Properties

Label 1960.2.q.c
Level $1960$
Weight $2$
Character orbit 1960.q
Analytic conductor $15.651$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1960 = 2^{3} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1960.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(15.6506787962\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( -2 + 2 \zeta_{6} ) q^{3} -\zeta_{6} q^{5} -\zeta_{6} q^{9} +O(q^{10})\) \( q + ( -2 + 2 \zeta_{6} ) q^{3} -\zeta_{6} q^{5} -\zeta_{6} q^{9} + ( 1 - \zeta_{6} ) q^{11} + 3 q^{13} + 2 q^{15} + ( -2 + 2 \zeta_{6} ) q^{17} -5 \zeta_{6} q^{19} -7 \zeta_{6} q^{23} + ( -1 + \zeta_{6} ) q^{25} -4 q^{27} -6 q^{29} + ( 4 - 4 \zeta_{6} ) q^{31} + 2 \zeta_{6} q^{33} + 5 \zeta_{6} q^{37} + ( -6 + 6 \zeta_{6} ) q^{39} + 5 q^{41} + 6 q^{43} + ( -1 + \zeta_{6} ) q^{45} -9 \zeta_{6} q^{47} -4 \zeta_{6} q^{51} + ( -11 + 11 \zeta_{6} ) q^{53} - q^{55} + 10 q^{57} + ( 8 - 8 \zeta_{6} ) q^{59} -12 \zeta_{6} q^{61} -3 \zeta_{6} q^{65} + ( 4 - 4 \zeta_{6} ) q^{67} + 14 q^{69} -4 q^{71} + ( 12 - 12 \zeta_{6} ) q^{73} -2 \zeta_{6} q^{75} -14 \zeta_{6} q^{79} + ( 11 - 11 \zeta_{6} ) q^{81} + 4 q^{83} + 2 q^{85} + ( 12 - 12 \zeta_{6} ) q^{87} + 6 \zeta_{6} q^{89} + 8 \zeta_{6} q^{93} + ( -5 + 5 \zeta_{6} ) q^{95} -6 q^{97} - q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{3} - q^{5} - q^{9} + O(q^{10}) \) \( 2q - 2q^{3} - q^{5} - q^{9} + q^{11} + 6q^{13} + 4q^{15} - 2q^{17} - 5q^{19} - 7q^{23} - q^{25} - 8q^{27} - 12q^{29} + 4q^{31} + 2q^{33} + 5q^{37} - 6q^{39} + 10q^{41} + 12q^{43} - q^{45} - 9q^{47} - 4q^{51} - 11q^{53} - 2q^{55} + 20q^{57} + 8q^{59} - 12q^{61} - 3q^{65} + 4q^{67} + 28q^{69} - 8q^{71} + 12q^{73} - 2q^{75} - 14q^{79} + 11q^{81} + 8q^{83} + 4q^{85} + 12q^{87} + 6q^{89} + 8q^{93} - 5q^{95} - 12q^{97} - 2q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1960\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1081\) \(1177\) \(1471\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.500000 + 0.866025i
0.500000 0.866025i
0 −1.00000 + 1.73205i 0 −0.500000 0.866025i 0 0 0 −0.500000 0.866025i 0
961.1 0 −1.00000 1.73205i 0 −0.500000 + 0.866025i 0 0 0 −0.500000 + 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1960.2.q.c 2
7.b odd 2 1 280.2.q.c 2
7.c even 3 1 1960.2.a.m 1
7.c even 3 1 inner 1960.2.q.c 2
7.d odd 6 1 280.2.q.c 2
7.d odd 6 1 1960.2.a.a 1
21.c even 2 1 2520.2.bi.e 2
21.g even 6 1 2520.2.bi.e 2
28.d even 2 1 560.2.q.c 2
28.f even 6 1 560.2.q.c 2
28.f even 6 1 3920.2.a.bf 1
28.g odd 6 1 3920.2.a.i 1
35.c odd 2 1 1400.2.q.a 2
35.f even 4 2 1400.2.bh.e 4
35.i odd 6 1 1400.2.q.a 2
35.i odd 6 1 9800.2.a.bi 1
35.j even 6 1 9800.2.a.g 1
35.k even 12 2 1400.2.bh.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.2.q.c 2 7.b odd 2 1
280.2.q.c 2 7.d odd 6 1
560.2.q.c 2 28.d even 2 1
560.2.q.c 2 28.f even 6 1
1400.2.q.a 2 35.c odd 2 1
1400.2.q.a 2 35.i odd 6 1
1400.2.bh.e 4 35.f even 4 2
1400.2.bh.e 4 35.k even 12 2
1960.2.a.a 1 7.d odd 6 1
1960.2.a.m 1 7.c even 3 1
1960.2.q.c 2 1.a even 1 1 trivial
1960.2.q.c 2 7.c even 3 1 inner
2520.2.bi.e 2 21.c even 2 1
2520.2.bi.e 2 21.g even 6 1
3920.2.a.i 1 28.g odd 6 1
3920.2.a.bf 1 28.f even 6 1
9800.2.a.g 1 35.j even 6 1
9800.2.a.bi 1 35.i odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1960, [\chi])\):

\( T_{3}^{2} + 2 T_{3} + 4 \)
\( T_{11}^{2} - T_{11} + 1 \)
\( T_{13} - 3 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( 4 + 2 T + T^{2} \)
$5$ \( 1 + T + T^{2} \)
$7$ \( T^{2} \)
$11$ \( 1 - T + T^{2} \)
$13$ \( ( -3 + T )^{2} \)
$17$ \( 4 + 2 T + T^{2} \)
$19$ \( 25 + 5 T + T^{2} \)
$23$ \( 49 + 7 T + T^{2} \)
$29$ \( ( 6 + T )^{2} \)
$31$ \( 16 - 4 T + T^{2} \)
$37$ \( 25 - 5 T + T^{2} \)
$41$ \( ( -5 + T )^{2} \)
$43$ \( ( -6 + T )^{2} \)
$47$ \( 81 + 9 T + T^{2} \)
$53$ \( 121 + 11 T + T^{2} \)
$59$ \( 64 - 8 T + T^{2} \)
$61$ \( 144 + 12 T + T^{2} \)
$67$ \( 16 - 4 T + T^{2} \)
$71$ \( ( 4 + T )^{2} \)
$73$ \( 144 - 12 T + T^{2} \)
$79$ \( 196 + 14 T + T^{2} \)
$83$ \( ( -4 + T )^{2} \)
$89$ \( 36 - 6 T + T^{2} \)
$97$ \( ( 6 + T )^{2} \)
show more
show less