Properties

 Label 1960.2.q.j Level $1960$ Weight $2$ Character orbit 1960.q Analytic conductor $15.651$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

Related objects

Newspace parameters

 Level: $$N$$ $$=$$ $$1960 = 2^{3} \cdot 5 \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1960.q (of order $$3$$, degree $$2$$, not minimal)

Newform invariants

 Self dual: no Analytic conductor: $$15.6506787962$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( 1 - \zeta_{6} ) q^{3} -\zeta_{6} q^{5} + 2 \zeta_{6} q^{9} +O(q^{10})$$ $$q + ( 1 - \zeta_{6} ) q^{3} -\zeta_{6} q^{5} + 2 \zeta_{6} q^{9} + ( -3 + 3 \zeta_{6} ) q^{11} + q^{13} - q^{15} + ( 5 - 5 \zeta_{6} ) q^{17} + 6 \zeta_{6} q^{19} + ( -1 + \zeta_{6} ) q^{25} + 5 q^{27} -5 q^{29} + ( -2 + 2 \zeta_{6} ) q^{31} + 3 \zeta_{6} q^{33} + 4 \zeta_{6} q^{37} + ( 1 - \zeta_{6} ) q^{39} -2 q^{41} + 10 q^{43} + ( 2 - 2 \zeta_{6} ) q^{45} + 9 \zeta_{6} q^{47} -5 \zeta_{6} q^{51} + ( -6 + 6 \zeta_{6} ) q^{53} + 3 q^{55} + 6 q^{57} + ( 6 - 6 \zeta_{6} ) q^{59} + 12 \zeta_{6} q^{61} -\zeta_{6} q^{65} + ( 2 - 2 \zeta_{6} ) q^{67} + ( 14 - 14 \zeta_{6} ) q^{73} + \zeta_{6} q^{75} -\zeta_{6} q^{79} + ( -1 + \zeta_{6} ) q^{81} + 12 q^{83} -5 q^{85} + ( -5 + 5 \zeta_{6} ) q^{87} + 2 \zeta_{6} q^{93} + ( 6 - 6 \zeta_{6} ) q^{95} -9 q^{97} -6 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + q^{3} - q^{5} + 2q^{9} + O(q^{10})$$ $$2q + q^{3} - q^{5} + 2q^{9} - 3q^{11} + 2q^{13} - 2q^{15} + 5q^{17} + 6q^{19} - q^{25} + 10q^{27} - 10q^{29} - 2q^{31} + 3q^{33} + 4q^{37} + q^{39} - 4q^{41} + 20q^{43} + 2q^{45} + 9q^{47} - 5q^{51} - 6q^{53} + 6q^{55} + 12q^{57} + 6q^{59} + 12q^{61} - q^{65} + 2q^{67} + 14q^{73} + q^{75} - q^{79} - q^{81} + 24q^{83} - 10q^{85} - 5q^{87} + 2q^{93} + 6q^{95} - 18q^{97} - 12q^{99} + O(q^{100})$$

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1960\mathbb{Z}\right)^\times$$.

 $$n$$ $$981$$ $$1081$$ $$1177$$ $$1471$$ $$\chi(n)$$ $$1$$ $$-\zeta_{6}$$ $$1$$ $$1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
361.1
 0.5 + 0.866025i 0.5 − 0.866025i
0 0.500000 0.866025i 0 −0.500000 0.866025i 0 0 0 1.00000 + 1.73205i 0
961.1 0 0.500000 + 0.866025i 0 −0.500000 + 0.866025i 0 0 0 1.00000 1.73205i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1960.2.q.j 2
7.b odd 2 1 1960.2.q.f 2
7.c even 3 1 1960.2.a.f 1
7.c even 3 1 inner 1960.2.q.j 2
7.d odd 6 1 1960.2.a.j yes 1
7.d odd 6 1 1960.2.q.f 2
28.f even 6 1 3920.2.a.l 1
28.g odd 6 1 3920.2.a.x 1
35.i odd 6 1 9800.2.a.t 1
35.j even 6 1 9800.2.a.bd 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1960.2.a.f 1 7.c even 3 1
1960.2.a.j yes 1 7.d odd 6 1
1960.2.q.f 2 7.b odd 2 1
1960.2.q.f 2 7.d odd 6 1
1960.2.q.j 2 1.a even 1 1 trivial
1960.2.q.j 2 7.c even 3 1 inner
3920.2.a.l 1 28.f even 6 1
3920.2.a.x 1 28.g odd 6 1
9800.2.a.t 1 35.i odd 6 1
9800.2.a.bd 1 35.j even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1960, [\chi])$$:

 $$T_{3}^{2} - T_{3} + 1$$ $$T_{11}^{2} + 3 T_{11} + 9$$ $$T_{13} - 1$$

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$1 - T + T^{2}$$
$5$ $$1 + T + T^{2}$$
$7$ $$T^{2}$$
$11$ $$9 + 3 T + T^{2}$$
$13$ $$( -1 + T )^{2}$$
$17$ $$25 - 5 T + T^{2}$$
$19$ $$36 - 6 T + T^{2}$$
$23$ $$T^{2}$$
$29$ $$( 5 + T )^{2}$$
$31$ $$4 + 2 T + T^{2}$$
$37$ $$16 - 4 T + T^{2}$$
$41$ $$( 2 + T )^{2}$$
$43$ $$( -10 + T )^{2}$$
$47$ $$81 - 9 T + T^{2}$$
$53$ $$36 + 6 T + T^{2}$$
$59$ $$36 - 6 T + T^{2}$$
$61$ $$144 - 12 T + T^{2}$$
$67$ $$4 - 2 T + T^{2}$$
$71$ $$T^{2}$$
$73$ $$196 - 14 T + T^{2}$$
$79$ $$1 + T + T^{2}$$
$83$ $$( -12 + T )^{2}$$
$89$ $$T^{2}$$
$97$ $$( 9 + T )^{2}$$