.999067i \(0.513749\pi\)
\(420\) 5.50137e10 0.0862679
\(421\) 3.44841e11 0.534994 0.267497 0.963559i \(-0.413803\pi\)
0.267497 + 0.963559i \(0.413803\pi\)
\(422\) 9.91070e11 1.52124
\(423\) −3.92775e11 −0.596503
\(424\) −2.19301e11 −0.329530
\(425\) 2.15743e12 3.20765
\(426\) 2.48581e10 0.0365700
\(427\) 4.14611e11 0.603552
\(428\) 3.85105e11 0.554731
\(429\) −2.79146e11 −0.397900
\(430\) 1.96960e12 2.77824
\(431\) −7.66363e11 −1.06976 −0.534881 0.844928i \(-0.679643\pi\)
−0.534881 + 0.844928i \(0.679643\pi\)
\(432\) −2.27177e11 −0.313825
\(433\) 6.30791e11 0.862362 0.431181 0.902265i \(-0.358097\pi\)
0.431181 + 0.902265i \(0.358097\pi\)
\(434\) −1.11736e12 −1.51179
\(435\) −1.39703e11 −0.187069
\(436\) 5.66232e11 0.750421
\(437\) −3.19418e11 −0.418979
\(438\) −6.36657e10 −0.0826556
\(439\) 3.44206e11 0.442312 0.221156 0.975238i \(-0.429017\pi\)
0.221156 + 0.975238i \(0.429017\pi\)
\(440\) −1.12525e12 −1.43124
\(441\) 3.97981e11 0.501058
\(442\) −3.58438e12 −4.46697
\(443\) −1.46880e12 −1.81195 −0.905974 0.423333i \(-0.860860\pi\)
−0.905974 + 0.423333i \(0.860860\pi\)
\(444\) 4.42076e9 0.00539851
\(445\) 2.29093e11 0.276944
\(446\) −1.43528e12 −1.71763
\(447\) 7.64897e10 0.0906190
\(448\) −5.26768e10 −0.0617829
\(449\) 4.12349e11 0.478803 0.239401 0.970921i \(-0.423049\pi\)
0.239401 + 0.970921i \(0.423049\pi\)
\(450\) 1.78650e12 2.05375
\(451\) 3.93485e11 0.447852
\(452\) 8.87070e11 0.999620
\(453\) −1.57931e11 −0.176208
\(454\) 3.72777e11 0.411811
\(455\) −1.90376e12 −2.08239
\(456\) −4.38003e10 −0.0474389
\(457\) 1.75908e12 1.88653 0.943263 0.332047i \(-0.107739\pi\)
0.943263 + 0.332047i \(0.107739\pi\)
\(458\) −4.52150e11 −0.480162
\(459\) 4.66255e11 0.490305
\(460\) 5.36355e11 0.558524
\(461\) −8.04922e11 −0.830041 −0.415020 0.909812i \(-0.636226\pi\)
−0.415020 + 0.909812i \(0.636226\pi\)
\(462\) 1.88786e11 0.192789
\(463\) −1.37799e12 −1.39358 −0.696790 0.717276i \(-0.745389\pi\)
−0.696790 + 0.717276i \(0.745389\pi\)
\(464\) 1.11674e12 1.11846
\(465\) 3.57903e11 0.354999
\(466\) −9.14752e11 −0.898601
\(467\) −4.47324e10 −0.0435207 −0.0217604 0.999763i \(-0.506927\pi\)
−0.0217604 + 0.999763i \(0.506927\pi\)
\(468\) −1.10511e12 −1.06488
\(469\) 1.58771e11 0.151528
\(470\) 1.31900e12 1.24682
\(471\) −1.13483e11 −0.106252
\(472\) 7.37552e11 0.683996
\(473\) 2.51652e12 2.31167
\(474\) −7.92543e10 −0.0721141
\(475\) 1.33026e12 1.19899
\(476\) 9.02562e11 0.805835
\(477\) 7.13817e11 0.631327
\(478\) 4.37716e11 0.383501
\(479\) −1.87671e12 −1.62887 −0.814435 0.580255i \(-0.802953\pi\)
−0.814435 + 0.580255i \(0.802953\pi\)
\(480\) 2.54338e11 0.218688
\(481\) −1.52981e11 −0.130312
\(482\) −1.26331e12 −1.06610
\(483\) 6.17131e10 0.0515959
\(484\) 1.38024e12 1.14328
\(485\) 2.40006e12 1.96963
\(486\) 5.80718e11 0.472174
\(487\) 1.18440e12 0.954157 0.477078 0.878861i \(-0.341696\pi\)
0.477078 + 0.878861i \(0.341696\pi\)
\(488\) 5.54293e11 0.442435
\(489\) 1.55239e11 0.122776
\(490\) −1.33648e12 −1.04732
\(491\) 4.78870e11 0.371836 0.185918 0.982565i \(-0.440474\pi\)
0.185918 + 0.982565i \(0.440474\pi\)
\(492\) −2.57186e10 −0.0197881
\(493\) −2.29198e12 −1.74743
\(494\) −2.21010e12 −1.66971
\(495\) 3.66266e12 2.74203
\(496\) −2.86097e12 −2.12249
\(497\) 2.16607e11 0.159246
\(498\) −3.20851e11 −0.233760
\(499\) 6.36936e10 0.0459879 0.0229939 0.999736i \(-0.492680\pi\)
0.0229939 + 0.999736i \(0.492680\pi\)
\(500\) −8.83194e11 −0.631962
\(501\) −4.27979e10 −0.0303496
\(502\) 1.30943e12 0.920273
\(503\) 1.38419e12 0.964137 0.482069 0.876134i \(-0.339886\pi\)
0.482069 + 0.876134i \(0.339886\pi\)
\(504\) −5.12565e11 −0.353844
\(505\) 2.03155e12 1.39000
\(506\) 1.84057e12 1.24817
\(507\) −4.41775e11 −0.296938
\(508\) 1.02496e12 0.682843
\(509\) −2.23851e12 −1.47819 −0.739093 0.673604i \(-0.764746\pi\)
−0.739093 + 0.673604i \(0.764746\pi\)
\(510\) −7.76469e11 −0.508227
\(511\) −5.54767e11 −0.359929
\(512\) −1.04198e12 −0.670105
\(513\) 2.87490e11 0.183271
\(514\) 2.29595e11 0.145087
\(515\) 3.76139e12 2.35622
\(516\) −1.64483e11 −0.102140
\(517\) 1.68527e12 1.03744
\(518\) 1.03461e11 0.0631384
\(519\) 4.13989e11 0.250458
\(520\) −2.54514e12 −1.52650
\(521\) 2.37741e11 0.141363 0.0706813 0.997499i \(-0.477483\pi\)
0.0706813 + 0.997499i \(0.477483\pi\)
\(522\) −1.89792e12 −1.11882
\(523\) −1.10457e12 −0.645556 −0.322778 0.946475i \(-0.604617\pi\)
−0.322778 + 0.946475i \(0.604617\pi\)
\(524\) 5.93224e11 0.343738
\(525\) −2.57012e11 −0.147651
\(526\) 3.36417e12 1.91621
\(527\) 5.87181e12 3.31607
\(528\) 4.83381e11 0.270668
\(529\) −1.19948e12 −0.665953
\(530\) −2.39711e12 −1.31961
\(531\) −2.40070e12 −1.31043
\(532\) 5.56514e11 0.301213
\(533\) 8.89998e11 0.477658
\(534\) −5.13843e10 −0.0273461
\(535\) −2.88690e12 −1.52349
\(536\) 2.12260e11 0.111078
\(537\) 3.17507e11 0.164766
\(538\) 2.40760e12 1.23898
\(539\) −1.70760e12 −0.871439
\(540\) −4.82743e11 −0.244311
\(541\) −3.75693e12 −1.88558 −0.942791 0.333383i \(-0.891810\pi\)
−0.942791 + 0.333383i \(0.891810\pi\)
\(542\) 2.40424e12 1.19669
\(543\) −2.87578e10 −0.0141957
\(544\) 4.17269e12 2.04278
\(545\) −4.24469e12 −2.06092
\(546\) 4.27003e11 0.205619
\(547\) 3.73656e12 1.78455 0.892276 0.451491i \(-0.149108\pi\)
0.892276 + 0.451491i \(0.149108\pi\)
\(548\) 5.83729e11 0.276503
\(549\) −1.80420e12 −0.847635
\(550\) −7.66528e12 −3.57187
\(551\) −1.41322e12 −0.653172
\(552\) 8.25041e10 0.0378225
\(553\) −6.90602e11 −0.314025
\(554\) −2.21598e12 −0.999476
\(555\) −3.31397e10 −0.0148262
\(556\) 1.40916e12 0.625351
\(557\) 2.84548e12 1.25258 0.626292 0.779589i \(-0.284572\pi\)
0.626292 + 0.779589i \(0.284572\pi\)
\(558\) 4.86227e12 2.12317
\(559\) 5.69195e12 2.46552
\(560\) 3.29663e12 1.41652
\(561\) −9.92082e11 −0.422878
\(562\) −2.87949e12 −1.21759
\(563\) 2.40414e12 1.00849 0.504246 0.863560i \(-0.331771\pi\)
0.504246 + 0.863560i \(0.331771\pi\)
\(564\) −1.10151e11 −0.0458386
\(565\) −6.64982e12 −2.74531
\(566\) −2.79512e12 −1.14479
\(567\) 1.64038e12 0.666532
\(568\) 2.89582e11 0.116736
\(569\) 9.72582e11 0.388975 0.194487 0.980905i \(-0.437696\pi\)
0.194487 + 0.980905i \(0.437696\pi\)
\(570\) −4.78766e11 −0.189971
\(571\) 1.03847e11 0.0408818 0.0204409 0.999791i \(-0.493493\pi\)
0.0204409 + 0.999791i \(0.493493\pi\)
\(572\) 4.74165e12 1.85203
\(573\) 2.75290e11 0.106683
\(574\) −6.01905e11 −0.231433
\(575\) −2.50573e12 −0.955937
\(576\) 2.29226e11 0.0867686
\(577\) −1.12680e12 −0.423210 −0.211605 0.977355i \(-0.567869\pi\)
−0.211605 + 0.977355i \(0.567869\pi\)
\(578\) −9.35189e12 −3.48517
\(579\) 4.03945e11 0.149372
\(580\) 2.37303e12 0.870717
\(581\) −2.79581e12 −1.01792
\(582\) −5.38320e11 −0.194485
\(583\) −3.06275e12 −1.09800
\(584\) −7.41667e11 −0.263846
\(585\) 8.28432e12 2.92452
\(586\) 4.92116e12 1.72396
\(587\) −6.60896e11 −0.229753 −0.114877 0.993380i \(-0.536647\pi\)
−0.114877 + 0.993380i \(0.536647\pi\)
\(588\) 1.11611e11 0.0385042
\(589\) 3.62052e12 1.23952
\(590\) 8.06194e12 2.73908
\(591\) −2.69294e10 −0.00907996
\(592\) 2.64909e11 0.0886439
\(593\) 2.00492e12 0.665810 0.332905 0.942960i \(-0.391971\pi\)
0.332905 + 0.942960i \(0.391971\pi\)
\(594\) −1.65659e12 −0.545979
\(595\) −6.76595e12 −2.21311
\(596\) −1.29928e12 −0.421787
\(597\) 2.38373e11 0.0768019
\(598\) 4.16305e12 1.33124
\(599\) −9.03302e11 −0.286690 −0.143345 0.989673i \(-0.545786\pi\)
−0.143345 + 0.989673i \(0.545786\pi\)
\(600\) −3.43599e11 −0.108236
\(601\) 4.35038e12 1.36017 0.680083 0.733135i \(-0.261944\pi\)
0.680083 + 0.733135i \(0.261944\pi\)
\(602\) −3.84946e12 −1.19458
\(603\) −6.90899e11 −0.212807
\(604\) 2.68266e12 0.820161
\(605\) −1.03468e13 −3.13984
\(606\) −4.55665e11 −0.137252
\(607\) 2.40048e12 0.717709 0.358854 0.933394i \(-0.383168\pi\)
0.358854 + 0.933394i \(0.383168\pi\)
\(608\) 2.57286e12 0.763571
\(609\) 2.73041e11 0.0804359
\(610\) 6.05879e12 1.77175
\(611\) 3.81179e12 1.10648
\(612\) −3.92755e12 −1.13172
\(613\) 1.09621e12 0.313561 0.156780 0.987633i \(-0.449889\pi\)
0.156780 + 0.987633i \(0.449889\pi\)
\(614\) 3.26919e11 0.0928286
\(615\) 1.92797e11 0.0543452
\(616\) 2.19925e12 0.615404
\(617\) −4.24776e12 −1.17999 −0.589993 0.807408i \(-0.700870\pi\)
−0.589993 + 0.807408i \(0.700870\pi\)
\(618\) −8.43658e11 −0.232658
\(619\) 2.82470e12 0.773330 0.386665 0.922220i \(-0.373627\pi\)
0.386665 + 0.922220i \(0.373627\pi\)
\(620\) −6.07945e12 −1.65235
\(621\) −5.41529e11 −0.146120
\(622\) −4.77119e12 −1.27812
\(623\) −4.47750e11 −0.119080
\(624\) 1.09333e12 0.288681
\(625\) 3.11392e11 0.0816295
\(626\) −5.61277e12 −1.46081
\(627\) −6.11712e11 −0.158068
\(628\) 1.92766e12 0.494552
\(629\) −5.43694e11 −0.138493
\(630\) −5.60268e12 −1.41698
\(631\) −2.97237e12 −0.746398 −0.373199 0.927751i \(-0.621739\pi\)
−0.373199 + 0.927751i \(0.621739\pi\)
\(632\) −9.23265e11 −0.230197
\(633\) 6.20439e11 0.153597
\(634\) −7.15282e11 −0.175823
\(635\) −7.68350e12 −1.87533
\(636\) 2.00185e11 0.0485147
\(637\) −3.86231e12 −0.929436
\(638\) 8.14333e12 1.94585
\(639\) −9.42577e11 −0.223647
\(640\) 6.51335e12 1.53460
\(641\) −2.12053e12 −0.496116 −0.248058 0.968745i \(-0.579792\pi\)
−0.248058 + 0.968745i \(0.579792\pi\)
\(642\) 6.47514e11 0.150432
\(643\) −2.47068e12 −0.569990 −0.284995 0.958529i \(-0.591992\pi\)
−0.284995 + 0.958529i \(0.591992\pi\)
\(644\) −1.04828e12 −0.240154
\(645\) 1.23302e12 0.280513
\(646\) −7.85469e12 −1.77453
\(647\) −4.76581e12 −1.06922 −0.534611 0.845099i \(-0.679542\pi\)
−0.534611 + 0.845099i \(0.679542\pi\)
\(648\) 2.19302e12 0.488602
\(649\) 1.03006e13 2.27909
\(650\) −1.73376e13 −3.80959
\(651\) −6.99502e11 −0.152642
\(652\) −2.63694e12 −0.571460
\(653\) 7.64082e12 1.64449 0.822244 0.569136i \(-0.192722\pi\)
0.822244 + 0.569136i \(0.192722\pi\)
\(654\) 9.52060e11 0.203500
\(655\) −4.44703e12 −0.944027
\(656\) −1.54116e12 −0.324922
\(657\) 2.41410e12 0.505488
\(658\) −2.57791e12 −0.536107
\(659\) 6.24994e12 1.29090 0.645448 0.763804i \(-0.276671\pi\)
0.645448 + 0.763804i \(0.276671\pi\)
\(660\) 1.02716e12 0.210713
\(661\) −9.63418e11 −0.196294 −0.0981472 0.995172i \(-0.531292\pi\)
−0.0981472 + 0.995172i \(0.531292\pi\)
\(662\) −3.85944e12 −0.781023
\(663\) −2.24392e12 −0.451021
\(664\) −3.73771e12 −0.746191
\(665\) −4.17184e12 −0.827238
\(666\) −4.50217e11 −0.0886723
\(667\) 2.66200e12 0.520766
\(668\) 7.26978e11 0.141263
\(669\) −8.98526e11 −0.173426
\(670\) 2.32015e12 0.444814
\(671\) 7.74122e12 1.47420
\(672\) −4.97088e11 −0.0940312
\(673\) 7.42899e12 1.39592 0.697962 0.716134i \(-0.254090\pi\)
0.697962 + 0.716134i \(0.254090\pi\)
\(674\) 9.93922e12 1.85517
\(675\) 2.25527e12 0.418149
\(676\) 7.50412e12 1.38210
\(677\) 3.66005e12 0.669634 0.334817 0.942283i \(-0.391325\pi\)
0.334817 + 0.942283i \(0.391325\pi\)
\(678\) 1.49152e12 0.271078
\(679\) −4.69078e12 −0.846899
\(680\) −9.04539e12 −1.62232
\(681\) 2.33369e11 0.0415797
\(682\) −2.08624e13 −3.69261
\(683\) −1.92837e12 −0.339076 −0.169538 0.985524i \(-0.554228\pi\)
−0.169538 + 0.985524i \(0.554228\pi\)
\(684\) −2.42170e12 −0.423027
\(685\) −4.37586e12 −0.759374
\(686\) 7.74053e12 1.33448
\(687\) −2.83059e11 −0.0484810
\(688\) −9.85641e12 −1.67715
\(689\) −6.92743e12 −1.17108
\(690\) 9.01825e11 0.151461
\(691\) −3.99370e12 −0.666384 −0.333192 0.942859i \(-0.608126\pi\)
−0.333192 + 0.942859i \(0.608126\pi\)
\(692\) −7.03213e12 −1.16576
\(693\) −7.15846e12 −1.17902
\(694\) 7.20301e12 1.17868
\(695\) −1.05636e13 −1.71744
\(696\) 3.65028e11 0.0589637
\(697\) 3.16304e12 0.507642
\(698\) −6.58285e11 −0.104970
\(699\) −5.72661e11 −0.0907299
\(700\) 4.36568e12 0.687244
\(701\) 1.25989e13 1.97061 0.985307 0.170790i \(-0.0546319\pi\)
0.985307 + 0.170790i \(0.0546319\pi\)
\(702\) −3.74693e12 −0.582315
\(703\) −3.35239e11 −0.0517673
\(704\) −9.83531e11 −0.150908
\(705\) 8.25732e11 0.125889
\(706\) −3.24004e12 −0.490828
\(707\) −3.97055e12 −0.597672
\(708\) −6.73259e11 −0.100701
\(709\) 7.73619e12 1.14979 0.574896 0.818227i \(-0.305043\pi\)
0.574896 + 0.818227i \(0.305043\pi\)
\(710\) 3.16532e12 0.467472
\(711\) 3.00519e12 0.441020
\(712\) −5.98596e11 −0.0872919
\(713\) −6.81977e12 −0.988251
\(714\) 1.51756e12 0.218527
\(715\) −3.55452e13 −5.08633
\(716\) −5.39326e12 −0.766907
\(717\) 2.74023e11 0.0387213
\(718\) 2.81955e12 0.395931
\(719\) 1.27018e12 0.177250 0.0886251 0.996065i \(-0.471753\pi\)
0.0886251 + 0.996065i \(0.471753\pi\)
\(720\) −1.43455e13 −1.98938
\(721\) −7.35142e12 −1.01312
\(722\) 4.37302e12 0.598913
\(723\) −7.90869e11 −0.107642
\(724\) 4.88488e11 0.0660739
\(725\) −1.10863e13 −1.49027
\(726\) 2.32073e12 0.310035
\(727\) 4.61300e12 0.612462 0.306231 0.951957i \(-0.400932\pi\)
0.306231 + 0.951957i \(0.400932\pi\)
\(728\) 4.97433e12 0.656361
\(729\) −6.89250e12 −0.903864
\(730\) −8.10692e12 −1.05658
\(731\) 2.02291e13 2.62029
\(732\) −5.05974e11 −0.0651371
\(733\) −5.26445e12 −0.673573 −0.336787 0.941581i \(-0.609340\pi\)
−0.336787 + 0.941581i \(0.609340\pi\)
\(734\) 7.67164e12 0.975564
\(735\) −8.36676e11 −0.105746
\(736\) −4.84635e12 −0.608786
\(737\) 2.96442e12 0.370114
\(738\) 2.61922e12 0.325026
\(739\) −4.10837e11 −0.0506721 −0.0253361 0.999679i \(-0.508066\pi\)
−0.0253361 + 0.999679i \(0.508066\pi\)
\(740\) 5.62921e11 0.0690088
\(741\) −1.38359e12 −0.168587
\(742\) 4.68502e12 0.567405
\(743\) −1.50103e13 −1.80693 −0.903464 0.428663i \(-0.858985\pi\)
−0.903464 + 0.428663i \(0.858985\pi\)
\(744\) −9.35163e11 −0.111895
\(745\) 9.73987e12 1.15838
\(746\) −4.07150e12 −0.481315
\(747\) 1.21661e13 1.42958
\(748\) 1.68518e13 1.96829
\(749\) 5.64227e12 0.655067
\(750\) −1.48500e12 −0.171376
\(751\) −1.03516e13 −1.18749 −0.593744 0.804654i \(-0.702351\pi\)
−0.593744 + 0.804654i \(0.702351\pi\)
\(752\) −6.60065e12 −0.752673
\(753\) 8.19742e11 0.0929180
\(754\) 1.84188e13 2.07535
\(755\) −2.01102e13 −2.25245
\(756\) 9.43493e11 0.105049
\(757\) 1.33933e13 1.48237 0.741184 0.671302i \(-0.234265\pi\)
0.741184 + 0.671302i \(0.234265\pi\)
\(758\) 5.69780e12 0.626896
\(759\) 1.15225e12 0.126025
\(760\) −5.57733e12 −0.606409
\(761\) −9.94683e12 −1.07511 −0.537556 0.843228i \(-0.680652\pi\)
−0.537556 + 0.843228i \(0.680652\pi\)
\(762\) 1.72337e12 0.185174
\(763\) 8.29601e12 0.886153
\(764\) −4.67615e12 −0.496556
\(765\) 2.94424e13 3.10811
\(766\) 9.07550e12 0.952448
\(767\) 2.32983e13 2.43077
\(768\) −1.56928e12 −0.162770
\(769\) 1.31073e13 1.35159 0.675796 0.737089i \(-0.263800\pi\)
0.675796 + 0.737089i \(0.263800\pi\)
\(770\) 2.40392e13 2.46441
\(771\) 1.43733e11 0.0146491
\(772\) −6.86152e12 −0.695252
\(773\) −1.59306e13 −1.60481 −0.802405 0.596779i \(-0.796447\pi\)
−0.802405 + 0.596779i \(0.796447\pi\)
\(774\) 1.67511e13 1.67768
\(775\) 2.84018e13 2.82806
\(776\) −6.27110e12 −0.620821
\(777\) 6.47697e10 0.00637496
\(778\) −1.76485e13 −1.72703
\(779\) 1.95031e12 0.189752
\(780\) 2.32327e12 0.224737
\(781\) 4.04428e12 0.388966
\(782\) 1.47954e13 1.41481
\(783\) −2.39592e12 −0.227795
\(784\) 6.68813e12 0.632241
\(785\) −1.44505e13 −1.35822
\(786\) 9.97444e11 0.0932153
\(787\) −8.47507e12 −0.787512 −0.393756 0.919215i \(-0.628824\pi\)
−0.393756 + 0.919215i \(0.628824\pi\)
\(788\) 4.57431e11 0.0422628
\(789\) 2.10607e12 0.193476
\(790\) −1.00919e13 −0.921830
\(791\) 1.29967e13 1.18043
\(792\) −9.57013e12 −0.864280
\(793\) 1.75093e13 1.57232
\(794\) 1.13363e13 1.01223
\(795\) −1.50066e12 −0.133239
\(796\) −4.04906e12 −0.357475
\(797\) 1.05177e13 0.923332 0.461666 0.887054i \(-0.347252\pi\)
0.461666 + 0.887054i \(0.347252\pi\)
\(798\) 9.35721e11 0.0816833
\(799\) 1.35471e13 1.17594
\(800\) 2.01833e13 1.74215
\(801\) 1.94841e12 0.167237
\(802\) 4.50334e12 0.384371
\(803\) −1.03581e13 −0.879143
\(804\) −1.93757e11 −0.0163533
\(805\) 7.85827e12 0.659547
\(806\) −4.71872e13 −3.93837
\(807\) 1.50723e12 0.125097
\(808\) −5.30822e12 −0.438125
\(809\) 9.42432e12 0.773538 0.386769 0.922177i \(-0.373591\pi\)
0.386769 + 0.922177i \(0.373591\pi\)
\(810\) 2.39712e13 1.95662
\(811\) 1.01147e13 0.821030 0.410515 0.911854i \(-0.365349\pi\)
0.410515 + 0.911854i \(0.365349\pi\)
\(812\) −4.63795e12 −0.374390
\(813\) 1.50512e12 0.120827
\(814\) 1.93173e12 0.154219
\(815\) 1.97675e13 1.56943
\(816\) 3.88567e12 0.306803
\(817\) 1.24732e13 0.979439
\(818\) 1.04322e12 0.0814677
\(819\) −1.61912e13 −1.25748
\(820\) −3.27490e12 −0.252950
\(821\) 4.73633e12 0.363830 0.181915 0.983314i \(-0.441771\pi\)
0.181915 + 0.983314i \(0.441771\pi\)
\(822\) 9.81480e11 0.0749822
\(823\) −1.13214e13 −0.860206 −0.430103 0.902780i \(-0.641523\pi\)
−0.430103 + 0.902780i \(0.641523\pi\)
\(824\) −9.82811e12 −0.742673
\(825\) −4.79869e12 −0.360645
\(826\) −1.57566e13 −1.17775
\(827\) −5.36374e11 −0.0398743 −0.0199372 0.999801i \(-0.506347\pi\)
−0.0199372 + 0.999801i \(0.506347\pi\)
\(828\) 4.56162e12 0.337274
\(829\) 1.35509e12 0.0996491 0.0498245 0.998758i \(-0.484134\pi\)
0.0498245 + 0.998758i \(0.484134\pi\)
\(830\) −4.08557e13 −2.98814
\(831\) −1.38727e12 −0.100915
\(832\) −2.22458e12 −0.160951
\(833\) −1.37266e13 −0.987781
\(834\) 2.36936e12 0.169583
\(835\) −5.44970e12 −0.387957
\(836\) 1.03907e13 0.735727
\(837\) 6.13809e12 0.432284
\(838\) 1.55615e12 0.109007
\(839\) 1.93794e13 1.35024 0.675121 0.737707i \(-0.264092\pi\)
0.675121 + 0.737707i \(0.264092\pi\)
\(840\) 1.07757e12 0.0746771
\(841\) −2.72948e12 −0.188147
\(842\) −9.84888e12 −0.675277
\(843\) −1.80264e12 −0.122938
\(844\) −1.05389e13 −0.714918
\(845\) −5.62537e13 −3.79574
\(846\) 1.12179e13 0.752915
\(847\) 2.02223e13 1.35006
\(848\) 1.19958e13 0.796615
\(849\) −1.74983e12 −0.115587
\(850\) −6.16176e13 −4.04874
\(851\) 6.31471e11 0.0412734
\(852\) −2.64339e11 −0.0171863
\(853\) 1.56451e12 0.101183 0.0505917 0.998719i \(-0.483889\pi\)
0.0505917 + 0.998719i \(0.483889\pi\)
\(854\) −1.18416e13 −0.761813
\(855\) 1.81540e13 1.16178
\(856\) 7.54315e12 0.480198
\(857\) −1.98742e13 −1.25857 −0.629283 0.777176i \(-0.716651\pi\)
−0.629283 + 0.777176i \(0.716651\pi\)
\(858\) 7.97259e12 0.502235
\(859\) −9.12312e12 −0.571708 −0.285854 0.958273i \(-0.592277\pi\)
−0.285854 + 0.958273i \(0.592277\pi\)
\(860\) −2.09445e13 −1.30565
\(861\) −3.76810e11 −0.0233673
\(862\) 2.18878e13 1.35027
\(863\) 3.18098e13 1.95215 0.976073 0.217441i \(-0.0697710\pi\)
0.976073 + 0.217441i \(0.0697710\pi\)
\(864\) 4.36193e12 0.266297
\(865\) 5.27155e13 3.20159
\(866\) −1.80158e13 −1.08849
\(867\) −5.85455e12 −0.351891
\(868\) 1.18819e13 0.710475
\(869\) −1.28943e13 −0.767021
\(870\) 3.99000e12 0.236122
\(871\) 6.70501e12 0.394746
\(872\) 1.10909e13 0.649596
\(873\) 2.04122e13 1.18939
\(874\) 9.12278e12 0.528842
\(875\) −1.29399e13 −0.746268
\(876\) 6.77015e11 0.0388445
\(877\) −1.91391e13 −1.09251 −0.546253 0.837621i \(-0.683946\pi\)
−0.546253 + 0.837621i \(0.683946\pi\)
\(878\) −9.83076e12 −0.558292
\(879\) 3.08079e12 0.174065
\(880\) 6.15516e13 3.45993
\(881\) −3.44275e13 −1.92537 −0.962684 0.270627i \(-0.912769\pi\)
−0.962684 + 0.270627i \(0.912769\pi\)
\(882\) −1.13666e13 −0.632443
\(883\) 1.54533e13 0.855455 0.427728 0.903908i \(-0.359314\pi\)
0.427728 + 0.903908i \(0.359314\pi\)
\(884\) 3.81159e13 2.09928
\(885\) 5.04700e12 0.276560
\(886\) 4.19499e13 2.28707
\(887\) 3.32028e13 1.80102 0.900511 0.434833i \(-0.143193\pi\)
0.900511 + 0.434833i \(0.143193\pi\)
\(888\) 8.65906e10 0.00467318
\(889\) 1.50170e13 0.806351
\(890\) −6.54305e12 −0.349563
\(891\) 3.06276e13 1.62803
\(892\) 1.52626e13 0.807211
\(893\) 8.35304e12 0.439555
\(894\) −2.18460e12 −0.114381
\(895\) 4.04299e13 2.10620
\(896\) −1.27300e13 −0.659845
\(897\) 2.60619e12 0.134413
\(898\) −1.17770e13 −0.604352
\(899\) −3.01731e13 −1.54064
\(900\) −1.89975e13 −0.965172
\(901\) −2.46200e13 −1.24459
\(902\) −1.12382e13 −0.565285
\(903\) −2.40987e12 −0.120615
\(904\) 1.73753e13 0.865313
\(905\) −3.66189e12 −0.181462
\(906\) 4.51061e12 0.222412
\(907\) 2.57281e13 1.26234 0.631168 0.775646i \(-0.282576\pi\)
0.631168 + 0.775646i \(0.282576\pi\)
\(908\) −3.96407e12 −0.193533
\(909\) 1.72780e13 0.839377
\(910\) 5.43727e13 2.62842
\(911\) 2.90637e12 0.139803 0.0699017 0.997554i \(-0.477731\pi\)
0.0699017 + 0.997554i \(0.477731\pi\)
\(912\) 2.39588e12 0.114680
\(913\) −5.22007e13 −2.48632
\(914\) −5.02405e13 −2.38120
\(915\) 3.79297e12 0.178890
\(916\) 4.80812e12 0.225655
\(917\) 8.69148e12 0.405912
\(918\) −1.33165e13 −0.618870
\(919\) 3.34790e13 1.54829 0.774146 0.633007i \(-0.218180\pi\)
0.774146 + 0.633007i \(0.218180\pi\)
\(920\) 1.05057e13 0.483482
\(921\) 2.04660e11 0.00937272
\(922\) 2.29891e13 1.04769
\(923\) 9.14749e12 0.414853
\(924\) −2.00753e12 −0.0906023
\(925\) −2.62984e12 −0.118111
\(926\) 3.93563e13 1.75900
\(927\) 3.19901e13 1.42284
\(928\) −2.14420e13 −0.949073
\(929\) −2.44771e13 −1.07817 −0.539087 0.842250i \(-0.681230\pi\)
−0.539087 + 0.842250i \(0.681230\pi\)
\(930\) −1.02220e13 −0.448085
\(931\) −8.46374e12 −0.369223
\(932\) 9.72739e12 0.422303
\(933\) −2.98690e12 −0.129049
\(934\) 1.27759e12 0.0549325
\(935\) −1.26327e14 −5.40562
\(936\) −2.16460e13 −0.921801
\(937\) 2.38779e12 0.101197 0.0505985 0.998719i \(-0.483887\pi\)
0.0505985 + 0.998719i \(0.483887\pi\)
\(938\) −4.53460e12 −0.191261
\(939\) −3.51375e12 −0.147495
\(940\) −1.40261e13 −0.585952
\(941\) −8.72198e12 −0.362628 −0.181314 0.983425i \(-0.558035\pi\)
−0.181314 + 0.983425i \(0.558035\pi\)
\(942\) 3.24116e12 0.134113
\(943\) −3.67370e12 −0.151287
\(944\) −4.03442e13 −1.65351
\(945\) −7.07278e12 −0.288501
\(946\) −7.18735e13 −2.91782
\(947\) 9.75084e12 0.393973 0.196987 0.980406i \(-0.436884\pi\)
0.196987 + 0.980406i \(0.436884\pi\)
\(948\) 8.42782e11 0.0338905
\(949\) −2.34282e13 −0.937652
\(950\) −3.79930e13 −1.51338
\(951\) −4.47787e11 −0.0177525
\(952\) 1.76787e13 0.697564
\(953\) −3.04098e13 −1.19425 −0.597126 0.802148i \(-0.703691\pi\)
−0.597126 + 0.802148i \(0.703691\pi\)
\(954\) −2.03871e13 −0.796870
\(955\) 3.50542e13 1.36372
\(956\) −4.65462e12 −0.180229
\(957\) 5.09796e12 0.196468
\(958\) 5.35999e13 2.05598
\(959\) 8.55237e12 0.326515
\(960\) −4.81902e11 −0.0183121
\(961\) 5.08608e13 1.92366
\(962\) 4.36925e12 0.164482
\(963\) −2.45526e13 −0.919983
\(964\) 1.34339e13 0.501021
\(965\) 5.14365e13 1.90941
\(966\) −1.76257e12 −0.0651251
\(967\) −9.57947e10 −0.00352308 −0.00176154 0.999998i \(-0.500561\pi\)
−0.00176154 + 0.999998i \(0.500561\pi\)
\(968\) 2.70351e13 0.989667
\(969\) −4.91726e12 −0.179170
\(970\) −6.85473e13 −2.48609
\(971\) 9.18567e12 0.331608 0.165804 0.986159i \(-0.446978\pi\)
0.165804 + 0.986159i \(0.446978\pi\)
\(972\) −6.17530e12 −0.221901
\(973\) 2.06460e13 0.738461
\(974\) −3.38274e13 −1.20435
\(975\) −1.08538e13 −0.384647
\(976\) −3.03199e13 −1.06956
\(977\) 1.86895e13 0.656253 0.328126 0.944634i \(-0.393583\pi\)
0.328126 + 0.944634i \(0.393583\pi\)
\(978\) −4.43374e12 −0.154969
\(979\) −8.35996e12 −0.290859
\(980\) 1.42120e13 0.492196
\(981\) −3.61005e13 −1.24452
\(982\) −1.36768e13 −0.469337
\(983\) 1.32422e13 0.452344 0.226172 0.974087i \(-0.427379\pi\)
0.226172 + 0.974087i \(0.427379\pi\)
\(984\) −5.03757e11 −0.0171294
\(985\) −3.42908e12 −0.116068
\(986\) 6.54604e13 2.20563
\(987\) −1.61385e12 −0.0541297
\(988\) 2.35020e13 0.784692
\(989\) −2.34950e13 −0.780894
\(990\) −1.04608e14 −3.46104
\(991\) −1.92235e13 −0.633143 −0.316571 0.948569i \(-0.602532\pi\)
−0.316571 + 0.948569i \(0.602532\pi\)
\(992\) 5.49322e13 1.80104
\(993\) −2.41612e12 −0.0788583
\(994\) −6.18644e12 −0.201003
\(995\) 3.03533e13 0.981753
\(996\) 3.41189e12 0.109857
\(997\) −3.05605e12 −0.0979564 −0.0489782 0.998800i \(-0.515596\pi\)
−0.0489782 + 0.998800i \(0.515596\pi\)
\(998\) −1.81913e12 −0.0580466
\(999\) −5.68351e11 −0.0180539
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 197.10.a.b.1.17 76
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
197.10.a.b.1.17 76 1.1 even 1 trivial