Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [197,10,Mod(1,197)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(197, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0]))
N = Newforms(chi, 10, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("197.1");
S:= CuspForms(chi, 10);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 197 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 197.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(101.462059724\) |
Analytic rank: | \(1\) |
Dimension: | \(71\) |
Twist minimal: | yes |
Fricke sign: | \(+1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | −43.6171 | −175.865 | 1390.45 | −847.533 | 7670.72 | −3078.38 | −38315.6 | 11245.4 | 36967.0 | ||||||||||||||||||
1.2 | −43.4377 | 12.8549 | 1374.83 | −2210.23 | −558.386 | −3816.57 | −37479.5 | −19517.8 | 96007.3 | ||||||||||||||||||
1.3 | −43.0275 | 6.58470 | 1339.37 | 1186.50 | −283.323 | −12199.7 | −35599.5 | −19639.6 | −51052.1 | ||||||||||||||||||
1.4 | −42.9605 | 78.7960 | 1333.60 | 2236.45 | −3385.11 | 958.546 | −35296.4 | −13474.2 | −96078.9 | ||||||||||||||||||
1.5 | −42.8620 | 210.134 | 1325.15 | 1176.05 | −9006.77 | 4058.46 | −34853.1 | 24473.5 | −50407.8 | ||||||||||||||||||
1.6 | −40.8757 | −50.9073 | 1158.82 | −210.651 | 2080.87 | 2177.02 | −26439.2 | −17091.4 | 8610.49 | ||||||||||||||||||
1.7 | −37.3812 | −258.991 | 885.355 | −1331.44 | 9681.38 | 10098.3 | −13956.5 | 47393.1 | 49770.7 | ||||||||||||||||||
1.8 | −36.4427 | 87.0222 | 816.070 | 967.185 | −3171.32 | −967.647 | −11081.1 | −12110.1 | −35246.8 | ||||||||||||||||||
1.9 | −35.7043 | −240.764 | 762.797 | 2021.67 | 8596.29 | −11544.2 | −8954.52 | 38284.1 | −72182.2 | ||||||||||||||||||
1.10 | −33.9082 | 120.976 | 637.767 | −1477.52 | −4102.08 | 2679.70 | −4264.53 | −5047.78 | 50100.2 | ||||||||||||||||||
1.11 | −31.8115 | 226.712 | 499.972 | −1449.41 | −7212.06 | 9874.56 | 382.633 | 31715.5 | 46108.1 | ||||||||||||||||||
1.12 | −30.8011 | −107.364 | 436.705 | −558.513 | 3306.94 | −8318.45 | 2319.16 | −8155.88 | 17202.8 | ||||||||||||||||||
1.13 | −30.3815 | −93.2662 | 411.034 | −2695.73 | 2833.56 | 5782.46 | 3067.50 | −10984.4 | 81900.2 | ||||||||||||||||||
1.14 | −29.9863 | −185.209 | 387.177 | 872.853 | 5553.74 | 8968.76 | 3742.98 | 14619.5 | −26173.6 | ||||||||||||||||||
1.15 | −28.2265 | 196.080 | 284.733 | 2569.90 | −5534.64 | −11219.9 | 6414.94 | 18764.3 | −72539.3 | ||||||||||||||||||
1.16 | −27.9326 | −217.666 | 268.231 | −392.118 | 6079.98 | 569.248 | 6809.10 | 27695.5 | 10952.9 | ||||||||||||||||||
1.17 | −27.8171 | 240.637 | 261.789 | −2452.49 | −6693.83 | −4713.20 | 6960.13 | 38223.4 | 68221.0 | ||||||||||||||||||
1.18 | −27.2613 | −2.80973 | 231.177 | 1123.40 | 76.5969 | −8481.66 | 7655.60 | −19675.1 | −30625.2 | ||||||||||||||||||
1.19 | −25.1553 | 61.9332 | 120.787 | 1012.30 | −1557.95 | 8568.72 | 9841.06 | −15847.3 | −25464.8 | ||||||||||||||||||
1.20 | −24.2760 | −268.553 | 77.3221 | 968.528 | 6519.37 | 1482.52 | 10552.2 | 52437.5 | −23511.9 | ||||||||||||||||||
See all 71 embeddings |
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(197\) | \( +1 \) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 197.10.a.a | ✓ | 71 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
197.10.a.a | ✓ | 71 | 1.a | even | 1 | 1 | trivial |