Properties

Label 1960.2.q.c.961.1
Level $1960$
Weight $2$
Character 1960.961
Analytic conductor $15.651$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1960 = 2^{3} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1960.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(15.6506787962\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 961.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1960.961
Dual form 1960.2.q.c.361.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.00000 - 1.73205i) q^{3} +(-0.500000 + 0.866025i) q^{5} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+(-1.00000 - 1.73205i) q^{3} +(-0.500000 + 0.866025i) q^{5} +(-0.500000 + 0.866025i) q^{9} +(0.500000 + 0.866025i) q^{11} +3.00000 q^{13} +2.00000 q^{15} +(-1.00000 - 1.73205i) q^{17} +(-2.50000 + 4.33013i) q^{19} +(-3.50000 + 6.06218i) q^{23} +(-0.500000 - 0.866025i) q^{25} -4.00000 q^{27} -6.00000 q^{29} +(2.00000 + 3.46410i) q^{31} +(1.00000 - 1.73205i) q^{33} +(2.50000 - 4.33013i) q^{37} +(-3.00000 - 5.19615i) q^{39} +5.00000 q^{41} +6.00000 q^{43} +(-0.500000 - 0.866025i) q^{45} +(-4.50000 + 7.79423i) q^{47} +(-2.00000 + 3.46410i) q^{51} +(-5.50000 - 9.52628i) q^{53} -1.00000 q^{55} +10.0000 q^{57} +(4.00000 + 6.92820i) q^{59} +(-6.00000 + 10.3923i) q^{61} +(-1.50000 + 2.59808i) q^{65} +(2.00000 + 3.46410i) q^{67} +14.0000 q^{69} -4.00000 q^{71} +(6.00000 + 10.3923i) q^{73} +(-1.00000 + 1.73205i) q^{75} +(-7.00000 + 12.1244i) q^{79} +(5.50000 + 9.52628i) q^{81} +4.00000 q^{83} +2.00000 q^{85} +(6.00000 + 10.3923i) q^{87} +(3.00000 - 5.19615i) q^{89} +(4.00000 - 6.92820i) q^{93} +(-2.50000 - 4.33013i) q^{95} -6.00000 q^{97} -1.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - q^{5} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{3} - q^{5} - q^{9} + q^{11} + 6 q^{13} + 4 q^{15} - 2 q^{17} - 5 q^{19} - 7 q^{23} - q^{25} - 8 q^{27} - 12 q^{29} + 4 q^{31} + 2 q^{33} + 5 q^{37} - 6 q^{39} + 10 q^{41} + 12 q^{43} - q^{45} - 9 q^{47} - 4 q^{51} - 11 q^{53} - 2 q^{55} + 20 q^{57} + 8 q^{59} - 12 q^{61} - 3 q^{65} + 4 q^{67} + 28 q^{69} - 8 q^{71} + 12 q^{73} - 2 q^{75} - 14 q^{79} + 11 q^{81} + 8 q^{83} + 4 q^{85} + 12 q^{87} + 6 q^{89} + 8 q^{93} - 5 q^{95} - 12 q^{97} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1960\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1081\) \(1177\) \(1471\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.00000 1.73205i −0.577350 1.00000i −0.995782 0.0917517i \(-0.970753\pi\)
0.418432 0.908248i \(-0.362580\pi\)
\(4\) 0 0
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 0.500000 + 0.866025i 0.150756 + 0.261116i 0.931505 0.363727i \(-0.118496\pi\)
−0.780750 + 0.624844i \(0.785163\pi\)
\(12\) 0 0
\(13\) 3.00000 0.832050 0.416025 0.909353i \(-0.363423\pi\)
0.416025 + 0.909353i \(0.363423\pi\)
\(14\) 0 0
\(15\) 2.00000 0.516398
\(16\) 0 0
\(17\) −1.00000 1.73205i −0.242536 0.420084i 0.718900 0.695113i \(-0.244646\pi\)
−0.961436 + 0.275029i \(0.911312\pi\)
\(18\) 0 0
\(19\) −2.50000 + 4.33013i −0.573539 + 0.993399i 0.422659 + 0.906289i \(0.361097\pi\)
−0.996199 + 0.0871106i \(0.972237\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3.50000 + 6.06218i −0.729800 + 1.26405i 0.227167 + 0.973856i \(0.427054\pi\)
−0.956967 + 0.290196i \(0.906280\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) −4.00000 −0.769800
\(28\) 0 0
\(29\) −6.00000 −1.11417 −0.557086 0.830455i \(-0.688081\pi\)
−0.557086 + 0.830455i \(0.688081\pi\)
\(30\) 0 0
\(31\) 2.00000 + 3.46410i 0.359211 + 0.622171i 0.987829 0.155543i \(-0.0497126\pi\)
−0.628619 + 0.777714i \(0.716379\pi\)
\(32\) 0 0
\(33\) 1.00000 1.73205i 0.174078 0.301511i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.50000 4.33013i 0.410997 0.711868i −0.584002 0.811752i \(-0.698514\pi\)
0.994999 + 0.0998840i \(0.0318472\pi\)
\(38\) 0 0
\(39\) −3.00000 5.19615i −0.480384 0.832050i
\(40\) 0 0
\(41\) 5.00000 0.780869 0.390434 0.920631i \(-0.372325\pi\)
0.390434 + 0.920631i \(0.372325\pi\)
\(42\) 0 0
\(43\) 6.00000 0.914991 0.457496 0.889212i \(-0.348747\pi\)
0.457496 + 0.889212i \(0.348747\pi\)
\(44\) 0 0
\(45\) −0.500000 0.866025i −0.0745356 0.129099i
\(46\) 0 0
\(47\) −4.50000 + 7.79423i −0.656392 + 1.13691i 0.325150 + 0.945662i \(0.394585\pi\)
−0.981543 + 0.191243i \(0.938748\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −2.00000 + 3.46410i −0.280056 + 0.485071i
\(52\) 0 0
\(53\) −5.50000 9.52628i −0.755483 1.30854i −0.945134 0.326683i \(-0.894069\pi\)
0.189651 0.981852i \(-0.439264\pi\)
\(54\) 0 0
\(55\) −1.00000 −0.134840
\(56\) 0 0
\(57\) 10.0000 1.32453
\(58\) 0 0
\(59\) 4.00000 + 6.92820i 0.520756 + 0.901975i 0.999709 + 0.0241347i \(0.00768307\pi\)
−0.478953 + 0.877841i \(0.658984\pi\)
\(60\) 0 0
\(61\) −6.00000 + 10.3923i −0.768221 + 1.33060i 0.170305 + 0.985391i \(0.445525\pi\)
−0.938527 + 0.345207i \(0.887809\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.50000 + 2.59808i −0.186052 + 0.322252i
\(66\) 0 0
\(67\) 2.00000 + 3.46410i 0.244339 + 0.423207i 0.961946 0.273241i \(-0.0880957\pi\)
−0.717607 + 0.696449i \(0.754762\pi\)
\(68\) 0 0
\(69\) 14.0000 1.68540
\(70\) 0 0
\(71\) −4.00000 −0.474713 −0.237356 0.971423i \(-0.576281\pi\)
−0.237356 + 0.971423i \(0.576281\pi\)
\(72\) 0 0
\(73\) 6.00000 + 10.3923i 0.702247 + 1.21633i 0.967676 + 0.252197i \(0.0811531\pi\)
−0.265429 + 0.964130i \(0.585514\pi\)
\(74\) 0 0
\(75\) −1.00000 + 1.73205i −0.115470 + 0.200000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −7.00000 + 12.1244i −0.787562 + 1.36410i 0.139895 + 0.990166i \(0.455323\pi\)
−0.927457 + 0.373930i \(0.878010\pi\)
\(80\) 0 0
\(81\) 5.50000 + 9.52628i 0.611111 + 1.05848i
\(82\) 0 0
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) 2.00000 0.216930
\(86\) 0 0
\(87\) 6.00000 + 10.3923i 0.643268 + 1.11417i
\(88\) 0 0
\(89\) 3.00000 5.19615i 0.317999 0.550791i −0.662071 0.749441i \(-0.730322\pi\)
0.980071 + 0.198650i \(0.0636557\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 4.00000 6.92820i 0.414781 0.718421i
\(94\) 0 0
\(95\) −2.50000 4.33013i −0.256495 0.444262i
\(96\) 0 0
\(97\) −6.00000 −0.609208 −0.304604 0.952479i \(-0.598524\pi\)
−0.304604 + 0.952479i \(0.598524\pi\)
\(98\) 0 0
\(99\) −1.00000 −0.100504
\(100\) 0 0
\(101\) 6.00000 + 10.3923i 0.597022 + 1.03407i 0.993258 + 0.115924i \(0.0369830\pi\)
−0.396236 + 0.918149i \(0.629684\pi\)
\(102\) 0 0
\(103\) 10.0000 17.3205i 0.985329 1.70664i 0.344865 0.938652i \(-0.387925\pi\)
0.640464 0.767988i \(-0.278742\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.00000 + 10.3923i −0.580042 + 1.00466i 0.415432 + 0.909624i \(0.363630\pi\)
−0.995474 + 0.0950377i \(0.969703\pi\)
\(108\) 0 0
\(109\) 2.00000 + 3.46410i 0.191565 + 0.331801i 0.945769 0.324840i \(-0.105310\pi\)
−0.754204 + 0.656640i \(0.771977\pi\)
\(110\) 0 0
\(111\) −10.0000 −0.949158
\(112\) 0 0
\(113\) 20.0000 1.88144 0.940721 0.339182i \(-0.110150\pi\)
0.940721 + 0.339182i \(0.110150\pi\)
\(114\) 0 0
\(115\) −3.50000 6.06218i −0.326377 0.565301i
\(116\) 0 0
\(117\) −1.50000 + 2.59808i −0.138675 + 0.240192i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 5.00000 8.66025i 0.454545 0.787296i
\(122\) 0 0
\(123\) −5.00000 8.66025i −0.450835 0.780869i
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 17.0000 1.50851 0.754253 0.656584i \(-0.227999\pi\)
0.754253 + 0.656584i \(0.227999\pi\)
\(128\) 0 0
\(129\) −6.00000 10.3923i −0.528271 0.914991i
\(130\) 0 0
\(131\) 3.50000 6.06218i 0.305796 0.529655i −0.671642 0.740876i \(-0.734411\pi\)
0.977438 + 0.211221i \(0.0677440\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 2.00000 3.46410i 0.172133 0.298142i
\(136\) 0 0
\(137\) 6.00000 + 10.3923i 0.512615 + 0.887875i 0.999893 + 0.0146279i \(0.00465636\pi\)
−0.487278 + 0.873247i \(0.662010\pi\)
\(138\) 0 0
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 0 0
\(141\) 18.0000 1.51587
\(142\) 0 0
\(143\) 1.50000 + 2.59808i 0.125436 + 0.217262i
\(144\) 0 0
\(145\) 3.00000 5.19615i 0.249136 0.431517i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −5.00000 + 8.66025i −0.409616 + 0.709476i −0.994847 0.101391i \(-0.967671\pi\)
0.585231 + 0.810867i \(0.301004\pi\)
\(150\) 0 0
\(151\) 5.00000 + 8.66025i 0.406894 + 0.704761i 0.994540 0.104357i \(-0.0332784\pi\)
−0.587646 + 0.809118i \(0.699945\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) −4.00000 −0.321288
\(156\) 0 0
\(157\) 2.50000 + 4.33013i 0.199522 + 0.345582i 0.948373 0.317156i \(-0.102728\pi\)
−0.748852 + 0.662738i \(0.769394\pi\)
\(158\) 0 0
\(159\) −11.0000 + 19.0526i −0.872357 + 1.51097i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −2.00000 + 3.46410i −0.156652 + 0.271329i −0.933659 0.358162i \(-0.883403\pi\)
0.777007 + 0.629492i \(0.216737\pi\)
\(164\) 0 0
\(165\) 1.00000 + 1.73205i 0.0778499 + 0.134840i
\(166\) 0 0
\(167\) −5.00000 −0.386912 −0.193456 0.981109i \(-0.561970\pi\)
−0.193456 + 0.981109i \(0.561970\pi\)
\(168\) 0 0
\(169\) −4.00000 −0.307692
\(170\) 0 0
\(171\) −2.50000 4.33013i −0.191180 0.331133i
\(172\) 0 0
\(173\) 9.50000 16.4545i 0.722272 1.25101i −0.237816 0.971310i \(-0.576431\pi\)
0.960087 0.279701i \(-0.0902353\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 8.00000 13.8564i 0.601317 1.04151i
\(178\) 0 0
\(179\) −4.50000 7.79423i −0.336346 0.582568i 0.647397 0.762153i \(-0.275858\pi\)
−0.983742 + 0.179585i \(0.942524\pi\)
\(180\) 0 0
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0 0
\(183\) 24.0000 1.77413
\(184\) 0 0
\(185\) 2.50000 + 4.33013i 0.183804 + 0.318357i
\(186\) 0 0
\(187\) 1.00000 1.73205i 0.0731272 0.126660i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −6.00000 + 10.3923i −0.434145 + 0.751961i −0.997225 0.0744412i \(-0.976283\pi\)
0.563081 + 0.826402i \(0.309616\pi\)
\(192\) 0 0
\(193\) 10.0000 + 17.3205i 0.719816 + 1.24676i 0.961073 + 0.276296i \(0.0891071\pi\)
−0.241257 + 0.970461i \(0.577560\pi\)
\(194\) 0 0
\(195\) 6.00000 0.429669
\(196\) 0 0
\(197\) −27.0000 −1.92367 −0.961835 0.273629i \(-0.911776\pi\)
−0.961835 + 0.273629i \(0.911776\pi\)
\(198\) 0 0
\(199\) −2.00000 3.46410i −0.141776 0.245564i 0.786389 0.617731i \(-0.211948\pi\)
−0.928166 + 0.372168i \(0.878615\pi\)
\(200\) 0 0
\(201\) 4.00000 6.92820i 0.282138 0.488678i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −2.50000 + 4.33013i −0.174608 + 0.302429i
\(206\) 0 0
\(207\) −3.50000 6.06218i −0.243267 0.421350i
\(208\) 0 0
\(209\) −5.00000 −0.345857
\(210\) 0 0
\(211\) −13.0000 −0.894957 −0.447478 0.894295i \(-0.647678\pi\)
−0.447478 + 0.894295i \(0.647678\pi\)
\(212\) 0 0
\(213\) 4.00000 + 6.92820i 0.274075 + 0.474713i
\(214\) 0 0
\(215\) −3.00000 + 5.19615i −0.204598 + 0.354375i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 12.0000 20.7846i 0.810885 1.40449i
\(220\) 0 0
\(221\) −3.00000 5.19615i −0.201802 0.349531i
\(222\) 0 0
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) −4.00000 6.92820i −0.265489 0.459841i 0.702202 0.711977i \(-0.252200\pi\)
−0.967692 + 0.252136i \(0.918867\pi\)
\(228\) 0 0
\(229\) −14.0000 + 24.2487i −0.925146 + 1.60240i −0.133820 + 0.991006i \(0.542724\pi\)
−0.791326 + 0.611394i \(0.790609\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.00000 + 1.73205i −0.0655122 + 0.113470i −0.896921 0.442191i \(-0.854201\pi\)
0.831409 + 0.555661i \(0.187535\pi\)
\(234\) 0 0
\(235\) −4.50000 7.79423i −0.293548 0.508439i
\(236\) 0 0
\(237\) 28.0000 1.81880
\(238\) 0 0
\(239\) 6.00000 0.388108 0.194054 0.980991i \(-0.437836\pi\)
0.194054 + 0.980991i \(0.437836\pi\)
\(240\) 0 0
\(241\) 11.5000 + 19.9186i 0.740780 + 1.28307i 0.952141 + 0.305661i \(0.0988773\pi\)
−0.211360 + 0.977408i \(0.567789\pi\)
\(242\) 0 0
\(243\) 5.00000 8.66025i 0.320750 0.555556i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −7.50000 + 12.9904i −0.477214 + 0.826558i
\(248\) 0 0
\(249\) −4.00000 6.92820i −0.253490 0.439057i
\(250\) 0 0
\(251\) −29.0000 −1.83046 −0.915232 0.402928i \(-0.867993\pi\)
−0.915232 + 0.402928i \(0.867993\pi\)
\(252\) 0 0
\(253\) −7.00000 −0.440086
\(254\) 0 0
\(255\) −2.00000 3.46410i −0.125245 0.216930i
\(256\) 0 0
\(257\) 6.00000 10.3923i 0.374270 0.648254i −0.615948 0.787787i \(-0.711227\pi\)
0.990217 + 0.139533i \(0.0445601\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 3.00000 5.19615i 0.185695 0.321634i
\(262\) 0 0
\(263\) −4.00000 6.92820i −0.246651 0.427211i 0.715944 0.698158i \(-0.245997\pi\)
−0.962594 + 0.270947i \(0.912663\pi\)
\(264\) 0 0
\(265\) 11.0000 0.675725
\(266\) 0 0
\(267\) −12.0000 −0.734388
\(268\) 0 0
\(269\) −6.00000 10.3923i −0.365826 0.633630i 0.623082 0.782157i \(-0.285880\pi\)
−0.988908 + 0.148527i \(0.952547\pi\)
\(270\) 0 0
\(271\) −4.00000 + 6.92820i −0.242983 + 0.420858i −0.961563 0.274586i \(-0.911459\pi\)
0.718580 + 0.695444i \(0.244792\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.500000 0.866025i 0.0301511 0.0522233i
\(276\) 0 0
\(277\) −1.00000 1.73205i −0.0600842 0.104069i 0.834419 0.551131i \(-0.185804\pi\)
−0.894503 + 0.447062i \(0.852470\pi\)
\(278\) 0 0
\(279\) −4.00000 −0.239474
\(280\) 0 0
\(281\) −3.00000 −0.178965 −0.0894825 0.995988i \(-0.528521\pi\)
−0.0894825 + 0.995988i \(0.528521\pi\)
\(282\) 0 0
\(283\) −11.0000 19.0526i −0.653882 1.13256i −0.982173 0.187980i \(-0.939806\pi\)
0.328291 0.944577i \(-0.393527\pi\)
\(284\) 0 0
\(285\) −5.00000 + 8.66025i −0.296174 + 0.512989i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 6.50000 11.2583i 0.382353 0.662255i
\(290\) 0 0
\(291\) 6.00000 + 10.3923i 0.351726 + 0.609208i
\(292\) 0 0
\(293\) −21.0000 −1.22683 −0.613417 0.789760i \(-0.710205\pi\)
−0.613417 + 0.789760i \(0.710205\pi\)
\(294\) 0 0
\(295\) −8.00000 −0.465778
\(296\) 0 0
\(297\) −2.00000 3.46410i −0.116052 0.201008i
\(298\) 0 0
\(299\) −10.5000 + 18.1865i −0.607231 + 1.05175i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 12.0000 20.7846i 0.689382 1.19404i
\(304\) 0 0
\(305\) −6.00000 10.3923i −0.343559 0.595062i
\(306\) 0 0
\(307\) 6.00000 0.342438 0.171219 0.985233i \(-0.445229\pi\)
0.171219 + 0.985233i \(0.445229\pi\)
\(308\) 0 0
\(309\) −40.0000 −2.27552
\(310\) 0 0
\(311\) −2.00000 3.46410i −0.113410 0.196431i 0.803733 0.594990i \(-0.202844\pi\)
−0.917143 + 0.398559i \(0.869511\pi\)
\(312\) 0 0
\(313\) 8.00000 13.8564i 0.452187 0.783210i −0.546335 0.837567i \(-0.683977\pi\)
0.998522 + 0.0543564i \(0.0173107\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.00000 + 1.73205i −0.0561656 + 0.0972817i −0.892741 0.450570i \(-0.851221\pi\)
0.836576 + 0.547852i \(0.184554\pi\)
\(318\) 0 0
\(319\) −3.00000 5.19615i −0.167968 0.290929i
\(320\) 0 0
\(321\) 24.0000 1.33955
\(322\) 0 0
\(323\) 10.0000 0.556415
\(324\) 0 0
\(325\) −1.50000 2.59808i −0.0832050 0.144115i
\(326\) 0 0
\(327\) 4.00000 6.92820i 0.221201 0.383131i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 13.5000 23.3827i 0.742027 1.28523i −0.209544 0.977799i \(-0.567198\pi\)
0.951571 0.307429i \(-0.0994688\pi\)
\(332\) 0 0
\(333\) 2.50000 + 4.33013i 0.136999 + 0.237289i
\(334\) 0 0
\(335\) −4.00000 −0.218543
\(336\) 0 0
\(337\) −26.0000 −1.41631 −0.708155 0.706057i \(-0.750472\pi\)
−0.708155 + 0.706057i \(0.750472\pi\)
\(338\) 0 0
\(339\) −20.0000 34.6410i −1.08625 1.88144i
\(340\) 0 0
\(341\) −2.00000 + 3.46410i −0.108306 + 0.187592i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −7.00000 + 12.1244i −0.376867 + 0.652753i
\(346\) 0 0
\(347\) −4.00000 6.92820i −0.214731 0.371925i 0.738458 0.674299i \(-0.235554\pi\)
−0.953189 + 0.302374i \(0.902221\pi\)
\(348\) 0 0
\(349\) −14.0000 −0.749403 −0.374701 0.927146i \(-0.622255\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 0 0
\(351\) −12.0000 −0.640513
\(352\) 0 0
\(353\) 10.0000 + 17.3205i 0.532246 + 0.921878i 0.999291 + 0.0376440i \(0.0119853\pi\)
−0.467045 + 0.884234i \(0.654681\pi\)
\(354\) 0 0
\(355\) 2.00000 3.46410i 0.106149 0.183855i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −15.0000 + 25.9808i −0.791670 + 1.37121i 0.133263 + 0.991081i \(0.457455\pi\)
−0.924932 + 0.380131i \(0.875879\pi\)
\(360\) 0 0
\(361\) −3.00000 5.19615i −0.157895 0.273482i
\(362\) 0 0
\(363\) −20.0000 −1.04973
\(364\) 0 0
\(365\) −12.0000 −0.628109
\(366\) 0 0
\(367\) 9.50000 + 16.4545i 0.495896 + 0.858917i 0.999989 0.00473247i \(-0.00150640\pi\)
−0.504093 + 0.863649i \(0.668173\pi\)
\(368\) 0 0
\(369\) −2.50000 + 4.33013i −0.130145 + 0.225417i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −7.00000 + 12.1244i −0.362446 + 0.627775i −0.988363 0.152115i \(-0.951392\pi\)
0.625917 + 0.779890i \(0.284725\pi\)
\(374\) 0 0
\(375\) −1.00000 1.73205i −0.0516398 0.0894427i
\(376\) 0 0
\(377\) −18.0000 −0.927047
\(378\) 0 0
\(379\) −21.0000 −1.07870 −0.539349 0.842082i \(-0.681330\pi\)
−0.539349 + 0.842082i \(0.681330\pi\)
\(380\) 0 0
\(381\) −17.0000 29.4449i −0.870936 1.50851i
\(382\) 0 0
\(383\) −10.5000 + 18.1865i −0.536525 + 0.929288i 0.462563 + 0.886586i \(0.346930\pi\)
−0.999088 + 0.0427020i \(0.986403\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −3.00000 + 5.19615i −0.152499 + 0.264135i
\(388\) 0 0
\(389\) 8.00000 + 13.8564i 0.405616 + 0.702548i 0.994393 0.105748i \(-0.0337237\pi\)
−0.588777 + 0.808296i \(0.700390\pi\)
\(390\) 0 0
\(391\) 14.0000 0.708010
\(392\) 0 0
\(393\) −14.0000 −0.706207
\(394\) 0 0
\(395\) −7.00000 12.1244i −0.352208 0.610043i
\(396\) 0 0
\(397\) 9.00000 15.5885i 0.451697 0.782362i −0.546795 0.837267i \(-0.684152\pi\)
0.998492 + 0.0549046i \(0.0174855\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −6.50000 + 11.2583i −0.324595 + 0.562214i −0.981430 0.191820i \(-0.938561\pi\)
0.656836 + 0.754034i \(0.271895\pi\)
\(402\) 0 0
\(403\) 6.00000 + 10.3923i 0.298881 + 0.517678i
\(404\) 0 0
\(405\) −11.0000 −0.546594
\(406\) 0 0
\(407\) 5.00000 0.247841
\(408\) 0 0
\(409\) −3.00000 5.19615i −0.148340 0.256933i 0.782274 0.622935i \(-0.214060\pi\)
−0.930614 + 0.366002i \(0.880726\pi\)
\(410\) 0 0
\(411\) 12.0000 20.7846i 0.591916 1.02523i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −2.00000 + 3.46410i −0.0981761 + 0.170046i
\(416\) 0 0
\(417\) 4.00000 + 6.92820i 0.195881 + 0.339276i
\(418\) 0 0
\(419\) 5.00000 0.244266 0.122133 0.992514i \(-0.461027\pi\)
0.122133 + 0.992514i \(0.461027\pi\)
\(420\) 0 0
\(421\) 30.0000 1.46211 0.731055 0.682318i \(-0.239028\pi\)
0.731055 + 0.682318i \(0.239028\pi\)
\(422\) 0 0
\(423\) −4.50000 7.79423i −0.218797 0.378968i
\(424\) 0 0
\(425\) −1.00000 + 1.73205i −0.0485071 + 0.0840168i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 3.00000 5.19615i 0.144841 0.250873i
\(430\) 0 0
\(431\) 8.00000 + 13.8564i 0.385346 + 0.667440i 0.991817 0.127666i \(-0.0407486\pi\)
−0.606471 + 0.795106i \(0.707415\pi\)
\(432\) 0 0
\(433\) −24.0000 −1.15337 −0.576683 0.816968i \(-0.695653\pi\)
−0.576683 + 0.816968i \(0.695653\pi\)
\(434\) 0 0
\(435\) −12.0000 −0.575356
\(436\) 0 0
\(437\) −17.5000 30.3109i −0.837139 1.44997i
\(438\) 0 0
\(439\) −5.00000 + 8.66025i −0.238637 + 0.413331i −0.960323 0.278889i \(-0.910034\pi\)
0.721686 + 0.692220i \(0.243367\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 16.0000 27.7128i 0.760183 1.31668i −0.182573 0.983192i \(-0.558443\pi\)
0.942756 0.333483i \(-0.108224\pi\)
\(444\) 0 0
\(445\) 3.00000 + 5.19615i 0.142214 + 0.246321i
\(446\) 0 0
\(447\) 20.0000 0.945968
\(448\) 0 0
\(449\) 13.0000 0.613508 0.306754 0.951789i \(-0.400757\pi\)
0.306754 + 0.951789i \(0.400757\pi\)
\(450\) 0 0
\(451\) 2.50000 + 4.33013i 0.117720 + 0.203898i
\(452\) 0 0
\(453\) 10.0000 17.3205i 0.469841 0.813788i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 11.0000 19.0526i 0.514558 0.891241i −0.485299 0.874348i \(-0.661289\pi\)
0.999857 0.0168929i \(-0.00537742\pi\)
\(458\) 0 0
\(459\) 4.00000 + 6.92820i 0.186704 + 0.323381i
\(460\) 0 0
\(461\) −14.0000 −0.652045 −0.326023 0.945362i \(-0.605709\pi\)
−0.326023 + 0.945362i \(0.605709\pi\)
\(462\) 0 0
\(463\) 9.00000 0.418265 0.209133 0.977887i \(-0.432936\pi\)
0.209133 + 0.977887i \(0.432936\pi\)
\(464\) 0 0
\(465\) 4.00000 + 6.92820i 0.185496 + 0.321288i
\(466\) 0 0
\(467\) −5.00000 + 8.66025i −0.231372 + 0.400749i −0.958212 0.286058i \(-0.907655\pi\)
0.726840 + 0.686807i \(0.240988\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 5.00000 8.66025i 0.230388 0.399043i
\(472\) 0 0
\(473\) 3.00000 + 5.19615i 0.137940 + 0.238919i
\(474\) 0 0
\(475\) 5.00000 0.229416
\(476\) 0 0
\(477\) 11.0000 0.503655
\(478\) 0 0
\(479\) −8.00000 13.8564i −0.365529 0.633115i 0.623332 0.781958i \(-0.285779\pi\)
−0.988861 + 0.148842i \(0.952445\pi\)
\(480\) 0 0
\(481\) 7.50000 12.9904i 0.341971 0.592310i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.00000 5.19615i 0.136223 0.235945i
\(486\) 0 0
\(487\) 4.00000 + 6.92820i 0.181257 + 0.313947i 0.942309 0.334744i \(-0.108650\pi\)
−0.761052 + 0.648691i \(0.775317\pi\)
\(488\) 0 0
\(489\) 8.00000 0.361773
\(490\) 0 0
\(491\) −20.0000 −0.902587 −0.451294 0.892375i \(-0.649037\pi\)
−0.451294 + 0.892375i \(0.649037\pi\)
\(492\) 0 0
\(493\) 6.00000 + 10.3923i 0.270226 + 0.468046i
\(494\) 0 0
\(495\) 0.500000 0.866025i 0.0224733 0.0389249i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −14.0000 + 24.2487i −0.626726 + 1.08552i 0.361478 + 0.932381i \(0.382272\pi\)
−0.988204 + 0.153141i \(0.951061\pi\)
\(500\) 0 0
\(501\) 5.00000 + 8.66025i 0.223384 + 0.386912i
\(502\) 0 0
\(503\) −16.0000 −0.713405 −0.356702 0.934218i \(-0.616099\pi\)
−0.356702 + 0.934218i \(0.616099\pi\)
\(504\) 0 0
\(505\) −12.0000 −0.533993
\(506\) 0 0
\(507\) 4.00000 + 6.92820i 0.177646 + 0.307692i
\(508\) 0 0
\(509\) −9.00000 + 15.5885i −0.398918 + 0.690946i −0.993593 0.113020i \(-0.963948\pi\)
0.594675 + 0.803966i \(0.297281\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 10.0000 17.3205i 0.441511 0.764719i
\(514\) 0 0
\(515\) 10.0000 + 17.3205i 0.440653 + 0.763233i
\(516\) 0 0
\(517\) −9.00000 −0.395820
\(518\) 0 0
\(519\) −38.0000 −1.66801
\(520\) 0 0
\(521\) −7.50000 12.9904i −0.328581 0.569119i 0.653650 0.756797i \(-0.273237\pi\)
−0.982231 + 0.187678i \(0.939904\pi\)
\(522\) 0 0
\(523\) 14.0000 24.2487i 0.612177 1.06032i −0.378695 0.925521i \(-0.623627\pi\)
0.990873 0.134801i \(-0.0430394\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.00000 6.92820i 0.174243 0.301797i
\(528\) 0 0
\(529\) −13.0000 22.5167i −0.565217 0.978985i
\(530\) 0 0
\(531\) −8.00000 −0.347170
\(532\) 0 0
\(533\) 15.0000 0.649722
\(534\) 0 0
\(535\) −6.00000 10.3923i −0.259403 0.449299i
\(536\) 0 0
\(537\) −9.00000 + 15.5885i −0.388379 + 0.672692i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 20.0000 34.6410i 0.859867 1.48933i −0.0121878 0.999926i \(-0.503880\pi\)
0.872055 0.489408i \(-0.162787\pi\)
\(542\) 0 0
\(543\) 2.00000 + 3.46410i 0.0858282 + 0.148659i
\(544\) 0 0
\(545\) −4.00000 −0.171341
\(546\) 0 0
\(547\) −20.0000 −0.855138 −0.427569 0.903983i \(-0.640630\pi\)
−0.427569 + 0.903983i \(0.640630\pi\)
\(548\) 0 0
\(549\) −6.00000 10.3923i −0.256074 0.443533i
\(550\) 0 0
\(551\) 15.0000 25.9808i 0.639021 1.10682i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 5.00000 8.66025i 0.212238 0.367607i
\(556\) 0 0
\(557\) −10.5000 18.1865i −0.444899 0.770588i 0.553146 0.833084i \(-0.313427\pi\)
−0.998045 + 0.0624962i \(0.980094\pi\)
\(558\) 0 0
\(559\) 18.0000 0.761319
\(560\) 0 0
\(561\) −4.00000 −0.168880
\(562\) 0 0
\(563\) 3.00000 + 5.19615i 0.126435 + 0.218992i 0.922293 0.386492i \(-0.126313\pi\)
−0.795858 + 0.605483i \(0.792980\pi\)
\(564\) 0 0
\(565\) −10.0000 + 17.3205i −0.420703 + 0.728679i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.50000 9.52628i 0.230572 0.399362i −0.727405 0.686209i \(-0.759274\pi\)
0.957977 + 0.286846i \(0.0926069\pi\)
\(570\) 0 0
\(571\) −14.0000 24.2487i −0.585882 1.01478i −0.994765 0.102190i \(-0.967415\pi\)
0.408883 0.912587i \(-0.365918\pi\)
\(572\) 0 0
\(573\) 24.0000 1.00261
\(574\) 0 0
\(575\) 7.00000 0.291920
\(576\) 0 0
\(577\) −2.00000 3.46410i −0.0832611 0.144212i 0.821388 0.570370i \(-0.193200\pi\)
−0.904649 + 0.426158i \(0.859867\pi\)
\(578\) 0 0
\(579\) 20.0000 34.6410i 0.831172 1.43963i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 5.50000 9.52628i 0.227787 0.394538i
\(584\) 0 0
\(585\) −1.50000 2.59808i −0.0620174 0.107417i
\(586\) 0 0
\(587\) −12.0000 −0.495293 −0.247647 0.968850i \(-0.579657\pi\)
−0.247647 + 0.968850i \(0.579657\pi\)
\(588\) 0 0
\(589\) −20.0000 −0.824086
\(590\) 0 0
\(591\) 27.0000 + 46.7654i 1.11063 + 1.92367i
\(592\) 0 0
\(593\) −6.00000 + 10.3923i −0.246390 + 0.426761i −0.962522 0.271205i \(-0.912578\pi\)
0.716131 + 0.697966i \(0.245911\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −4.00000 + 6.92820i −0.163709 + 0.283552i
\(598\) 0 0
\(599\) −17.0000 29.4449i −0.694601 1.20308i −0.970315 0.241845i \(-0.922248\pi\)
0.275714 0.961240i \(-0.411086\pi\)
\(600\) 0 0
\(601\) 14.0000 0.571072 0.285536 0.958368i \(-0.407828\pi\)
0.285536 + 0.958368i \(0.407828\pi\)
\(602\) 0 0
\(603\) −4.00000 −0.162893
\(604\) 0 0
\(605\) 5.00000 + 8.66025i 0.203279 + 0.352089i
\(606\) 0 0
\(607\) 16.5000 28.5788i 0.669714 1.15998i −0.308270 0.951299i \(-0.599750\pi\)
0.977984 0.208680i \(-0.0669168\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −13.5000 + 23.3827i −0.546152 + 0.945962i
\(612\) 0 0
\(613\) 20.5000 + 35.5070i 0.827987 + 1.43412i 0.899615 + 0.436684i \(0.143847\pi\)
−0.0716275 + 0.997431i \(0.522819\pi\)
\(614\) 0 0
\(615\) 10.0000 0.403239
\(616\) 0 0
\(617\) 42.0000 1.69086 0.845428 0.534089i \(-0.179345\pi\)
0.845428 + 0.534089i \(0.179345\pi\)
\(618\) 0 0
\(619\) 17.5000 + 30.3109i 0.703384 + 1.21830i 0.967271 + 0.253744i \(0.0816620\pi\)
−0.263887 + 0.964554i \(0.585005\pi\)
\(620\) 0 0
\(621\) 14.0000 24.2487i 0.561801 0.973067i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 5.00000 + 8.66025i 0.199681 + 0.345857i
\(628\) 0 0
\(629\) −10.0000 −0.398726
\(630\) 0 0
\(631\) 40.0000 1.59237 0.796187 0.605050i \(-0.206847\pi\)
0.796187 + 0.605050i \(0.206847\pi\)
\(632\) 0 0
\(633\) 13.0000 + 22.5167i 0.516704 + 0.894957i
\(634\) 0 0
\(635\) −8.50000 + 14.7224i −0.337312 + 0.584242i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 2.00000 3.46410i 0.0791188 0.137038i
\(640\) 0 0
\(641\) −17.5000 30.3109i −0.691208 1.19721i −0.971442 0.237276i \(-0.923745\pi\)
0.280234 0.959932i \(-0.409588\pi\)
\(642\) 0 0
\(643\) 34.0000 1.34083 0.670415 0.741987i \(-0.266116\pi\)
0.670415 + 0.741987i \(0.266116\pi\)
\(644\) 0 0
\(645\) 12.0000 0.472500
\(646\) 0 0
\(647\) 11.5000 + 19.9186i 0.452112 + 0.783080i 0.998517 0.0544405i \(-0.0173375\pi\)
−0.546405 + 0.837521i \(0.684004\pi\)
\(648\) 0 0
\(649\) −4.00000 + 6.92820i −0.157014 + 0.271956i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −22.5000 + 38.9711i −0.880493 + 1.52506i −0.0296993 + 0.999559i \(0.509455\pi\)
−0.850794 + 0.525500i \(0.823878\pi\)
\(654\) 0 0
\(655\) 3.50000 + 6.06218i 0.136756 + 0.236869i
\(656\) 0 0
\(657\) −12.0000 −0.468165
\(658\) 0 0
\(659\) −16.0000 −0.623272 −0.311636 0.950202i \(-0.600877\pi\)
−0.311636 + 0.950202i \(0.600877\pi\)
\(660\) 0 0
\(661\) −18.0000 31.1769i −0.700119 1.21264i −0.968424 0.249308i \(-0.919797\pi\)
0.268306 0.963334i \(-0.413536\pi\)
\(662\) 0 0
\(663\) −6.00000 + 10.3923i −0.233021 + 0.403604i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 21.0000 36.3731i 0.813123 1.40837i
\(668\) 0 0
\(669\) −16.0000 27.7128i −0.618596 1.07144i
\(670\) 0 0
\(671\) −12.0000 −0.463255
\(672\) 0 0
\(673\) −42.0000 −1.61898 −0.809491 0.587133i \(-0.800257\pi\)
−0.809491 + 0.587133i \(0.800257\pi\)
\(674\) 0 0
\(675\) 2.00000 + 3.46410i 0.0769800 + 0.133333i
\(676\) 0 0
\(677\) 10.5000 18.1865i 0.403548 0.698965i −0.590603 0.806962i \(-0.701110\pi\)
0.994151 + 0.107997i \(0.0344436\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −8.00000 + 13.8564i −0.306561 + 0.530979i
\(682\) 0 0
\(683\) 18.0000 + 31.1769i 0.688751 + 1.19295i 0.972242 + 0.233977i \(0.0751739\pi\)
−0.283491 + 0.958975i \(0.591493\pi\)
\(684\) 0 0
\(685\) −12.0000 −0.458496
\(686\) 0 0
\(687\) 56.0000 2.13653
\(688\) 0 0
\(689\) −16.5000 28.5788i −0.628600 1.08877i
\(690\) 0 0
\(691\) 4.00000 6.92820i 0.152167 0.263561i −0.779857 0.625958i \(-0.784708\pi\)
0.932024 + 0.362397i \(0.118041\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.00000 3.46410i 0.0758643 0.131401i
\(696\) 0 0
\(697\) −5.00000 8.66025i −0.189389 0.328031i
\(698\) 0 0
\(699\) 4.00000 0.151294
\(700\) 0 0
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) 0 0
\(703\) 12.5000 + 21.6506i 0.471446 + 0.816569i
\(704\) 0 0
\(705\) −9.00000 + 15.5885i −0.338960 + 0.587095i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 9.00000 15.5885i 0.338002 0.585437i −0.646055 0.763291i \(-0.723582\pi\)
0.984057 + 0.177854i \(0.0569156\pi\)
\(710\) 0 0
\(711\) −7.00000 12.1244i −0.262521 0.454699i
\(712\) 0 0
\(713\) −28.0000 −1.04861
\(714\) 0 0
\(715\) −3.00000 −0.112194
\(716\) 0 0
\(717\) −6.00000 10.3923i −0.224074 0.388108i
\(718\) 0 0
\(719\) −18.0000 + 31.1769i −0.671287 + 1.16270i 0.306253 + 0.951950i \(0.400925\pi\)
−0.977539 + 0.210752i \(0.932409\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 23.0000 39.8372i 0.855379 1.48156i
\(724\) 0 0
\(725\) 3.00000 + 5.19615i 0.111417 + 0.192980i
\(726\) 0 0
\(727\) −41.0000 −1.52061 −0.760303 0.649569i \(-0.774949\pi\)
−0.760303 + 0.649569i \(0.774949\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −6.00000 10.3923i −0.221918 0.384373i
\(732\) 0 0
\(733\) 15.5000 26.8468i 0.572506 0.991609i −0.423802 0.905755i \(-0.639305\pi\)
0.996308 0.0858539i \(-0.0273618\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2.00000 + 3.46410i −0.0736709 + 0.127602i
\(738\) 0 0
\(739\) 20.5000 + 35.5070i 0.754105 + 1.30615i 0.945818 + 0.324697i \(0.105262\pi\)
−0.191714 + 0.981451i \(0.561404\pi\)
\(740\) 0 0
\(741\) 30.0000 1.10208
\(742\) 0 0
\(743\) −3.00000 −0.110059 −0.0550297 0.998485i \(-0.517525\pi\)
−0.0550297 + 0.998485i \(0.517525\pi\)
\(744\) 0 0
\(745\) −5.00000 8.66025i −0.183186 0.317287i
\(746\) 0 0
\(747\) −2.00000 + 3.46410i −0.0731762 + 0.126745i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −9.00000 + 15.5885i −0.328415 + 0.568831i −0.982197 0.187851i \(-0.939848\pi\)
0.653783 + 0.756682i \(0.273181\pi\)
\(752\) 0 0
\(753\) 29.0000 + 50.2295i 1.05682 + 1.83046i
\(754\) 0 0
\(755\) −10.0000 −0.363937
\(756\) 0 0
\(757\) −6.00000 −0.218074 −0.109037 0.994038i \(-0.534777\pi\)
−0.109037 + 0.994038i \(0.534777\pi\)
\(758\) 0 0
\(759\) 7.00000 + 12.1244i 0.254084 + 0.440086i
\(760\) 0 0
\(761\) −1.50000 + 2.59808i −0.0543750 + 0.0941802i −0.891932 0.452170i \(-0.850650\pi\)
0.837557 + 0.546350i \(0.183983\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −1.00000 + 1.73205i −0.0361551 + 0.0626224i
\(766\) 0 0
\(767\) 12.0000 + 20.7846i 0.433295 + 0.750489i
\(768\) 0 0
\(769\) 41.0000 1.47850 0.739249 0.673432i \(-0.235181\pi\)
0.739249 + 0.673432i \(0.235181\pi\)
\(770\) 0 0
\(771\) −24.0000 −0.864339
\(772\) 0 0
\(773\) 7.50000 + 12.9904i 0.269756 + 0.467232i 0.968799 0.247849i \(-0.0797235\pi\)
−0.699043 + 0.715080i \(0.746390\pi\)
\(774\) 0 0
\(775\) 2.00000 3.46410i 0.0718421 0.124434i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −12.5000 + 21.6506i −0.447859 + 0.775715i
\(780\) 0 0
\(781\) −2.00000 3.46410i −0.0715656 0.123955i
\(782\) 0 0
\(783\) 24.0000 0.857690
\(784\) 0 0
\(785\) −5.00000 −0.178458
\(786\) 0 0
\(787\) −9.00000 15.5885i −0.320815 0.555668i 0.659841 0.751405i \(-0.270624\pi\)
−0.980656 + 0.195737i \(0.937290\pi\)
\(788\) 0 0
\(789\) −8.00000 + 13.8564i −0.284808 + 0.493301i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −18.0000 + 31.1769i −0.639199 + 1.10712i
\(794\) 0 0
\(795\) −11.0000 19.0526i −0.390130 0.675725i
\(796\) 0 0
\(797\) −2.00000 −0.0708436 −0.0354218