Properties

Label 1960.2.q.q.361.2
Level $1960$
Weight $2$
Character 1960.361
Analytic conductor $15.651$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1960 = 2^{3} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1960.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(15.6506787962\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{-3})\)
Defining polynomial: \(x^{4} + 2 x^{2} + 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.2
Root \(0.707107 - 1.22474i\) of defining polynomial
Character \(\chi\) \(=\) 1960.361
Dual form 1960.2.q.q.961.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.207107 - 0.358719i) q^{3} +(0.500000 + 0.866025i) q^{5} +(1.41421 + 2.44949i) q^{9} +O(q^{10})\) \(q+(0.207107 - 0.358719i) q^{3} +(0.500000 + 0.866025i) q^{5} +(1.41421 + 2.44949i) q^{9} +(-0.414214 + 0.717439i) q^{11} -2.00000 q^{13} +0.414214 q^{15} +(-3.82843 + 6.63103i) q^{17} +(-2.82843 - 4.89898i) q^{19} +(2.79289 + 4.83743i) q^{23} +(-0.500000 + 0.866025i) q^{25} +2.41421 q^{27} -7.82843 q^{29} +(0.414214 - 0.717439i) q^{31} +(0.171573 + 0.297173i) q^{33} +(-2.82843 - 4.89898i) q^{37} +(-0.414214 + 0.717439i) q^{39} -5.82843 q^{41} -6.89949 q^{43} +(-1.41421 + 2.44949i) q^{45} +(5.82843 + 10.0951i) q^{47} +(1.58579 + 2.74666i) q^{51} +(2.82843 - 4.89898i) q^{53} -0.828427 q^{55} -2.34315 q^{57} +(-2.00000 + 3.46410i) q^{59} +(3.32843 + 5.76500i) q^{61} +(-1.00000 - 1.73205i) q^{65} +(6.44975 - 11.1713i) q^{67} +2.31371 q^{69} -12.0000 q^{71} +(1.82843 - 3.16693i) q^{73} +(0.207107 + 0.358719i) q^{75} +(2.00000 + 3.46410i) q^{79} +(-3.74264 + 6.48244i) q^{81} +4.75736 q^{83} -7.65685 q^{85} +(-1.62132 + 2.80821i) q^{87} +(-2.67157 - 4.62730i) q^{89} +(-0.171573 - 0.297173i) q^{93} +(2.82843 - 4.89898i) q^{95} -6.00000 q^{97} -2.34315 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q - 2q^{3} + 2q^{5} + O(q^{10}) \) \( 4q - 2q^{3} + 2q^{5} + 4q^{11} - 8q^{13} - 4q^{15} - 4q^{17} + 14q^{23} - 2q^{25} + 4q^{27} - 20q^{29} - 4q^{31} + 12q^{33} + 4q^{39} - 12q^{41} + 12q^{43} + 12q^{47} + 12q^{51} + 8q^{55} - 32q^{57} - 8q^{59} + 2q^{61} - 4q^{65} + 6q^{67} - 36q^{69} - 48q^{71} - 4q^{73} - 2q^{75} + 8q^{79} + 2q^{81} + 36q^{83} - 8q^{85} + 2q^{87} - 22q^{89} - 12q^{93} - 24q^{97} - 32q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1960\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1081\) \(1177\) \(1471\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.207107 0.358719i 0.119573 0.207107i −0.800025 0.599966i \(-0.795181\pi\)
0.919599 + 0.392859i \(0.128514\pi\)
\(4\) 0 0
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.41421 + 2.44949i 0.471405 + 0.816497i
\(10\) 0 0
\(11\) −0.414214 + 0.717439i −0.124890 + 0.216316i −0.921690 0.387927i \(-0.873191\pi\)
0.796800 + 0.604243i \(0.206524\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 0 0
\(15\) 0.414214 0.106949
\(16\) 0 0
\(17\) −3.82843 + 6.63103i −0.928530 + 1.60826i −0.142747 + 0.989759i \(0.545593\pi\)
−0.785783 + 0.618502i \(0.787740\pi\)
\(18\) 0 0
\(19\) −2.82843 4.89898i −0.648886 1.12390i −0.983389 0.181509i \(-0.941902\pi\)
0.334504 0.942394i \(-0.391431\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.79289 + 4.83743i 0.582358 + 1.00867i 0.995199 + 0.0978712i \(0.0312033\pi\)
−0.412841 + 0.910803i \(0.635463\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 2.41421 0.464616
\(28\) 0 0
\(29\) −7.82843 −1.45370 −0.726851 0.686795i \(-0.759017\pi\)
−0.726851 + 0.686795i \(0.759017\pi\)
\(30\) 0 0
\(31\) 0.414214 0.717439i 0.0743950 0.128856i −0.826428 0.563042i \(-0.809631\pi\)
0.900823 + 0.434187i \(0.142964\pi\)
\(32\) 0 0
\(33\) 0.171573 + 0.297173i 0.0298670 + 0.0517312i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −2.82843 4.89898i −0.464991 0.805387i 0.534211 0.845351i \(-0.320609\pi\)
−0.999201 + 0.0399642i \(0.987276\pi\)
\(38\) 0 0
\(39\) −0.414214 + 0.717439i −0.0663273 + 0.114882i
\(40\) 0 0
\(41\) −5.82843 −0.910247 −0.455124 0.890428i \(-0.650405\pi\)
−0.455124 + 0.890428i \(0.650405\pi\)
\(42\) 0 0
\(43\) −6.89949 −1.05216 −0.526082 0.850434i \(-0.676339\pi\)
−0.526082 + 0.850434i \(0.676339\pi\)
\(44\) 0 0
\(45\) −1.41421 + 2.44949i −0.210819 + 0.365148i
\(46\) 0 0
\(47\) 5.82843 + 10.0951i 0.850163 + 1.47253i 0.881060 + 0.473004i \(0.156830\pi\)
−0.0308969 + 0.999523i \(0.509836\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 1.58579 + 2.74666i 0.222055 + 0.384610i
\(52\) 0 0
\(53\) 2.82843 4.89898i 0.388514 0.672927i −0.603736 0.797185i \(-0.706322\pi\)
0.992250 + 0.124258i \(0.0396551\pi\)
\(54\) 0 0
\(55\) −0.828427 −0.111705
\(56\) 0 0
\(57\) −2.34315 −0.310357
\(58\) 0 0
\(59\) −2.00000 + 3.46410i −0.260378 + 0.450988i −0.966342 0.257260i \(-0.917180\pi\)
0.705965 + 0.708247i \(0.250514\pi\)
\(60\) 0 0
\(61\) 3.32843 + 5.76500i 0.426161 + 0.738133i 0.996528 0.0832569i \(-0.0265322\pi\)
−0.570367 + 0.821390i \(0.693199\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.00000 1.73205i −0.124035 0.214834i
\(66\) 0 0
\(67\) 6.44975 11.1713i 0.787962 1.36479i −0.139251 0.990257i \(-0.544470\pi\)
0.927213 0.374533i \(-0.122197\pi\)
\(68\) 0 0
\(69\) 2.31371 0.278538
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) 1.82843 3.16693i 0.214001 0.370661i −0.738962 0.673747i \(-0.764684\pi\)
0.952963 + 0.303086i \(0.0980170\pi\)
\(74\) 0 0
\(75\) 0.207107 + 0.358719i 0.0239146 + 0.0414214i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 2.00000 + 3.46410i 0.225018 + 0.389742i 0.956325 0.292306i \(-0.0944227\pi\)
−0.731307 + 0.682048i \(0.761089\pi\)
\(80\) 0 0
\(81\) −3.74264 + 6.48244i −0.415849 + 0.720272i
\(82\) 0 0
\(83\) 4.75736 0.522188 0.261094 0.965313i \(-0.415917\pi\)
0.261094 + 0.965313i \(0.415917\pi\)
\(84\) 0 0
\(85\) −7.65685 −0.830502
\(86\) 0 0
\(87\) −1.62132 + 2.80821i −0.173824 + 0.301072i
\(88\) 0 0
\(89\) −2.67157 4.62730i −0.283186 0.490493i 0.688982 0.724779i \(-0.258058\pi\)
−0.972168 + 0.234286i \(0.924725\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −0.171573 0.297173i −0.0177913 0.0308154i
\(94\) 0 0
\(95\) 2.82843 4.89898i 0.290191 0.502625i
\(96\) 0 0
\(97\) −6.00000 −0.609208 −0.304604 0.952479i \(-0.598524\pi\)
−0.304604 + 0.952479i \(0.598524\pi\)
\(98\) 0 0
\(99\) −2.34315 −0.235495
\(100\) 0 0
\(101\) −5.74264 + 9.94655i −0.571414 + 0.989718i 0.425007 + 0.905190i \(0.360272\pi\)
−0.996421 + 0.0845282i \(0.973062\pi\)
\(102\) 0 0
\(103\) 3.79289 + 6.56948i 0.373725 + 0.647310i 0.990135 0.140115i \(-0.0447471\pi\)
−0.616410 + 0.787425i \(0.711414\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 2.79289 + 4.83743i 0.269999 + 0.467652i 0.968861 0.247604i \(-0.0796432\pi\)
−0.698862 + 0.715256i \(0.746310\pi\)
\(108\) 0 0
\(109\) −9.15685 + 15.8601i −0.877068 + 1.51913i −0.0225237 + 0.999746i \(0.507170\pi\)
−0.854544 + 0.519379i \(0.826163\pi\)
\(110\) 0 0
\(111\) −2.34315 −0.222402
\(112\) 0 0
\(113\) 11.3137 1.06430 0.532152 0.846649i \(-0.321383\pi\)
0.532152 + 0.846649i \(0.321383\pi\)
\(114\) 0 0
\(115\) −2.79289 + 4.83743i −0.260439 + 0.451093i
\(116\) 0 0
\(117\) −2.82843 4.89898i −0.261488 0.452911i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.15685 + 8.93193i 0.468805 + 0.811994i
\(122\) 0 0
\(123\) −1.20711 + 2.09077i −0.108841 + 0.188518i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −4.34315 −0.385392 −0.192696 0.981259i \(-0.561723\pi\)
−0.192696 + 0.981259i \(0.561723\pi\)
\(128\) 0 0
\(129\) −1.42893 + 2.47498i −0.125810 + 0.217910i
\(130\) 0 0
\(131\) 6.82843 + 11.8272i 0.596602 + 1.03335i 0.993319 + 0.115404i \(0.0368164\pi\)
−0.396716 + 0.917941i \(0.629850\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1.20711 + 2.09077i 0.103891 + 0.179945i
\(136\) 0 0
\(137\) 2.00000 3.46410i 0.170872 0.295958i −0.767853 0.640626i \(-0.778675\pi\)
0.938725 + 0.344668i \(0.112008\pi\)
\(138\) 0 0
\(139\) −2.48528 −0.210799 −0.105399 0.994430i \(-0.533612\pi\)
−0.105399 + 0.994430i \(0.533612\pi\)
\(140\) 0 0
\(141\) 4.82843 0.406627
\(142\) 0 0
\(143\) 0.828427 1.43488i 0.0692766 0.119991i
\(144\) 0 0
\(145\) −3.91421 6.77962i −0.325058 0.563017i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2.32843 4.03295i −0.190752 0.330392i 0.754748 0.656015i \(-0.227759\pi\)
−0.945500 + 0.325623i \(0.894426\pi\)
\(150\) 0 0
\(151\) 5.58579 9.67487i 0.454565 0.787329i −0.544098 0.839022i \(-0.683128\pi\)
0.998663 + 0.0516921i \(0.0164614\pi\)
\(152\) 0 0
\(153\) −21.6569 −1.75085
\(154\) 0 0
\(155\) 0.828427 0.0665409
\(156\) 0 0
\(157\) 0.656854 1.13770i 0.0524227 0.0907987i −0.838623 0.544712i \(-0.816639\pi\)
0.891046 + 0.453913i \(0.149972\pi\)
\(158\) 0 0
\(159\) −1.17157 2.02922i −0.0929118 0.160928i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 7.82843 + 13.5592i 0.613170 + 1.06204i 0.990703 + 0.136045i \(0.0434392\pi\)
−0.377533 + 0.925996i \(0.623227\pi\)
\(164\) 0 0
\(165\) −0.171573 + 0.297173i −0.0133569 + 0.0231349i
\(166\) 0 0
\(167\) −2.07107 −0.160264 −0.0801320 0.996784i \(-0.525534\pi\)
−0.0801320 + 0.996784i \(0.525534\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 8.00000 13.8564i 0.611775 1.05963i
\(172\) 0 0
\(173\) 5.17157 + 8.95743i 0.393187 + 0.681021i 0.992868 0.119219i \(-0.0380390\pi\)
−0.599681 + 0.800239i \(0.704706\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0.828427 + 1.43488i 0.0622684 + 0.107852i
\(178\) 0 0
\(179\) 3.24264 5.61642i 0.242366 0.419791i −0.719022 0.694988i \(-0.755410\pi\)
0.961388 + 0.275197i \(0.0887431\pi\)
\(180\) 0 0
\(181\) 4.17157 0.310071 0.155035 0.987909i \(-0.450451\pi\)
0.155035 + 0.987909i \(0.450451\pi\)
\(182\) 0 0
\(183\) 2.75736 0.203830
\(184\) 0 0
\(185\) 2.82843 4.89898i 0.207950 0.360180i
\(186\) 0 0
\(187\) −3.17157 5.49333i −0.231928 0.401712i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.75736 + 4.77589i 0.199516 + 0.345571i 0.948371 0.317162i \(-0.102730\pi\)
−0.748856 + 0.662733i \(0.769397\pi\)
\(192\) 0 0
\(193\) 2.65685 4.60181i 0.191245 0.331245i −0.754418 0.656394i \(-0.772081\pi\)
0.945663 + 0.325149i \(0.105414\pi\)
\(194\) 0 0
\(195\) −0.828427 −0.0593249
\(196\) 0 0
\(197\) 0.343146 0.0244481 0.0122241 0.999925i \(-0.496109\pi\)
0.0122241 + 0.999925i \(0.496109\pi\)
\(198\) 0 0
\(199\) −11.6569 + 20.1903i −0.826332 + 1.43125i 0.0745642 + 0.997216i \(0.476243\pi\)
−0.900897 + 0.434034i \(0.857090\pi\)
\(200\) 0 0
\(201\) −2.67157 4.62730i −0.188438 0.326385i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −2.91421 5.04757i −0.203538 0.352537i
\(206\) 0 0
\(207\) −7.89949 + 13.6823i −0.549053 + 0.950987i
\(208\) 0 0
\(209\) 4.68629 0.324158
\(210\) 0 0
\(211\) 26.6274 1.83311 0.916553 0.399912i \(-0.130959\pi\)
0.916553 + 0.399912i \(0.130959\pi\)
\(212\) 0 0
\(213\) −2.48528 + 4.30463i −0.170289 + 0.294949i
\(214\) 0 0
\(215\) −3.44975 5.97514i −0.235271 0.407501i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −0.757359 1.31178i −0.0511776 0.0886422i
\(220\) 0 0
\(221\) 7.65685 13.2621i 0.515056 0.892103i
\(222\) 0 0
\(223\) 14.9706 1.00250 0.501252 0.865302i \(-0.332873\pi\)
0.501252 + 0.865302i \(0.332873\pi\)
\(224\) 0 0
\(225\) −2.82843 −0.188562
\(226\) 0 0
\(227\) 7.00000 12.1244i 0.464606 0.804722i −0.534577 0.845120i \(-0.679529\pi\)
0.999184 + 0.0403978i \(0.0128625\pi\)
\(228\) 0 0
\(229\) −7.00000 12.1244i −0.462573 0.801200i 0.536515 0.843891i \(-0.319740\pi\)
−0.999088 + 0.0426906i \(0.986407\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −5.82843 10.0951i −0.381833 0.661354i 0.609491 0.792793i \(-0.291374\pi\)
−0.991324 + 0.131439i \(0.958040\pi\)
\(234\) 0 0
\(235\) −5.82843 + 10.0951i −0.380205 + 0.658534i
\(236\) 0 0
\(237\) 1.65685 0.107624
\(238\) 0 0
\(239\) −30.4853 −1.97193 −0.985964 0.166955i \(-0.946606\pi\)
−0.985964 + 0.166955i \(0.946606\pi\)
\(240\) 0 0
\(241\) −5.00000 + 8.66025i −0.322078 + 0.557856i −0.980917 0.194429i \(-0.937715\pi\)
0.658838 + 0.752285i \(0.271048\pi\)
\(242\) 0 0
\(243\) 5.17157 + 8.95743i 0.331757 + 0.574619i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 5.65685 + 9.79796i 0.359937 + 0.623429i
\(248\) 0 0
\(249\) 0.985281 1.70656i 0.0624397 0.108149i
\(250\) 0 0
\(251\) 27.4558 1.73300 0.866499 0.499179i \(-0.166365\pi\)
0.866499 + 0.499179i \(0.166365\pi\)
\(252\) 0 0
\(253\) −4.62742 −0.290923
\(254\) 0 0
\(255\) −1.58579 + 2.74666i −0.0993058 + 0.172003i
\(256\) 0 0
\(257\) 7.65685 + 13.2621i 0.477621 + 0.827265i 0.999671 0.0256506i \(-0.00816572\pi\)
−0.522050 + 0.852915i \(0.674832\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −11.0711 19.1757i −0.685282 1.18694i
\(262\) 0 0
\(263\) 7.86396 13.6208i 0.484913 0.839893i −0.514937 0.857228i \(-0.672185\pi\)
0.999850 + 0.0173347i \(0.00551807\pi\)
\(264\) 0 0
\(265\) 5.65685 0.347498
\(266\) 0 0
\(267\) −2.21320 −0.135446
\(268\) 0 0
\(269\) −3.32843 + 5.76500i −0.202938 + 0.351499i −0.949474 0.313847i \(-0.898382\pi\)
0.746536 + 0.665345i \(0.231716\pi\)
\(270\) 0 0
\(271\) −1.65685 2.86976i −0.100647 0.174325i 0.811305 0.584624i \(-0.198758\pi\)
−0.911951 + 0.410298i \(0.865425\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.414214 0.717439i −0.0249780 0.0432632i
\(276\) 0 0
\(277\) −14.3137 + 24.7921i −0.860027 + 1.48961i 0.0118739 + 0.999930i \(0.496220\pi\)
−0.871901 + 0.489682i \(0.837113\pi\)
\(278\) 0 0
\(279\) 2.34315 0.140280
\(280\) 0 0
\(281\) 2.68629 0.160251 0.0801254 0.996785i \(-0.474468\pi\)
0.0801254 + 0.996785i \(0.474468\pi\)
\(282\) 0 0
\(283\) 9.00000 15.5885i 0.534994 0.926638i −0.464169 0.885747i \(-0.653647\pi\)
0.999164 0.0408910i \(-0.0130196\pi\)
\(284\) 0 0
\(285\) −1.17157 2.02922i −0.0693980 0.120201i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −20.8137 36.0504i −1.22434 2.12061i
\(290\) 0 0
\(291\) −1.24264 + 2.15232i −0.0728449 + 0.126171i
\(292\) 0 0
\(293\) −16.9706 −0.991431 −0.495715 0.868485i \(-0.665094\pi\)
−0.495715 + 0.868485i \(0.665094\pi\)
\(294\) 0 0
\(295\) −4.00000 −0.232889
\(296\) 0 0
\(297\) −1.00000 + 1.73205i −0.0580259 + 0.100504i
\(298\) 0 0
\(299\) −5.58579 9.67487i −0.323034 0.559512i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 2.37868 + 4.11999i 0.136652 + 0.236687i
\(304\) 0 0
\(305\) −3.32843 + 5.76500i −0.190585 + 0.330103i
\(306\) 0 0
\(307\) −4.75736 −0.271517 −0.135758 0.990742i \(-0.543347\pi\)
−0.135758 + 0.990742i \(0.543347\pi\)
\(308\) 0 0
\(309\) 3.14214 0.178750
\(310\) 0 0
\(311\) 10.8284 18.7554i 0.614024 1.06352i −0.376531 0.926404i \(-0.622883\pi\)
0.990555 0.137116i \(-0.0437834\pi\)
\(312\) 0 0
\(313\) 10.4853 + 18.1610i 0.592663 + 1.02652i 0.993872 + 0.110536i \(0.0352568\pi\)
−0.401209 + 0.915987i \(0.631410\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 11.0000 + 19.0526i 0.617822 + 1.07010i 0.989882 + 0.141890i \(0.0453179\pi\)
−0.372061 + 0.928208i \(0.621349\pi\)
\(318\) 0 0
\(319\) 3.24264 5.61642i 0.181553 0.314459i
\(320\) 0 0
\(321\) 2.31371 0.129139
\(322\) 0 0
\(323\) 43.3137 2.41004
\(324\) 0 0
\(325\) 1.00000 1.73205i 0.0554700 0.0960769i
\(326\) 0 0
\(327\) 3.79289 + 6.56948i 0.209747 + 0.363293i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −13.2426 22.9369i −0.727881 1.26073i −0.957777 0.287512i \(-0.907172\pi\)
0.229896 0.973215i \(-0.426162\pi\)
\(332\) 0 0
\(333\) 8.00000 13.8564i 0.438397 0.759326i
\(334\) 0 0
\(335\) 12.8995 0.704775
\(336\) 0 0
\(337\) 24.9706 1.36023 0.680117 0.733104i \(-0.261929\pi\)
0.680117 + 0.733104i \(0.261929\pi\)
\(338\) 0 0
\(339\) 2.34315 4.05845i 0.127262 0.220425i
\(340\) 0 0
\(341\) 0.343146 + 0.594346i 0.0185824 + 0.0321856i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 1.15685 + 2.00373i 0.0622829 + 0.107877i
\(346\) 0 0
\(347\) −5.69239 + 9.85951i −0.305583 + 0.529286i −0.977391 0.211440i \(-0.932185\pi\)
0.671808 + 0.740726i \(0.265518\pi\)
\(348\) 0 0
\(349\) −9.82843 −0.526104 −0.263052 0.964782i \(-0.584729\pi\)
−0.263052 + 0.964782i \(0.584729\pi\)
\(350\) 0 0
\(351\) −4.82843 −0.257722
\(352\) 0 0
\(353\) 16.8284 29.1477i 0.895687 1.55138i 0.0627345 0.998030i \(-0.480018\pi\)
0.832952 0.553345i \(-0.186649\pi\)
\(354\) 0 0
\(355\) −6.00000 10.3923i −0.318447 0.551566i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 3.24264 + 5.61642i 0.171140 + 0.296423i 0.938819 0.344412i \(-0.111922\pi\)
−0.767679 + 0.640835i \(0.778588\pi\)
\(360\) 0 0
\(361\) −6.50000 + 11.2583i −0.342105 + 0.592544i
\(362\) 0 0
\(363\) 4.27208 0.224226
\(364\) 0 0
\(365\) 3.65685 0.191408
\(366\) 0 0
\(367\) 10.7929 18.6938i 0.563384 0.975810i −0.433814 0.901003i \(-0.642832\pi\)
0.997198 0.0748078i \(-0.0238343\pi\)
\(368\) 0 0
\(369\) −8.24264 14.2767i −0.429095 0.743214i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −6.00000 10.3923i −0.310668 0.538093i 0.667839 0.744306i \(-0.267219\pi\)
−0.978507 + 0.206213i \(0.933886\pi\)
\(374\) 0 0
\(375\) −0.207107 + 0.358719i −0.0106949 + 0.0185242i
\(376\) 0 0
\(377\) 15.6569 0.806369
\(378\) 0 0
\(379\) 4.68629 0.240719 0.120359 0.992730i \(-0.461595\pi\)
0.120359 + 0.992730i \(0.461595\pi\)
\(380\) 0 0
\(381\) −0.899495 + 1.55797i −0.0460825 + 0.0798173i
\(382\) 0 0
\(383\) −0.449747 0.778985i −0.0229810 0.0398043i 0.854306 0.519770i \(-0.173982\pi\)
−0.877287 + 0.479966i \(0.840649\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −9.75736 16.9002i −0.495994 0.859088i
\(388\) 0 0
\(389\) −2.65685 + 4.60181i −0.134708 + 0.233321i −0.925486 0.378782i \(-0.876343\pi\)
0.790778 + 0.612103i \(0.209676\pi\)
\(390\) 0 0
\(391\) −42.7696 −2.16295
\(392\) 0 0
\(393\) 5.65685 0.285351
\(394\) 0 0
\(395\) −2.00000 + 3.46410i −0.100631 + 0.174298i
\(396\) 0 0
\(397\) −12.3137 21.3280i −0.618007 1.07042i −0.989849 0.142124i \(-0.954607\pi\)
0.371842 0.928296i \(-0.378726\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 16.1569 + 27.9845i 0.806835 + 1.39748i 0.915045 + 0.403351i \(0.132155\pi\)
−0.108211 + 0.994128i \(0.534512\pi\)
\(402\) 0 0
\(403\) −0.828427 + 1.43488i −0.0412669 + 0.0714764i
\(404\) 0 0
\(405\) −7.48528 −0.371947
\(406\) 0 0
\(407\) 4.68629 0.232291
\(408\) 0 0
\(409\) −12.5711 + 21.7737i −0.621599 + 1.07664i 0.367589 + 0.929988i \(0.380183\pi\)
−0.989188 + 0.146653i \(0.953150\pi\)
\(410\) 0 0
\(411\) −0.828427 1.43488i −0.0408633 0.0707773i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 2.37868 + 4.11999i 0.116765 + 0.202243i
\(416\) 0 0
\(417\) −0.514719 + 0.891519i −0.0252059 + 0.0436579i
\(418\) 0 0
\(419\) 15.3137 0.748124 0.374062 0.927404i \(-0.377965\pi\)
0.374062 + 0.927404i \(0.377965\pi\)
\(420\) 0 0
\(421\) 27.3431 1.33262 0.666312 0.745673i \(-0.267872\pi\)
0.666312 + 0.745673i \(0.267872\pi\)
\(422\) 0 0
\(423\) −16.4853 + 28.5533i −0.801542 + 1.38831i
\(424\) 0 0
\(425\) −3.82843 6.63103i −0.185706 0.321652i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −0.343146 0.594346i −0.0165672 0.0286953i
\(430\) 0 0
\(431\) 0.414214 0.717439i 0.0199520 0.0345578i −0.855877 0.517179i \(-0.826982\pi\)
0.875829 + 0.482622i \(0.160315\pi\)
\(432\) 0 0
\(433\) 19.3137 0.928158 0.464079 0.885794i \(-0.346385\pi\)
0.464079 + 0.885794i \(0.346385\pi\)
\(434\) 0 0
\(435\) −3.24264 −0.155473
\(436\) 0 0
\(437\) 15.7990 27.3647i 0.755768 1.30903i
\(438\) 0 0
\(439\) −9.17157 15.8856i −0.437735 0.758180i 0.559779 0.828642i \(-0.310886\pi\)
−0.997514 + 0.0704621i \(0.977553\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 7.79289 + 13.4977i 0.370252 + 0.641294i 0.989604 0.143819i \(-0.0459382\pi\)
−0.619353 + 0.785113i \(0.712605\pi\)
\(444\) 0 0
\(445\) 2.67157 4.62730i 0.126645 0.219355i
\(446\) 0 0
\(447\) −1.92893 −0.0912354
\(448\) 0 0
\(449\) −7.48528 −0.353252 −0.176626 0.984278i \(-0.556518\pi\)
−0.176626 + 0.984278i \(0.556518\pi\)
\(450\) 0 0
\(451\) 2.41421 4.18154i 0.113681 0.196901i
\(452\) 0 0
\(453\) −2.31371 4.00746i −0.108708 0.188287i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −14.4853 25.0892i −0.677593 1.17363i −0.975704 0.219094i \(-0.929690\pi\)
0.298111 0.954531i \(-0.403643\pi\)
\(458\) 0 0
\(459\) −9.24264 + 16.0087i −0.431410 + 0.747223i
\(460\) 0 0
\(461\) −1.31371 −0.0611855 −0.0305928 0.999532i \(-0.509739\pi\)
−0.0305928 + 0.999532i \(0.509739\pi\)
\(462\) 0 0
\(463\) 14.8995 0.692438 0.346219 0.938154i \(-0.387465\pi\)
0.346219 + 0.938154i \(0.387465\pi\)
\(464\) 0 0
\(465\) 0.171573 0.297173i 0.00795650 0.0137811i
\(466\) 0 0
\(467\) −18.9350 32.7964i −0.876209 1.51764i −0.855470 0.517853i \(-0.826731\pi\)
−0.0207390 0.999785i \(-0.506602\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −0.272078 0.471253i −0.0125367 0.0217142i
\(472\) 0 0
\(473\) 2.85786 4.94997i 0.131405 0.227600i
\(474\) 0 0
\(475\) 5.65685 0.259554
\(476\) 0 0
\(477\) 16.0000 0.732590
\(478\) 0 0
\(479\) −0.757359 + 1.31178i −0.0346046 + 0.0599370i −0.882809 0.469732i \(-0.844351\pi\)
0.848204 + 0.529669i \(0.177684\pi\)
\(480\) 0 0
\(481\) 5.65685 + 9.79796i 0.257930 + 0.446748i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3.00000 5.19615i −0.136223 0.235945i
\(486\) 0 0
\(487\) 19.1421 33.1552i 0.867413 1.50240i 0.00278182 0.999996i \(-0.499115\pi\)
0.864631 0.502407i \(-0.167552\pi\)
\(488\) 0 0
\(489\) 6.48528 0.293275
\(490\) 0 0
\(491\) 1.51472 0.0683583 0.0341791 0.999416i \(-0.489118\pi\)
0.0341791 + 0.999416i \(0.489118\pi\)
\(492\) 0 0
\(493\) 29.9706 51.9105i 1.34981 2.33793i
\(494\) 0 0
\(495\) −1.17157 2.02922i −0.0526583 0.0912068i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −22.0711 38.2282i −0.988037 1.71133i −0.627576 0.778555i \(-0.715953\pi\)
−0.360461 0.932774i \(-0.617381\pi\)
\(500\) 0 0
\(501\) −0.428932 + 0.742932i −0.0191633 + 0.0331918i
\(502\) 0 0
\(503\) 3.92893 0.175182 0.0875912 0.996157i \(-0.472083\pi\)
0.0875912 + 0.996157i \(0.472083\pi\)
\(504\) 0 0
\(505\) −11.4853 −0.511088
\(506\) 0 0
\(507\) −1.86396 + 3.22848i −0.0827814 + 0.143382i
\(508\) 0 0
\(509\) −16.7426 28.9991i −0.742105 1.28536i −0.951535 0.307539i \(-0.900494\pi\)
0.209431 0.977823i \(-0.432839\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −6.82843 11.8272i −0.301482 0.522183i
\(514\) 0 0
\(515\) −3.79289 + 6.56948i −0.167135 + 0.289486i
\(516\) 0 0
\(517\) −9.65685 −0.424708
\(518\) 0 0
\(519\) 4.28427 0.188059
\(520\) 0 0
\(521\) 18.3137 31.7203i 0.802338 1.38969i −0.115735 0.993280i \(-0.536922\pi\)
0.918073 0.396410i \(-0.129744\pi\)
\(522\) 0 0
\(523\) 13.9706 + 24.1977i 0.610890 + 1.05809i 0.991091 + 0.133189i \(0.0425216\pi\)
−0.380201 + 0.924904i \(0.624145\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.17157 + 5.49333i 0.138156 + 0.239293i
\(528\) 0 0
\(529\) −4.10051 + 7.10228i −0.178283 + 0.308795i
\(530\) 0 0
\(531\) −11.3137 −0.490973
\(532\) 0 0
\(533\) 11.6569 0.504914
\(534\) 0 0
\(535\) −2.79289 + 4.83743i −0.120747 + 0.209140i
\(536\) 0 0
\(537\) −1.34315 2.32640i −0.0579610 0.100391i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 11.7426 + 20.3389i 0.504856 + 0.874435i 0.999984 + 0.00561582i \(0.00178758\pi\)
−0.495129 + 0.868820i \(0.664879\pi\)
\(542\) 0 0
\(543\) 0.863961 1.49642i 0.0370761 0.0642177i
\(544\) 0 0
\(545\) −18.3137 −0.784473
\(546\) 0 0
\(547\) −2.27208 −0.0971470 −0.0485735 0.998820i \(-0.515468\pi\)
−0.0485735 + 0.998820i \(0.515468\pi\)
\(548\) 0 0
\(549\) −9.41421 + 16.3059i −0.401789 + 0.695919i
\(550\) 0 0
\(551\) 22.1421 + 38.3513i 0.943287 + 1.63382i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −1.17157 2.02922i −0.0497305 0.0861358i
\(556\) 0 0
\(557\) 8.65685 14.9941i 0.366803 0.635321i −0.622261 0.782810i \(-0.713786\pi\)
0.989064 + 0.147489i \(0.0471191\pi\)
\(558\) 0 0
\(559\) 13.7990 0.583635
\(560\) 0 0
\(561\) −2.62742 −0.110930
\(562\) 0 0
\(563\) −2.03553 + 3.52565i −0.0857875 + 0.148588i −0.905727 0.423863i \(-0.860674\pi\)
0.819939 + 0.572451i \(0.194007\pi\)
\(564\) 0 0
\(565\) 5.65685 + 9.79796i 0.237986 + 0.412203i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 18.3137 + 31.7203i 0.767751 + 1.32978i 0.938780 + 0.344517i \(0.111957\pi\)
−0.171029 + 0.985266i \(0.554709\pi\)
\(570\) 0 0
\(571\) 10.4853 18.1610i 0.438795 0.760016i −0.558801 0.829301i \(-0.688739\pi\)
0.997597 + 0.0692856i \(0.0220720\pi\)
\(572\) 0 0
\(573\) 2.28427 0.0954268
\(574\) 0 0
\(575\) −5.58579 −0.232943
\(576\) 0 0
\(577\) −11.1421 + 19.2987i −0.463853 + 0.803417i −0.999149 0.0412474i \(-0.986867\pi\)
0.535296 + 0.844665i \(0.320200\pi\)
\(578\) 0 0
\(579\) −1.10051 1.90613i −0.0457354 0.0792161i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 2.34315 + 4.05845i 0.0970432 + 0.168084i
\(584\) 0 0
\(585\) 2.82843 4.89898i 0.116941 0.202548i
\(586\) 0 0
\(587\) 22.6863 0.936363 0.468182 0.883632i \(-0.344909\pi\)
0.468182 + 0.883632i \(0.344909\pi\)
\(588\) 0 0
\(589\) −4.68629 −0.193095
\(590\) 0 0
\(591\) 0.0710678 0.123093i 0.00292334 0.00506337i
\(592\) 0 0
\(593\) 14.9706 + 25.9298i 0.614767 + 1.06481i 0.990425 + 0.138050i \(0.0440834\pi\)
−0.375658 + 0.926758i \(0.622583\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 4.82843 + 8.36308i 0.197614 + 0.342278i
\(598\) 0 0
\(599\) −21.3137 + 36.9164i −0.870855 + 1.50836i −0.00974040 + 0.999953i \(0.503101\pi\)
−0.861114 + 0.508412i \(0.830233\pi\)
\(600\) 0 0
\(601\) 34.0000 1.38689 0.693444 0.720510i \(-0.256092\pi\)
0.693444 + 0.720510i \(0.256092\pi\)
\(602\) 0 0
\(603\) 36.4853 1.48580
\(604\) 0 0
\(605\) −5.15685 + 8.93193i −0.209656 + 0.363135i
\(606\) 0 0
\(607\) 13.6213 + 23.5928i 0.552872 + 0.957603i 0.998066 + 0.0621685i \(0.0198016\pi\)
−0.445193 + 0.895434i \(0.646865\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −11.6569 20.1903i −0.471586 0.816811i
\(612\) 0 0
\(613\) −19.4853 + 33.7495i −0.787003 + 1.36313i 0.140792 + 0.990039i \(0.455035\pi\)
−0.927795 + 0.373090i \(0.878298\pi\)
\(614\) 0 0
\(615\) −2.41421 −0.0973505
\(616\) 0 0
\(617\) −12.6863 −0.510731 −0.255365 0.966845i \(-0.582196\pi\)
−0.255365 + 0.966845i \(0.582196\pi\)
\(618\) 0 0
\(619\) 19.7279 34.1698i 0.792932 1.37340i −0.131212 0.991354i \(-0.541887\pi\)
0.924144 0.382044i \(-0.124780\pi\)
\(620\) 0 0
\(621\) 6.74264 + 11.6786i 0.270573 + 0.468646i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 0.970563 1.68106i 0.0387605 0.0671352i
\(628\) 0 0
\(629\) 43.3137 1.72703
\(630\) 0 0
\(631\) −1.51472 −0.0603000 −0.0301500 0.999545i \(-0.509598\pi\)
−0.0301500 + 0.999545i \(0.509598\pi\)
\(632\) 0 0
\(633\) 5.51472 9.55177i 0.219190 0.379649i
\(634\) 0 0
\(635\) −2.17157 3.76127i −0.0861762 0.149262i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −16.9706 29.3939i −0.671345 1.16280i
\(640\) 0 0
\(641\) −7.05635 + 12.2220i −0.278709 + 0.482738i −0.971064 0.238819i \(-0.923240\pi\)
0.692355 + 0.721557i \(0.256573\pi\)
\(642\) 0 0
\(643\) −26.0000 −1.02534 −0.512670 0.858586i \(-0.671344\pi\)
−0.512670 + 0.858586i \(0.671344\pi\)
\(644\) 0 0
\(645\) −2.85786 −0.112528
\(646\) 0 0
\(647\) −10.3787 + 17.9764i −0.408028 + 0.706725i −0.994669 0.103122i \(-0.967117\pi\)
0.586641 + 0.809847i \(0.300450\pi\)
\(648\) 0 0
\(649\) −1.65685 2.86976i −0.0650372 0.112648i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 7.82843 + 13.5592i 0.306350 + 0.530614i 0.977561 0.210653i \(-0.0675589\pi\)
−0.671211 + 0.741266i \(0.734226\pi\)
\(654\) 0 0
\(655\) −6.82843 + 11.8272i −0.266809 + 0.462126i
\(656\) 0 0
\(657\) 10.3431 0.403525
\(658\) 0 0
\(659\) 12.6863 0.494188 0.247094 0.968992i \(-0.420524\pi\)
0.247094 + 0.968992i \(0.420524\pi\)
\(660\) 0 0
\(661\) −25.1569 + 43.5729i −0.978488 + 1.69479i −0.310581 + 0.950547i \(0.600524\pi\)
−0.667907 + 0.744244i \(0.732810\pi\)
\(662\) 0 0
\(663\) −3.17157 5.49333i −0.123174 0.213343i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −21.8640 37.8695i −0.846576 1.46631i
\(668\) 0 0
\(669\) 3.10051 5.37023i 0.119872 0.207625i
\(670\) 0 0
\(671\) −5.51472 −0.212893
\(672\) 0 0
\(673\) −5.65685 −0.218056 −0.109028 0.994039i \(-0.534774\pi\)
−0.109028 + 0.994039i \(0.534774\pi\)
\(674\) 0 0
\(675\) −1.20711 + 2.09077i −0.0464616 + 0.0804738i
\(676\) 0 0
\(677\) 11.4853 + 19.8931i 0.441415 + 0.764554i 0.997795 0.0663747i \(-0.0211433\pi\)
−0.556380 + 0.830928i \(0.687810\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −2.89949 5.02207i −0.111109 0.192446i
\(682\) 0 0
\(683\) 0.964466 1.67050i 0.0369043 0.0639201i −0.846983 0.531619i \(-0.821584\pi\)
0.883888 + 0.467699i \(0.154917\pi\)
\(684\) 0 0
\(685\) 4.00000 0.152832
\(686\) 0 0
\(687\) −5.79899 −0.221245
\(688\) 0 0
\(689\) −5.65685 + 9.79796i −0.215509 + 0.373273i
\(690\) 0 0
\(691\) −21.3848 37.0395i −0.813515 1.40905i −0.910389 0.413753i \(-0.864218\pi\)
0.0968739 0.995297i \(-0.469116\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.24264 2.15232i −0.0471360 0.0816420i
\(696\) 0 0
\(697\) 22.3137 38.6485i 0.845192 1.46392i
\(698\) 0 0
\(699\) −4.82843 −0.182628
\(700\) 0 0
\(701\) −11.0000 −0.415464 −0.207732 0.978186i \(-0.566608\pi\)
−0.207732 + 0.978186i \(0.566608\pi\)
\(702\) 0 0
\(703\) −16.0000 + 27.7128i −0.603451 + 1.04521i
\(704\) 0 0
\(705\) 2.41421 + 4.18154i 0.0909245 + 0.157486i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 17.7132 + 30.6802i 0.665233 + 1.15222i 0.979222 + 0.202791i \(0.0650013\pi\)
−0.313989 + 0.949427i \(0.601665\pi\)
\(710\) 0 0
\(711\) −5.65685 + 9.79796i −0.212149 + 0.367452i
\(712\) 0 0
\(713\) 4.62742 0.173298
\(714\) 0 0
\(715\) 1.65685 0.0619628
\(716\) 0 0
\(717\) −6.31371 + 10.9357i −0.235790 + 0.408400i
\(718\) 0 0
\(719\) −12.8995 22.3426i −0.481070 0.833238i 0.518694 0.854960i \(-0.326418\pi\)
−0.999764 + 0.0217223i \(0.993085\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 2.07107 + 3.58719i 0.0770238 + 0.133409i
\(724\) 0 0
\(725\) 3.91421 6.77962i 0.145370 0.251789i
\(726\) 0 0
\(727\) −38.0711 −1.41198 −0.705989 0.708223i \(-0.749497\pi\)
−0.705989 + 0.708223i \(0.749497\pi\)
\(728\) 0 0
\(729\) −18.1716 −0.673021
\(730\) 0 0
\(731\) 26.4142 45.7508i 0.976965 1.69215i
\(732\) 0 0
\(733\) 3.82843 + 6.63103i 0.141406 + 0.244923i 0.928026 0.372514i \(-0.121504\pi\)
−0.786620 + 0.617437i \(0.788171\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.34315 + 9.25460i 0.196817 + 0.340898i
\(738\) 0 0
\(739\) −8.41421 + 14.5738i −0.309522 + 0.536108i −0.978258 0.207392i \(-0.933502\pi\)
0.668736 + 0.743500i \(0.266836\pi\)
\(740\) 0 0
\(741\) 4.68629 0.172155
\(742\) 0 0
\(743\) −10.7574 −0.394649 −0.197325 0.980338i \(-0.563225\pi\)
−0.197325 + 0.980338i \(0.563225\pi\)
\(744\) 0 0
\(745\) 2.32843 4.03295i 0.0853070 0.147756i
\(746\) 0 0
\(747\) 6.72792 + 11.6531i 0.246162 + 0.426365i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 6.00000 + 10.3923i 0.218943 + 0.379221i 0.954485 0.298259i \(-0.0964058\pi\)
−0.735542 + 0.677479i \(0.763072\pi\)
\(752\) 0 0
\(753\) 5.68629 9.84895i 0.207220 0.358916i
\(754\) 0 0
\(755\) 11.1716 0.406575
\(756\) 0 0
\(757\) 6.00000 0.218074 0.109037 0.994038i \(-0.465223\pi\)
0.109037 + 0.994038i \(0.465223\pi\)
\(758\) 0 0
\(759\) −0.958369 + 1.65994i −0.0347866 + 0.0602522i
\(760\) 0 0
\(761\) −21.9706 38.0541i −0.796432 1.37946i −0.921926 0.387367i \(-0.873385\pi\)
0.125493 0.992094i \(-0.459949\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −10.8284 18.7554i −0.391503 0.678102i
\(766\) 0 0
\(767\) 4.00000 6.92820i 0.144432 0.250163i
\(768\) 0 0
\(769\) −43.2548 −1.55981 −0.779905 0.625898i \(-0.784732\pi\)
−0.779905 + 0.625898i \(0.784732\pi\)
\(770\) 0 0
\(771\) 6.34315 0.228443
\(772\) 0 0
\(773\) 12.1716 21.0818i 0.437781 0.758259i −0.559737 0.828670i \(-0.689098\pi\)
0.997518 + 0.0704113i \(0.0224312\pi\)
\(774\) 0 0
\(775\) 0.414214 + 0.717439i 0.0148790 + 0.0257712i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 16.4853 + 28.5533i 0.590647 + 1.02303i
\(780\) 0 0
\(781\) 4.97056 8.60927i 0.177861 0.308064i
\(782\) 0 0
\(783\) −18.8995 −0.675413
\(784\) 0 0
\(785\) 1.31371 0.0468883
\(786\) 0 0
\(787\) −0.792893 + 1.37333i −0.0282636 + 0.0489540i −0.879811 0.475323i \(-0.842331\pi\)
0.851548 + 0.524277i \(0.175664\pi\)
\(788\) 0 0
\(789\) −3.25736 5.64191i −0.115965 0.200857i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −6.65685 11.5300i −0.236392 0.409443i
\(794\) 0 0
\(795\) 1.17157 2.02922i 0.0415514 0.0719691i
\(796\) 0 0
\(797\) 35.3137 1.25088 0.625438 0.780274i \(-0.284920\pi\)
0.625438 + 0.780274i \(0.284920\pi\)
\(798\) 0 0
\(799\) −89.2548 −3.15761