Properties

Label 1960.2.q.k.361.1
Level $1960$
Weight $2$
Character 1960.361
Analytic conductor $15.651$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1960 = 2^{3} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1960.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(15.6506787962\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1960.361
Dual form 1960.2.q.k.961.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{5} +(1.00000 + 1.73205i) q^{9} +O(q^{10})\) \(q+(0.500000 - 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{5} +(1.00000 + 1.73205i) q^{9} +(-1.00000 + 1.73205i) q^{11} -1.00000 q^{15} +(2.00000 - 3.46410i) q^{17} +(-1.00000 - 1.73205i) q^{19} +(-0.500000 - 0.866025i) q^{23} +(-0.500000 + 0.866025i) q^{25} +5.00000 q^{27} +9.00000 q^{29} +(2.00000 - 3.46410i) q^{31} +(1.00000 + 1.73205i) q^{33} +(-2.00000 - 3.46410i) q^{37} -1.00000 q^{41} +9.00000 q^{43} +(1.00000 - 1.73205i) q^{45} +(-2.00000 - 3.46410i) q^{51} +(5.00000 - 8.66025i) q^{53} +2.00000 q^{55} -2.00000 q^{57} +(-5.00000 + 8.66025i) q^{59} +(4.50000 + 7.79423i) q^{61} +(-2.50000 + 4.33013i) q^{67} -1.00000 q^{69} +14.0000 q^{71} +(6.00000 - 10.3923i) q^{73} +(0.500000 + 0.866025i) q^{75} +(-7.00000 - 12.1244i) q^{79} +(-0.500000 + 0.866025i) q^{81} -11.0000 q^{83} -4.00000 q^{85} +(4.50000 - 7.79423i) q^{87} +(-7.50000 - 12.9904i) q^{89} +(-2.00000 - 3.46410i) q^{93} +(-1.00000 + 1.73205i) q^{95} +18.0000 q^{97} -4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{3} - q^{5} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + q^{3} - q^{5} + 2 q^{9} - 2 q^{11} - 2 q^{15} + 4 q^{17} - 2 q^{19} - q^{23} - q^{25} + 10 q^{27} + 18 q^{29} + 4 q^{31} + 2 q^{33} - 4 q^{37} - 2 q^{41} + 18 q^{43} + 2 q^{45} - 4 q^{51} + 10 q^{53} + 4 q^{55} - 4 q^{57} - 10 q^{59} + 9 q^{61} - 5 q^{67} - 2 q^{69} + 28 q^{71} + 12 q^{73} + q^{75} - 14 q^{79} - q^{81} - 22 q^{83} - 8 q^{85} + 9 q^{87} - 15 q^{89} - 4 q^{93} - 2 q^{95} + 36 q^{97} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1960\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1081\) \(1177\) \(1471\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 0.866025i 0.288675 0.500000i −0.684819 0.728714i \(-0.740119\pi\)
0.973494 + 0.228714i \(0.0734519\pi\)
\(4\) 0 0
\(5\) −0.500000 0.866025i −0.223607 0.387298i
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 1.00000 + 1.73205i 0.333333 + 0.577350i
\(10\) 0 0
\(11\) −1.00000 + 1.73205i −0.301511 + 0.522233i −0.976478 0.215615i \(-0.930824\pi\)
0.674967 + 0.737848i \(0.264158\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) 2.00000 3.46410i 0.485071 0.840168i −0.514782 0.857321i \(-0.672127\pi\)
0.999853 + 0.0171533i \(0.00546033\pi\)
\(18\) 0 0
\(19\) −1.00000 1.73205i −0.229416 0.397360i 0.728219 0.685344i \(-0.240348\pi\)
−0.957635 + 0.287984i \(0.907015\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.500000 0.866025i −0.104257 0.180579i 0.809177 0.587565i \(-0.199913\pi\)
−0.913434 + 0.406986i \(0.866580\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 5.00000 0.962250
\(28\) 0 0
\(29\) 9.00000 1.67126 0.835629 0.549294i \(-0.185103\pi\)
0.835629 + 0.549294i \(0.185103\pi\)
\(30\) 0 0
\(31\) 2.00000 3.46410i 0.359211 0.622171i −0.628619 0.777714i \(-0.716379\pi\)
0.987829 + 0.155543i \(0.0497126\pi\)
\(32\) 0 0
\(33\) 1.00000 + 1.73205i 0.174078 + 0.301511i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −2.00000 3.46410i −0.328798 0.569495i 0.653476 0.756948i \(-0.273310\pi\)
−0.982274 + 0.187453i \(0.939977\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.00000 −0.156174 −0.0780869 0.996947i \(-0.524881\pi\)
−0.0780869 + 0.996947i \(0.524881\pi\)
\(42\) 0 0
\(43\) 9.00000 1.37249 0.686244 0.727372i \(-0.259258\pi\)
0.686244 + 0.727372i \(0.259258\pi\)
\(44\) 0 0
\(45\) 1.00000 1.73205i 0.149071 0.258199i
\(46\) 0 0
\(47\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −2.00000 3.46410i −0.280056 0.485071i
\(52\) 0 0
\(53\) 5.00000 8.66025i 0.686803 1.18958i −0.286064 0.958211i \(-0.592347\pi\)
0.972867 0.231367i \(-0.0743197\pi\)
\(54\) 0 0
\(55\) 2.00000 0.269680
\(56\) 0 0
\(57\) −2.00000 −0.264906
\(58\) 0 0
\(59\) −5.00000 + 8.66025i −0.650945 + 1.12747i 0.331949 + 0.943297i \(0.392294\pi\)
−0.982894 + 0.184172i \(0.941040\pi\)
\(60\) 0 0
\(61\) 4.50000 + 7.79423i 0.576166 + 0.997949i 0.995914 + 0.0903080i \(0.0287851\pi\)
−0.419748 + 0.907641i \(0.637882\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −2.50000 + 4.33013i −0.305424 + 0.529009i −0.977356 0.211604i \(-0.932131\pi\)
0.671932 + 0.740613i \(0.265465\pi\)
\(68\) 0 0
\(69\) −1.00000 −0.120386
\(70\) 0 0
\(71\) 14.0000 1.66149 0.830747 0.556650i \(-0.187914\pi\)
0.830747 + 0.556650i \(0.187914\pi\)
\(72\) 0 0
\(73\) 6.00000 10.3923i 0.702247 1.21633i −0.265429 0.964130i \(-0.585514\pi\)
0.967676 0.252197i \(-0.0811531\pi\)
\(74\) 0 0
\(75\) 0.500000 + 0.866025i 0.0577350 + 0.100000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −7.00000 12.1244i −0.787562 1.36410i −0.927457 0.373930i \(-0.878010\pi\)
0.139895 0.990166i \(-0.455323\pi\)
\(80\) 0 0
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) −11.0000 −1.20741 −0.603703 0.797209i \(-0.706309\pi\)
−0.603703 + 0.797209i \(0.706309\pi\)
\(84\) 0 0
\(85\) −4.00000 −0.433861
\(86\) 0 0
\(87\) 4.50000 7.79423i 0.482451 0.835629i
\(88\) 0 0
\(89\) −7.50000 12.9904i −0.794998 1.37698i −0.922840 0.385183i \(-0.874138\pi\)
0.127842 0.991795i \(-0.459195\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −2.00000 3.46410i −0.207390 0.359211i
\(94\) 0 0
\(95\) −1.00000 + 1.73205i −0.102598 + 0.177705i
\(96\) 0 0
\(97\) 18.0000 1.82762 0.913812 0.406138i \(-0.133125\pi\)
0.913812 + 0.406138i \(0.133125\pi\)
\(98\) 0 0
\(99\) −4.00000 −0.402015
\(100\) 0 0
\(101\) 1.50000 2.59808i 0.149256 0.258518i −0.781697 0.623658i \(-0.785646\pi\)
0.930953 + 0.365140i \(0.118979\pi\)
\(102\) 0 0
\(103\) −6.50000 11.2583i −0.640464 1.10932i −0.985329 0.170664i \(-0.945409\pi\)
0.344865 0.938652i \(-0.387925\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.50000 7.79423i −0.435031 0.753497i 0.562267 0.826956i \(-0.309929\pi\)
−0.997298 + 0.0734594i \(0.976596\pi\)
\(108\) 0 0
\(109\) 0.500000 0.866025i 0.0478913 0.0829502i −0.841086 0.540901i \(-0.818083\pi\)
0.888977 + 0.457951i \(0.151417\pi\)
\(110\) 0 0
\(111\) −4.00000 −0.379663
\(112\) 0 0
\(113\) 2.00000 0.188144 0.0940721 0.995565i \(-0.470012\pi\)
0.0940721 + 0.995565i \(0.470012\pi\)
\(114\) 0 0
\(115\) −0.500000 + 0.866025i −0.0466252 + 0.0807573i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 3.50000 + 6.06218i 0.318182 + 0.551107i
\(122\) 0 0
\(123\) −0.500000 + 0.866025i −0.0450835 + 0.0780869i
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0 0
\(129\) 4.50000 7.79423i 0.396203 0.686244i
\(130\) 0 0
\(131\) −4.00000 6.92820i −0.349482 0.605320i 0.636676 0.771132i \(-0.280309\pi\)
−0.986157 + 0.165812i \(0.946976\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −2.50000 4.33013i −0.215166 0.372678i
\(136\) 0 0
\(137\) −6.00000 + 10.3923i −0.512615 + 0.887875i 0.487278 + 0.873247i \(0.337990\pi\)
−0.999893 + 0.0146279i \(0.995344\pi\)
\(138\) 0 0
\(139\) 2.00000 0.169638 0.0848189 0.996396i \(-0.472969\pi\)
0.0848189 + 0.996396i \(0.472969\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −4.50000 7.79423i −0.373705 0.647275i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 2.50000 + 4.33013i 0.204808 + 0.354738i 0.950072 0.312032i \(-0.101010\pi\)
−0.745264 + 0.666770i \(0.767676\pi\)
\(150\) 0 0
\(151\) −4.00000 + 6.92820i −0.325515 + 0.563809i −0.981617 0.190864i \(-0.938871\pi\)
0.656101 + 0.754673i \(0.272204\pi\)
\(152\) 0 0
\(153\) 8.00000 0.646762
\(154\) 0 0
\(155\) −4.00000 −0.321288
\(156\) 0 0
\(157\) 1.00000 1.73205i 0.0798087 0.138233i −0.823359 0.567521i \(-0.807902\pi\)
0.903167 + 0.429289i \(0.141236\pi\)
\(158\) 0 0
\(159\) −5.00000 8.66025i −0.396526 0.686803i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 10.0000 + 17.3205i 0.783260 + 1.35665i 0.930033 + 0.367477i \(0.119778\pi\)
−0.146772 + 0.989170i \(0.546888\pi\)
\(164\) 0 0
\(165\) 1.00000 1.73205i 0.0778499 0.134840i
\(166\) 0 0
\(167\) −17.0000 −1.31550 −0.657750 0.753237i \(-0.728492\pi\)
−0.657750 + 0.753237i \(0.728492\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 2.00000 3.46410i 0.152944 0.264906i
\(172\) 0 0
\(173\) 8.00000 + 13.8564i 0.608229 + 1.05348i 0.991532 + 0.129861i \(0.0414530\pi\)
−0.383304 + 0.923622i \(0.625214\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 5.00000 + 8.66025i 0.375823 + 0.650945i
\(178\) 0 0
\(179\) −6.00000 + 10.3923i −0.448461 + 0.776757i −0.998286 0.0585225i \(-0.981361\pi\)
0.549825 + 0.835280i \(0.314694\pi\)
\(180\) 0 0
\(181\) 25.0000 1.85824 0.929118 0.369784i \(-0.120568\pi\)
0.929118 + 0.369784i \(0.120568\pi\)
\(182\) 0 0
\(183\) 9.00000 0.665299
\(184\) 0 0
\(185\) −2.00000 + 3.46410i −0.147043 + 0.254686i
\(186\) 0 0
\(187\) 4.00000 + 6.92820i 0.292509 + 0.506640i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −9.00000 15.5885i −0.651217 1.12794i −0.982828 0.184525i \(-0.940925\pi\)
0.331611 0.943416i \(-0.392408\pi\)
\(192\) 0 0
\(193\) 7.00000 12.1244i 0.503871 0.872730i −0.496119 0.868255i \(-0.665242\pi\)
0.999990 0.00447566i \(-0.00142465\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.0000 1.28245 0.641223 0.767354i \(-0.278427\pi\)
0.641223 + 0.767354i \(0.278427\pi\)
\(198\) 0 0
\(199\) −2.00000 + 3.46410i −0.141776 + 0.245564i −0.928166 0.372168i \(-0.878615\pi\)
0.786389 + 0.617731i \(0.211948\pi\)
\(200\) 0 0
\(201\) 2.50000 + 4.33013i 0.176336 + 0.305424i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0.500000 + 0.866025i 0.0349215 + 0.0604858i
\(206\) 0 0
\(207\) 1.00000 1.73205i 0.0695048 0.120386i
\(208\) 0 0
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) 2.00000 0.137686 0.0688428 0.997628i \(-0.478069\pi\)
0.0688428 + 0.997628i \(0.478069\pi\)
\(212\) 0 0
\(213\) 7.00000 12.1244i 0.479632 0.830747i
\(214\) 0 0
\(215\) −4.50000 7.79423i −0.306897 0.531562i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −6.00000 10.3923i −0.405442 0.702247i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 4.00000 0.267860 0.133930 0.990991i \(-0.457240\pi\)
0.133930 + 0.990991i \(0.457240\pi\)
\(224\) 0 0
\(225\) −2.00000 −0.133333
\(226\) 0 0
\(227\) −10.0000 + 17.3205i −0.663723 + 1.14960i 0.315906 + 0.948790i \(0.397691\pi\)
−0.979630 + 0.200812i \(0.935642\pi\)
\(228\) 0 0
\(229\) −5.00000 8.66025i −0.330409 0.572286i 0.652183 0.758062i \(-0.273853\pi\)
−0.982592 + 0.185776i \(0.940520\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4.00000 6.92820i −0.262049 0.453882i 0.704737 0.709468i \(-0.251065\pi\)
−0.966786 + 0.255586i \(0.917731\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −14.0000 −0.909398
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) 0 0
\(241\) −11.0000 + 19.0526i −0.708572 + 1.22728i 0.256814 + 0.966461i \(0.417327\pi\)
−0.965387 + 0.260822i \(0.916006\pi\)
\(242\) 0 0
\(243\) 8.00000 + 13.8564i 0.513200 + 0.888889i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −5.50000 + 9.52628i −0.348548 + 0.603703i
\(250\) 0 0
\(251\) −8.00000 −0.504956 −0.252478 0.967603i \(-0.581245\pi\)
−0.252478 + 0.967603i \(0.581245\pi\)
\(252\) 0 0
\(253\) 2.00000 0.125739
\(254\) 0 0
\(255\) −2.00000 + 3.46410i −0.125245 + 0.216930i
\(256\) 0 0
\(257\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 9.00000 + 15.5885i 0.557086 + 0.964901i
\(262\) 0 0
\(263\) 0.500000 0.866025i 0.0308313 0.0534014i −0.850198 0.526463i \(-0.823518\pi\)
0.881029 + 0.473062i \(0.156851\pi\)
\(264\) 0 0
\(265\) −10.0000 −0.614295
\(266\) 0 0
\(267\) −15.0000 −0.917985
\(268\) 0 0
\(269\) −10.5000 + 18.1865i −0.640196 + 1.10885i 0.345192 + 0.938532i \(0.387814\pi\)
−0.985389 + 0.170321i \(0.945520\pi\)
\(270\) 0 0
\(271\) 11.0000 + 19.0526i 0.668202 + 1.15736i 0.978406 + 0.206691i \(0.0662693\pi\)
−0.310204 + 0.950670i \(0.600397\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.00000 1.73205i −0.0603023 0.104447i
\(276\) 0 0
\(277\) 14.0000 24.2487i 0.841178 1.45696i −0.0477206 0.998861i \(-0.515196\pi\)
0.888899 0.458103i \(-0.151471\pi\)
\(278\) 0 0
\(279\) 8.00000 0.478947
\(280\) 0 0
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) 0 0
\(283\) −2.00000 + 3.46410i −0.118888 + 0.205919i −0.919327 0.393494i \(-0.871266\pi\)
0.800439 + 0.599414i \(0.204600\pi\)
\(284\) 0 0
\(285\) 1.00000 + 1.73205i 0.0592349 + 0.102598i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 0.500000 + 0.866025i 0.0294118 + 0.0509427i
\(290\) 0 0
\(291\) 9.00000 15.5885i 0.527589 0.913812i
\(292\) 0 0
\(293\) −12.0000 −0.701047 −0.350524 0.936554i \(-0.613996\pi\)
−0.350524 + 0.936554i \(0.613996\pi\)
\(294\) 0 0
\(295\) 10.0000 0.582223
\(296\) 0 0
\(297\) −5.00000 + 8.66025i −0.290129 + 0.502519i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −1.50000 2.59808i −0.0861727 0.149256i
\(304\) 0 0
\(305\) 4.50000 7.79423i 0.257669 0.446296i
\(306\) 0 0
\(307\) −21.0000 −1.19853 −0.599267 0.800549i \(-0.704541\pi\)
−0.599267 + 0.800549i \(0.704541\pi\)
\(308\) 0 0
\(309\) −13.0000 −0.739544
\(310\) 0 0
\(311\) 13.0000 22.5167i 0.737162 1.27680i −0.216606 0.976259i \(-0.569499\pi\)
0.953768 0.300544i \(-0.0971681\pi\)
\(312\) 0 0
\(313\) 8.00000 + 13.8564i 0.452187 + 0.783210i 0.998522 0.0543564i \(-0.0173107\pi\)
−0.546335 + 0.837567i \(0.683977\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8.00000 + 13.8564i 0.449325 + 0.778253i 0.998342 0.0575576i \(-0.0183313\pi\)
−0.549017 + 0.835811i \(0.684998\pi\)
\(318\) 0 0
\(319\) −9.00000 + 15.5885i −0.503903 + 0.872786i
\(320\) 0 0
\(321\) −9.00000 −0.502331
\(322\) 0 0
\(323\) −8.00000 −0.445132
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −0.500000 0.866025i −0.0276501 0.0478913i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(332\) 0 0
\(333\) 4.00000 6.92820i 0.219199 0.379663i
\(334\) 0 0
\(335\) 5.00000 0.273179
\(336\) 0 0
\(337\) −2.00000 −0.108947 −0.0544735 0.998515i \(-0.517348\pi\)
−0.0544735 + 0.998515i \(0.517348\pi\)
\(338\) 0 0
\(339\) 1.00000 1.73205i 0.0543125 0.0940721i
\(340\) 0 0
\(341\) 4.00000 + 6.92820i 0.216612 + 0.375183i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0.500000 + 0.866025i 0.0269191 + 0.0466252i
\(346\) 0 0
\(347\) 3.50000 6.06218i 0.187890 0.325435i −0.756657 0.653812i \(-0.773169\pi\)
0.944547 + 0.328378i \(0.106502\pi\)
\(348\) 0 0
\(349\) 19.0000 1.01705 0.508523 0.861048i \(-0.330192\pi\)
0.508523 + 0.861048i \(0.330192\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 7.00000 12.1244i 0.372572 0.645314i −0.617388 0.786659i \(-0.711809\pi\)
0.989960 + 0.141344i \(0.0451425\pi\)
\(354\) 0 0
\(355\) −7.00000 12.1244i −0.371521 0.643494i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −6.00000 10.3923i −0.316668 0.548485i 0.663123 0.748511i \(-0.269231\pi\)
−0.979791 + 0.200026i \(0.935897\pi\)
\(360\) 0 0
\(361\) 7.50000 12.9904i 0.394737 0.683704i
\(362\) 0 0
\(363\) 7.00000 0.367405
\(364\) 0 0
\(365\) −12.0000 −0.628109
\(366\) 0 0
\(367\) 3.50000 6.06218i 0.182699 0.316443i −0.760100 0.649806i \(-0.774850\pi\)
0.942799 + 0.333363i \(0.108183\pi\)
\(368\) 0 0
\(369\) −1.00000 1.73205i −0.0520579 0.0901670i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 14.0000 + 24.2487i 0.724893 + 1.25555i 0.959018 + 0.283344i \(0.0914439\pi\)
−0.234126 + 0.972206i \(0.575223\pi\)
\(374\) 0 0
\(375\) 0.500000 0.866025i 0.0258199 0.0447214i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −30.0000 −1.54100 −0.770498 0.637442i \(-0.779993\pi\)
−0.770498 + 0.637442i \(0.779993\pi\)
\(380\) 0 0
\(381\) 4.00000 6.92820i 0.204926 0.354943i
\(382\) 0 0
\(383\) 10.5000 + 18.1865i 0.536525 + 0.929288i 0.999088 + 0.0427020i \(0.0135966\pi\)
−0.462563 + 0.886586i \(0.653070\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 9.00000 + 15.5885i 0.457496 + 0.792406i
\(388\) 0 0
\(389\) −13.0000 + 22.5167i −0.659126 + 1.14164i 0.321716 + 0.946836i \(0.395740\pi\)
−0.980842 + 0.194804i \(0.937593\pi\)
\(390\) 0 0
\(391\) −4.00000 −0.202289
\(392\) 0 0
\(393\) −8.00000 −0.403547
\(394\) 0 0
\(395\) −7.00000 + 12.1244i −0.352208 + 0.610043i
\(396\) 0 0
\(397\) 3.00000 + 5.19615i 0.150566 + 0.260787i 0.931436 0.363906i \(-0.118557\pi\)
−0.780870 + 0.624694i \(0.785224\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 8.50000 + 14.7224i 0.424470 + 0.735203i 0.996371 0.0851195i \(-0.0271272\pi\)
−0.571901 + 0.820323i \(0.693794\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) 8.00000 0.396545
\(408\) 0 0
\(409\) −10.5000 + 18.1865i −0.519192 + 0.899266i 0.480560 + 0.876962i \(0.340434\pi\)
−0.999751 + 0.0223042i \(0.992900\pi\)
\(410\) 0 0
\(411\) 6.00000 + 10.3923i 0.295958 + 0.512615i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 5.50000 + 9.52628i 0.269984 + 0.467627i
\(416\) 0 0
\(417\) 1.00000 1.73205i 0.0489702 0.0848189i
\(418\) 0 0
\(419\) −16.0000 −0.781651 −0.390826 0.920465i \(-0.627810\pi\)
−0.390826 + 0.920465i \(0.627810\pi\)
\(420\) 0 0
\(421\) −27.0000 −1.31590 −0.657950 0.753062i \(-0.728576\pi\)
−0.657950 + 0.753062i \(0.728576\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.00000 + 3.46410i 0.0970143 + 0.168034i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −7.00000 + 12.1244i −0.337178 + 0.584010i −0.983901 0.178716i \(-0.942806\pi\)
0.646723 + 0.762725i \(0.276139\pi\)
\(432\) 0 0
\(433\) −30.0000 −1.44171 −0.720854 0.693087i \(-0.756250\pi\)
−0.720854 + 0.693087i \(0.756250\pi\)
\(434\) 0 0
\(435\) −9.00000 −0.431517
\(436\) 0 0
\(437\) −1.00000 + 1.73205i −0.0478365 + 0.0828552i
\(438\) 0 0
\(439\) −14.0000 24.2487i −0.668184 1.15733i −0.978412 0.206666i \(-0.933739\pi\)
0.310228 0.950662i \(-0.399595\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 5.50000 + 9.52628i 0.261313 + 0.452607i 0.966591 0.256323i \(-0.0825112\pi\)
−0.705278 + 0.708931i \(0.749178\pi\)
\(444\) 0 0
\(445\) −7.50000 + 12.9904i −0.355534 + 0.615803i
\(446\) 0 0
\(447\) 5.00000 0.236492
\(448\) 0 0
\(449\) −41.0000 −1.93491 −0.967455 0.253044i \(-0.918568\pi\)
−0.967455 + 0.253044i \(0.918568\pi\)
\(450\) 0 0
\(451\) 1.00000 1.73205i 0.0470882 0.0815591i
\(452\) 0 0
\(453\) 4.00000 + 6.92820i 0.187936 + 0.325515i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −4.00000 6.92820i −0.187112 0.324088i 0.757174 0.653213i \(-0.226579\pi\)
−0.944286 + 0.329125i \(0.893246\pi\)
\(458\) 0 0
\(459\) 10.0000 17.3205i 0.466760 0.808452i
\(460\) 0 0
\(461\) −2.00000 −0.0931493 −0.0465746 0.998915i \(-0.514831\pi\)
−0.0465746 + 0.998915i \(0.514831\pi\)
\(462\) 0 0
\(463\) 39.0000 1.81248 0.906242 0.422760i \(-0.138939\pi\)
0.906242 + 0.422760i \(0.138939\pi\)
\(464\) 0 0
\(465\) −2.00000 + 3.46410i −0.0927478 + 0.160644i
\(466\) 0 0
\(467\) −3.50000 6.06218i −0.161961 0.280524i 0.773611 0.633661i \(-0.218448\pi\)
−0.935572 + 0.353137i \(0.885115\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −1.00000 1.73205i −0.0460776 0.0798087i
\(472\) 0 0
\(473\) −9.00000 + 15.5885i −0.413820 + 0.716758i
\(474\) 0 0
\(475\) 2.00000 0.0917663
\(476\) 0 0
\(477\) 20.0000 0.915737
\(478\) 0 0
\(479\) −8.00000 + 13.8564i −0.365529 + 0.633115i −0.988861 0.148842i \(-0.952445\pi\)
0.623332 + 0.781958i \(0.285779\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −9.00000 15.5885i −0.408669 0.707835i
\(486\) 0 0
\(487\) 4.00000 6.92820i 0.181257 0.313947i −0.761052 0.648691i \(-0.775317\pi\)
0.942309 + 0.334744i \(0.108650\pi\)
\(488\) 0 0
\(489\) 20.0000 0.904431
\(490\) 0 0
\(491\) −20.0000 −0.902587 −0.451294 0.892375i \(-0.649037\pi\)
−0.451294 + 0.892375i \(0.649037\pi\)
\(492\) 0 0
\(493\) 18.0000 31.1769i 0.810679 1.40414i
\(494\) 0 0
\(495\) 2.00000 + 3.46410i 0.0898933 + 0.155700i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 19.0000 + 32.9090i 0.850557 + 1.47321i 0.880707 + 0.473662i \(0.157068\pi\)
−0.0301498 + 0.999545i \(0.509598\pi\)
\(500\) 0 0
\(501\) −8.50000 + 14.7224i −0.379752 + 0.657750i
\(502\) 0 0
\(503\) 23.0000 1.02552 0.512760 0.858532i \(-0.328623\pi\)
0.512760 + 0.858532i \(0.328623\pi\)
\(504\) 0 0
\(505\) −3.00000 −0.133498
\(506\) 0 0
\(507\) −6.50000 + 11.2583i −0.288675 + 0.500000i
\(508\) 0 0
\(509\) −7.50000 12.9904i −0.332432 0.575789i 0.650556 0.759458i \(-0.274536\pi\)
−0.982988 + 0.183669i \(0.941202\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −5.00000 8.66025i −0.220755 0.382360i
\(514\) 0 0
\(515\) −6.50000 + 11.2583i −0.286424 + 0.496101i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 16.0000 0.702322
\(520\) 0 0
\(521\) −21.0000 + 36.3731i −0.920027 + 1.59353i −0.120656 + 0.992694i \(0.538500\pi\)
−0.799370 + 0.600839i \(0.794833\pi\)
\(522\) 0 0
\(523\) 14.0000 + 24.2487i 0.612177 + 1.06032i 0.990873 + 0.134801i \(0.0430394\pi\)
−0.378695 + 0.925521i \(0.623627\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −8.00000 13.8564i −0.348485 0.603595i
\(528\) 0 0
\(529\) 11.0000 19.0526i 0.478261 0.828372i
\(530\) 0 0
\(531\) −20.0000 −0.867926
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −4.50000 + 7.79423i −0.194552 + 0.336974i
\(536\) 0 0
\(537\) 6.00000 + 10.3923i 0.258919 + 0.448461i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 6.50000 + 11.2583i 0.279457 + 0.484033i 0.971250 0.238062i \(-0.0765123\pi\)
−0.691793 + 0.722096i \(0.743179\pi\)
\(542\) 0 0
\(543\) 12.5000 21.6506i 0.536426 0.929118i
\(544\) 0 0
\(545\) −1.00000 −0.0428353
\(546\) 0 0
\(547\) −35.0000 −1.49649 −0.748246 0.663421i \(-0.769104\pi\)
−0.748246 + 0.663421i \(0.769104\pi\)
\(548\) 0 0
\(549\) −9.00000 + 15.5885i −0.384111 + 0.665299i
\(550\) 0 0
\(551\) −9.00000 15.5885i −0.383413 0.664091i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 2.00000 + 3.46410i 0.0848953 + 0.147043i
\(556\) 0 0
\(557\) −15.0000 + 25.9808i −0.635570 + 1.10084i 0.350824 + 0.936442i \(0.385902\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 8.00000 0.337760
\(562\) 0 0
\(563\) −22.5000 + 38.9711i −0.948262 + 1.64244i −0.199177 + 0.979963i \(0.563827\pi\)
−0.749085 + 0.662474i \(0.769506\pi\)
\(564\) 0 0
\(565\) −1.00000 1.73205i −0.0420703 0.0728679i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −23.0000 39.8372i −0.964210 1.67006i −0.711722 0.702461i \(-0.752085\pi\)
−0.252488 0.967600i \(-0.581249\pi\)
\(570\) 0 0
\(571\) 13.0000 22.5167i 0.544033 0.942293i −0.454634 0.890678i \(-0.650230\pi\)
0.998667 0.0516146i \(-0.0164367\pi\)
\(572\) 0 0
\(573\) −18.0000 −0.751961
\(574\) 0 0
\(575\) 1.00000 0.0417029
\(576\) 0 0
\(577\) 1.00000 1.73205i 0.0416305 0.0721062i −0.844459 0.535620i \(-0.820078\pi\)
0.886090 + 0.463513i \(0.153411\pi\)
\(578\) 0 0
\(579\) −7.00000 12.1244i −0.290910 0.503871i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 10.0000 + 17.3205i 0.414158 + 0.717342i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 12.0000 0.495293 0.247647 0.968850i \(-0.420343\pi\)
0.247647 + 0.968850i \(0.420343\pi\)
\(588\) 0 0
\(589\) −8.00000 −0.329634
\(590\) 0 0
\(591\) 9.00000 15.5885i 0.370211 0.641223i
\(592\) 0 0
\(593\) 9.00000 + 15.5885i 0.369586 + 0.640141i 0.989501 0.144528i \(-0.0461663\pi\)
−0.619915 + 0.784669i \(0.712833\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 2.00000 + 3.46410i 0.0818546 + 0.141776i
\(598\) 0 0
\(599\) −2.00000 + 3.46410i −0.0817178 + 0.141539i −0.903988 0.427558i \(-0.859374\pi\)
0.822270 + 0.569097i \(0.192707\pi\)
\(600\) 0 0
\(601\) −10.0000 −0.407909 −0.203954 0.978980i \(-0.565379\pi\)
−0.203954 + 0.978980i \(0.565379\pi\)
\(602\) 0 0
\(603\) −10.0000 −0.407231
\(604\) 0 0
\(605\) 3.50000 6.06218i 0.142295 0.246463i
\(606\) 0 0
\(607\) 13.5000 + 23.3827i 0.547948 + 0.949074i 0.998415 + 0.0562808i \(0.0179242\pi\)
−0.450467 + 0.892793i \(0.648742\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 10.0000 17.3205i 0.403896 0.699569i −0.590296 0.807187i \(-0.700989\pi\)
0.994192 + 0.107618i \(0.0343224\pi\)
\(614\) 0 0
\(615\) 1.00000 0.0403239
\(616\) 0 0
\(617\) −12.0000 −0.483102 −0.241551 0.970388i \(-0.577656\pi\)
−0.241551 + 0.970388i \(0.577656\pi\)
\(618\) 0 0
\(619\) −17.0000 + 29.4449i −0.683288 + 1.18349i 0.290684 + 0.956819i \(0.406117\pi\)
−0.973972 + 0.226670i \(0.927216\pi\)
\(620\) 0 0
\(621\) −2.50000 4.33013i −0.100322 0.173762i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 2.00000 3.46410i 0.0798723 0.138343i
\(628\) 0 0
\(629\) −16.0000 −0.637962
\(630\) 0 0
\(631\) −2.00000 −0.0796187 −0.0398094 0.999207i \(-0.512675\pi\)
−0.0398094 + 0.999207i \(0.512675\pi\)
\(632\) 0 0
\(633\) 1.00000 1.73205i 0.0397464 0.0688428i
\(634\) 0 0
\(635\) −4.00000 6.92820i −0.158735 0.274937i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 14.0000 + 24.2487i 0.553831 + 0.959264i
\(640\) 0 0
\(641\) 9.50000 16.4545i 0.375227 0.649913i −0.615134 0.788423i \(-0.710898\pi\)
0.990361 + 0.138510i \(0.0442313\pi\)
\(642\) 0 0
\(643\) 4.00000 0.157745 0.0788723 0.996885i \(-0.474868\pi\)
0.0788723 + 0.996885i \(0.474868\pi\)
\(644\) 0 0
\(645\) −9.00000 −0.354375
\(646\) 0 0
\(647\) 11.5000 19.9186i 0.452112 0.783080i −0.546405 0.837521i \(-0.684004\pi\)
0.998517 + 0.0544405i \(0.0173375\pi\)
\(648\) 0 0
\(649\) −10.0000 17.3205i −0.392534 0.679889i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −18.0000 31.1769i −0.704394 1.22005i −0.966910 0.255119i \(-0.917885\pi\)
0.262515 0.964928i \(-0.415448\pi\)
\(654\) 0 0
\(655\) −4.00000 + 6.92820i −0.156293 + 0.270707i
\(656\) 0 0
\(657\) 24.0000 0.936329
\(658\) 0 0
\(659\) 2.00000 0.0779089 0.0389545 0.999241i \(-0.487597\pi\)
0.0389545 + 0.999241i \(0.487597\pi\)
\(660\) 0 0
\(661\) −1.50000 + 2.59808i −0.0583432 + 0.101053i −0.893722 0.448622i \(-0.851915\pi\)
0.835379 + 0.549675i \(0.185248\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −4.50000 7.79423i −0.174241 0.301794i
\(668\) 0 0
\(669\) 2.00000 3.46410i 0.0773245 0.133930i
\(670\) 0 0
\(671\) −18.0000 −0.694882
\(672\) 0 0
\(673\) 24.0000 0.925132 0.462566 0.886585i \(-0.346929\pi\)
0.462566 + 0.886585i \(0.346929\pi\)
\(674\) 0 0
\(675\) −2.50000 + 4.33013i −0.0962250 + 0.166667i
\(676\) 0 0
\(677\) −12.0000 20.7846i −0.461197 0.798817i 0.537823 0.843057i \(-0.319247\pi\)
−0.999021 + 0.0442400i \(0.985913\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 10.0000 + 17.3205i 0.383201 + 0.663723i
\(682\) 0 0
\(683\) −4.50000 + 7.79423i −0.172188 + 0.298238i −0.939184 0.343413i \(-0.888417\pi\)
0.766997 + 0.641651i \(0.221750\pi\)
\(684\) 0 0
\(685\) 12.0000 0.458496
\(686\) 0 0
\(687\) −10.0000 −0.381524
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 25.0000 + 43.3013i 0.951045 + 1.64726i 0.743170 + 0.669102i \(0.233321\pi\)
0.207875 + 0.978155i \(0.433345\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.00000 1.73205i −0.0379322 0.0657004i
\(696\) 0 0
\(697\) −2.00000 + 3.46410i −0.0757554 + 0.131212i
\(698\) 0 0
\(699\) −8.00000 −0.302588
\(700\) 0 0
\(701\) 9.00000 0.339925 0.169963 0.985451i \(-0.445635\pi\)
0.169963 + 0.985451i \(0.445635\pi\)
\(702\) 0 0
\(703\) −4.00000 + 6.92820i −0.150863 + 0.261302i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −10.5000 18.1865i −0.394336 0.683010i 0.598680 0.800988i \(-0.295692\pi\)
−0.993016 + 0.117978i \(0.962359\pi\)
\(710\) 0 0
\(711\) 14.0000 24.2487i 0.525041 0.909398i
\(712\) 0 0
\(713\) −4.00000 −0.149801
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −12.0000 + 20.7846i −0.448148 + 0.776215i
\(718\) 0 0
\(719\) −21.0000 36.3731i −0.783168 1.35649i −0.930087 0.367338i \(-0.880269\pi\)
0.146920 0.989148i \(-0.453064\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 11.0000 + 19.0526i 0.409094 + 0.708572i
\(724\) 0 0
\(725\) −4.50000 + 7.79423i −0.167126 + 0.289470i
\(726\) 0 0
\(727\) 31.0000 1.14973 0.574863 0.818250i \(-0.305055\pi\)
0.574863 + 0.818250i \(0.305055\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) 18.0000 31.1769i 0.665754 1.15312i
\(732\) 0 0
\(733\) −13.0000 22.5167i −0.480166 0.831672i 0.519575 0.854425i \(-0.326090\pi\)
−0.999741 + 0.0227529i \(0.992757\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.00000 8.66025i −0.184177 0.319005i
\(738\) 0 0
\(739\) −5.00000 + 8.66025i −0.183928 + 0.318573i −0.943215 0.332184i \(-0.892215\pi\)
0.759287 + 0.650756i \(0.225548\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 27.0000 0.990534 0.495267 0.868741i \(-0.335070\pi\)
0.495267 + 0.868741i \(0.335070\pi\)
\(744\) 0 0
\(745\) 2.50000 4.33013i 0.0915929 0.158644i
\(746\) 0 0
\(747\) −11.0000 19.0526i −0.402469 0.697097i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −6.00000 10.3923i −0.218943 0.379221i 0.735542 0.677479i \(-0.236928\pi\)
−0.954485 + 0.298259i \(0.903594\pi\)
\(752\) 0 0
\(753\) −4.00000 + 6.92820i −0.145768 + 0.252478i
\(754\) 0 0
\(755\) 8.00000 0.291150
\(756\) 0 0
\(757\) −24.0000 −0.872295 −0.436147 0.899875i \(-0.643657\pi\)
−0.436147 + 0.899875i \(0.643657\pi\)
\(758\) 0 0
\(759\) 1.00000 1.73205i 0.0362977 0.0628695i
\(760\) 0 0
\(761\) −3.00000 5.19615i −0.108750 0.188360i 0.806514 0.591215i \(-0.201351\pi\)
−0.915264 + 0.402854i \(0.868018\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −4.00000 6.92820i −0.144620 0.250490i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −34.0000 −1.22607 −0.613036 0.790055i \(-0.710052\pi\)
−0.613036 + 0.790055i \(0.710052\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(774\) 0 0
\(775\) 2.00000 + 3.46410i 0.0718421 + 0.124434i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.00000 + 1.73205i 0.0358287 + 0.0620572i
\(780\) 0 0
\(781\) −14.0000 + 24.2487i −0.500959 + 0.867687i
\(782\) 0 0
\(783\) 45.0000 1.60817
\(784\) 0 0
\(785\) −2.00000 −0.0713831
\(786\) 0 0
\(787\) 22.5000 38.9711i 0.802038 1.38917i −0.116234 0.993222i \(-0.537082\pi\)
0.918272 0.395949i \(-0.129584\pi\)
\(788\) 0 0
\(789\) −0.500000 0.866025i −0.0178005 0.0308313i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −5.00000 + 8.66025i −0.177332 + 0.307148i
\(796\) 0 0
\(797\) −8.00000 −0.283375 −0.141687 0.989911i \(-0.545253\pi\)
−0.141687 + 0.989911i \(0.545253\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0