Properties

Label 1960.2.q.a.361.1
Level $1960$
Weight $2$
Character 1960.361
Analytic conductor $15.651$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 1960 = 2^{3} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1960.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(15.6506787962\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1960.361
Dual form 1960.2.q.a.961.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.50000 + 2.59808i) q^{3} +(0.500000 + 0.866025i) q^{5} +(-3.00000 - 5.19615i) q^{9} +O(q^{10})\) \(q+(-1.50000 + 2.59808i) q^{3} +(0.500000 + 0.866025i) q^{5} +(-3.00000 - 5.19615i) q^{9} +(2.50000 - 4.33013i) q^{11} +5.00000 q^{13} -3.00000 q^{15} +(-3.50000 + 6.06218i) q^{17} +(-1.00000 - 1.73205i) q^{19} +(1.00000 + 1.73205i) q^{23} +(-0.500000 + 0.866025i) q^{25} +9.00000 q^{27} +7.00000 q^{29} +(2.00000 - 3.46410i) q^{31} +(7.50000 + 12.9904i) q^{33} +(3.00000 + 5.19615i) q^{37} +(-7.50000 + 12.9904i) q^{39} +12.0000 q^{41} -2.00000 q^{43} +(3.00000 - 5.19615i) q^{45} +(0.500000 + 0.866025i) q^{47} +(-10.5000 - 18.1865i) q^{51} +5.00000 q^{55} +6.00000 q^{57} +(-2.00000 + 3.46410i) q^{59} +(2.00000 + 3.46410i) q^{61} +(2.50000 + 4.33013i) q^{65} +(-4.00000 + 6.92820i) q^{67} -6.00000 q^{69} +(3.00000 - 5.19615i) q^{73} +(-1.50000 - 2.59808i) q^{75} +(1.50000 + 2.59808i) q^{79} +(-4.50000 + 7.79423i) q^{81} +4.00000 q^{83} -7.00000 q^{85} +(-10.5000 + 18.1865i) q^{87} +(6.00000 + 10.3923i) q^{93} +(1.00000 - 1.73205i) q^{95} -13.0000 q^{97} -30.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 3q^{3} + q^{5} - 6q^{9} + O(q^{10}) \) \( 2q - 3q^{3} + q^{5} - 6q^{9} + 5q^{11} + 10q^{13} - 6q^{15} - 7q^{17} - 2q^{19} + 2q^{23} - q^{25} + 18q^{27} + 14q^{29} + 4q^{31} + 15q^{33} + 6q^{37} - 15q^{39} + 24q^{41} - 4q^{43} + 6q^{45} + q^{47} - 21q^{51} + 10q^{55} + 12q^{57} - 4q^{59} + 4q^{61} + 5q^{65} - 8q^{67} - 12q^{69} + 6q^{73} - 3q^{75} + 3q^{79} - 9q^{81} + 8q^{83} - 14q^{85} - 21q^{87} + 12q^{93} + 2q^{95} - 26q^{97} - 60q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1960\mathbb{Z}\right)^\times\).

\(n\) \(981\) \(1081\) \(1177\) \(1471\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.50000 + 2.59808i −0.866025 + 1.50000i 1.00000i \(0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(4\) 0 0
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −3.00000 5.19615i −1.00000 1.73205i
\(10\) 0 0
\(11\) 2.50000 4.33013i 0.753778 1.30558i −0.192201 0.981356i \(-0.561563\pi\)
0.945979 0.324227i \(-0.105104\pi\)
\(12\) 0 0
\(13\) 5.00000 1.38675 0.693375 0.720577i \(-0.256123\pi\)
0.693375 + 0.720577i \(0.256123\pi\)
\(14\) 0 0
\(15\) −3.00000 −0.774597
\(16\) 0 0
\(17\) −3.50000 + 6.06218i −0.848875 + 1.47029i 0.0333386 + 0.999444i \(0.489386\pi\)
−0.882213 + 0.470850i \(0.843947\pi\)
\(18\) 0 0
\(19\) −1.00000 1.73205i −0.229416 0.397360i 0.728219 0.685344i \(-0.240348\pi\)
−0.957635 + 0.287984i \(0.907015\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.00000 + 1.73205i 0.208514 + 0.361158i 0.951247 0.308431i \(-0.0998038\pi\)
−0.742732 + 0.669588i \(0.766471\pi\)
\(24\) 0 0
\(25\) −0.500000 + 0.866025i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 9.00000 1.73205
\(28\) 0 0
\(29\) 7.00000 1.29987 0.649934 0.759991i \(-0.274797\pi\)
0.649934 + 0.759991i \(0.274797\pi\)
\(30\) 0 0
\(31\) 2.00000 3.46410i 0.359211 0.622171i −0.628619 0.777714i \(-0.716379\pi\)
0.987829 + 0.155543i \(0.0497126\pi\)
\(32\) 0 0
\(33\) 7.50000 + 12.9904i 1.30558 + 2.26134i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.00000 + 5.19615i 0.493197 + 0.854242i 0.999969 0.00783774i \(-0.00249486\pi\)
−0.506772 + 0.862080i \(0.669162\pi\)
\(38\) 0 0
\(39\) −7.50000 + 12.9904i −1.20096 + 2.08013i
\(40\) 0 0
\(41\) 12.0000 1.87409 0.937043 0.349215i \(-0.113552\pi\)
0.937043 + 0.349215i \(0.113552\pi\)
\(42\) 0 0
\(43\) −2.00000 −0.304997 −0.152499 0.988304i \(-0.548732\pi\)
−0.152499 + 0.988304i \(0.548732\pi\)
\(44\) 0 0
\(45\) 3.00000 5.19615i 0.447214 0.774597i
\(46\) 0 0
\(47\) 0.500000 + 0.866025i 0.0729325 + 0.126323i 0.900185 0.435507i \(-0.143431\pi\)
−0.827253 + 0.561830i \(0.810098\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −10.5000 18.1865i −1.47029 2.54662i
\(52\) 0 0
\(53\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(54\) 0 0
\(55\) 5.00000 0.674200
\(56\) 0 0
\(57\) 6.00000 0.794719
\(58\) 0 0
\(59\) −2.00000 + 3.46410i −0.260378 + 0.450988i −0.966342 0.257260i \(-0.917180\pi\)
0.705965 + 0.708247i \(0.250514\pi\)
\(60\) 0 0
\(61\) 2.00000 + 3.46410i 0.256074 + 0.443533i 0.965187 0.261562i \(-0.0842377\pi\)
−0.709113 + 0.705095i \(0.750904\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.50000 + 4.33013i 0.310087 + 0.537086i
\(66\) 0 0
\(67\) −4.00000 + 6.92820i −0.488678 + 0.846415i −0.999915 0.0130248i \(-0.995854\pi\)
0.511237 + 0.859440i \(0.329187\pi\)
\(68\) 0 0
\(69\) −6.00000 −0.722315
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 3.00000 5.19615i 0.351123 0.608164i −0.635323 0.772246i \(-0.719133\pi\)
0.986447 + 0.164083i \(0.0524664\pi\)
\(74\) 0 0
\(75\) −1.50000 2.59808i −0.173205 0.300000i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1.50000 + 2.59808i 0.168763 + 0.292306i 0.937985 0.346675i \(-0.112689\pi\)
−0.769222 + 0.638982i \(0.779356\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 0 0
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) −7.00000 −0.759257
\(86\) 0 0
\(87\) −10.5000 + 18.1865i −1.12572 + 1.94980i
\(88\) 0 0
\(89\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 6.00000 + 10.3923i 0.622171 + 1.07763i
\(94\) 0 0
\(95\) 1.00000 1.73205i 0.102598 0.177705i
\(96\) 0 0
\(97\) −13.0000 −1.31995 −0.659975 0.751288i \(-0.729433\pi\)
−0.659975 + 0.751288i \(0.729433\pi\)
\(98\) 0 0
\(99\) −30.0000 −3.01511
\(100\) 0 0
\(101\) −9.00000 + 15.5885i −0.895533 + 1.55111i −0.0623905 + 0.998052i \(0.519872\pi\)
−0.833143 + 0.553058i \(0.813461\pi\)
\(102\) 0 0
\(103\) 6.50000 + 11.2583i 0.640464 + 1.10932i 0.985329 + 0.170664i \(0.0545913\pi\)
−0.344865 + 0.938652i \(0.612075\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −9.00000 15.5885i −0.870063 1.50699i −0.861931 0.507026i \(-0.830745\pi\)
−0.00813215 0.999967i \(-0.502589\pi\)
\(108\) 0 0
\(109\) −2.50000 + 4.33013i −0.239457 + 0.414751i −0.960558 0.278078i \(-0.910303\pi\)
0.721102 + 0.692829i \(0.243636\pi\)
\(110\) 0 0
\(111\) −18.0000 −1.70848
\(112\) 0 0
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) −1.00000 + 1.73205i −0.0932505 + 0.161515i
\(116\) 0 0
\(117\) −15.0000 25.9808i −1.38675 2.40192i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −7.00000 12.1244i −0.636364 1.10221i
\(122\) 0 0
\(123\) −18.0000 + 31.1769i −1.62301 + 2.81113i
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −12.0000 −1.06483 −0.532414 0.846484i \(-0.678715\pi\)
−0.532414 + 0.846484i \(0.678715\pi\)
\(128\) 0 0
\(129\) 3.00000 5.19615i 0.264135 0.457496i
\(130\) 0 0
\(131\) −3.00000 5.19615i −0.262111 0.453990i 0.704692 0.709514i \(-0.251085\pi\)
−0.966803 + 0.255524i \(0.917752\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 4.50000 + 7.79423i 0.387298 + 0.670820i
\(136\) 0 0
\(137\) 4.00000 6.92820i 0.341743 0.591916i −0.643013 0.765855i \(-0.722316\pi\)
0.984757 + 0.173939i \(0.0556494\pi\)
\(138\) 0 0
\(139\) −18.0000 −1.52674 −0.763370 0.645961i \(-0.776457\pi\)
−0.763370 + 0.645961i \(0.776457\pi\)
\(140\) 0 0
\(141\) −3.00000 −0.252646
\(142\) 0 0
\(143\) 12.5000 21.6506i 1.04530 1.81052i
\(144\) 0 0
\(145\) 3.50000 + 6.06218i 0.290659 + 0.503436i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 11.0000 + 19.0526i 0.901155 + 1.56085i 0.825997 + 0.563675i \(0.190613\pi\)
0.0751583 + 0.997172i \(0.476054\pi\)
\(150\) 0 0
\(151\) 9.50000 16.4545i 0.773099 1.33905i −0.162758 0.986666i \(-0.552039\pi\)
0.935857 0.352381i \(-0.114628\pi\)
\(152\) 0 0
\(153\) 42.0000 3.39550
\(154\) 0 0
\(155\) 4.00000 0.321288
\(156\) 0 0
\(157\) 5.00000 8.66025i 0.399043 0.691164i −0.594565 0.804048i \(-0.702676\pi\)
0.993608 + 0.112884i \(0.0360089\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 7.00000 + 12.1244i 0.548282 + 0.949653i 0.998392 + 0.0566798i \(0.0180514\pi\)
−0.450110 + 0.892973i \(0.648615\pi\)
\(164\) 0 0
\(165\) −7.50000 + 12.9904i −0.583874 + 1.01130i
\(166\) 0 0
\(167\) 3.00000 0.232147 0.116073 0.993241i \(-0.462969\pi\)
0.116073 + 0.993241i \(0.462969\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) −6.00000 + 10.3923i −0.458831 + 0.794719i
\(172\) 0 0
\(173\) −3.50000 6.06218i −0.266100 0.460899i 0.701751 0.712422i \(-0.252402\pi\)
−0.967851 + 0.251523i \(0.919068\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −6.00000 10.3923i −0.450988 0.781133i
\(178\) 0 0
\(179\) 2.00000 3.46410i 0.149487 0.258919i −0.781551 0.623841i \(-0.785571\pi\)
0.931038 + 0.364922i \(0.118904\pi\)
\(180\) 0 0
\(181\) −8.00000 −0.594635 −0.297318 0.954779i \(-0.596092\pi\)
−0.297318 + 0.954779i \(0.596092\pi\)
\(182\) 0 0
\(183\) −12.0000 −0.887066
\(184\) 0 0
\(185\) −3.00000 + 5.19615i −0.220564 + 0.382029i
\(186\) 0 0
\(187\) 17.5000 + 30.3109i 1.27973 + 2.21655i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 6.50000 + 11.2583i 0.470323 + 0.814624i 0.999424 0.0339349i \(-0.0108039\pi\)
−0.529101 + 0.848559i \(0.677471\pi\)
\(192\) 0 0
\(193\) 4.00000 6.92820i 0.287926 0.498703i −0.685388 0.728178i \(-0.740368\pi\)
0.973315 + 0.229475i \(0.0737008\pi\)
\(194\) 0 0
\(195\) −15.0000 −1.07417
\(196\) 0 0
\(197\) −8.00000 −0.569976 −0.284988 0.958531i \(-0.591990\pi\)
−0.284988 + 0.958531i \(0.591990\pi\)
\(198\) 0 0
\(199\) −2.00000 + 3.46410i −0.141776 + 0.245564i −0.928166 0.372168i \(-0.878615\pi\)
0.786389 + 0.617731i \(0.211948\pi\)
\(200\) 0 0
\(201\) −12.0000 20.7846i −0.846415 1.46603i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 6.00000 + 10.3923i 0.419058 + 0.725830i
\(206\) 0 0
\(207\) 6.00000 10.3923i 0.417029 0.722315i
\(208\) 0 0
\(209\) −10.0000 −0.691714
\(210\) 0 0
\(211\) 5.00000 0.344214 0.172107 0.985078i \(-0.444942\pi\)
0.172107 + 0.985078i \(0.444942\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −1.00000 1.73205i −0.0681994 0.118125i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 9.00000 + 15.5885i 0.608164 + 1.05337i
\(220\) 0 0
\(221\) −17.5000 + 30.3109i −1.17718 + 2.03893i
\(222\) 0 0
\(223\) 19.0000 1.27233 0.636167 0.771551i \(-0.280519\pi\)
0.636167 + 0.771551i \(0.280519\pi\)
\(224\) 0 0
\(225\) 6.00000 0.400000
\(226\) 0 0
\(227\) 4.50000 7.79423i 0.298675 0.517321i −0.677158 0.735838i \(-0.736789\pi\)
0.975833 + 0.218517i \(0.0701218\pi\)
\(228\) 0 0
\(229\) 2.00000 + 3.46410i 0.132164 + 0.228914i 0.924510 0.381157i \(-0.124474\pi\)
−0.792347 + 0.610071i \(0.791141\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 12.0000 + 20.7846i 0.786146 + 1.36165i 0.928312 + 0.371802i \(0.121260\pi\)
−0.142166 + 0.989843i \(0.545407\pi\)
\(234\) 0 0
\(235\) −0.500000 + 0.866025i −0.0326164 + 0.0564933i
\(236\) 0 0
\(237\) −9.00000 −0.584613
\(238\) 0 0
\(239\) 9.00000 0.582162 0.291081 0.956698i \(-0.405985\pi\)
0.291081 + 0.956698i \(0.405985\pi\)
\(240\) 0 0
\(241\) −11.0000 + 19.0526i −0.708572 + 1.22728i 0.256814 + 0.966461i \(0.417327\pi\)
−0.965387 + 0.260822i \(0.916006\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −5.00000 8.66025i −0.318142 0.551039i
\(248\) 0 0
\(249\) −6.00000 + 10.3923i −0.380235 + 0.658586i
\(250\) 0 0
\(251\) −6.00000 −0.378717 −0.189358 0.981908i \(-0.560641\pi\)
−0.189358 + 0.981908i \(0.560641\pi\)
\(252\) 0 0
\(253\) 10.0000 0.628695
\(254\) 0 0
\(255\) 10.5000 18.1865i 0.657536 1.13888i
\(256\) 0 0
\(257\) 9.00000 + 15.5885i 0.561405 + 0.972381i 0.997374 + 0.0724199i \(0.0230722\pi\)
−0.435970 + 0.899961i \(0.643595\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −21.0000 36.3731i −1.29987 2.25144i
\(262\) 0 0
\(263\) 15.0000 25.9808i 0.924940 1.60204i 0.133281 0.991078i \(-0.457449\pi\)
0.791658 0.610964i \(-0.209218\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 13.0000 22.5167i 0.792624 1.37287i −0.131713 0.991288i \(-0.542048\pi\)
0.924337 0.381577i \(-0.124619\pi\)
\(270\) 0 0
\(271\) 6.00000 + 10.3923i 0.364474 + 0.631288i 0.988692 0.149963i \(-0.0479155\pi\)
−0.624218 + 0.781251i \(0.714582\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.50000 + 4.33013i 0.150756 + 0.261116i
\(276\) 0 0
\(277\) −1.00000 + 1.73205i −0.0600842 + 0.104069i −0.894503 0.447062i \(-0.852470\pi\)
0.834419 + 0.551131i \(0.185804\pi\)
\(278\) 0 0
\(279\) −24.0000 −1.43684
\(280\) 0 0
\(281\) 19.0000 1.13344 0.566722 0.823909i \(-0.308211\pi\)
0.566722 + 0.823909i \(0.308211\pi\)
\(282\) 0 0
\(283\) −12.5000 + 21.6506i −0.743048 + 1.28700i 0.208053 + 0.978117i \(0.433287\pi\)
−0.951101 + 0.308879i \(0.900046\pi\)
\(284\) 0 0
\(285\) 3.00000 + 5.19615i 0.177705 + 0.307794i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −16.0000 27.7128i −0.941176 1.63017i
\(290\) 0 0
\(291\) 19.5000 33.7750i 1.14311 1.97993i
\(292\) 0 0
\(293\) −13.0000 −0.759468 −0.379734 0.925096i \(-0.623985\pi\)
−0.379734 + 0.925096i \(0.623985\pi\)
\(294\) 0 0
\(295\) −4.00000 −0.232889
\(296\) 0 0
\(297\) 22.5000 38.9711i 1.30558 2.26134i
\(298\) 0 0
\(299\) 5.00000 + 8.66025i 0.289157 + 0.500835i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −27.0000 46.7654i −1.55111 2.68660i
\(304\) 0 0
\(305\) −2.00000 + 3.46410i −0.114520 + 0.198354i
\(306\) 0 0
\(307\) 17.0000 0.970241 0.485121 0.874447i \(-0.338776\pi\)
0.485121 + 0.874447i \(0.338776\pi\)
\(308\) 0 0
\(309\) −39.0000 −2.21863
\(310\) 0 0
\(311\) −17.0000 + 29.4449i −0.963982 + 1.66967i −0.251655 + 0.967817i \(0.580975\pi\)
−0.712327 + 0.701848i \(0.752359\pi\)
\(312\) 0 0
\(313\) −0.500000 0.866025i −0.0282617 0.0489506i 0.851549 0.524276i \(-0.175664\pi\)
−0.879810 + 0.475325i \(0.842331\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.00000 5.19615i −0.168497 0.291845i 0.769395 0.638774i \(-0.220558\pi\)
−0.937892 + 0.346929i \(0.887225\pi\)
\(318\) 0 0
\(319\) 17.5000 30.3109i 0.979812 1.69708i
\(320\) 0 0
\(321\) 54.0000 3.01399
\(322\) 0 0
\(323\) 14.0000 0.778981
\(324\) 0 0
\(325\) −2.50000 + 4.33013i −0.138675 + 0.240192i
\(326\) 0 0
\(327\) −7.50000 12.9904i −0.414751 0.718370i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 6.00000 + 10.3923i 0.329790 + 0.571213i 0.982470 0.186421i \(-0.0596888\pi\)
−0.652680 + 0.757634i \(0.726355\pi\)
\(332\) 0 0
\(333\) 18.0000 31.1769i 0.986394 1.70848i
\(334\) 0 0
\(335\) −8.00000 −0.437087
\(336\) 0 0
\(337\) 34.0000 1.85210 0.926049 0.377403i \(-0.123183\pi\)
0.926049 + 0.377403i \(0.123183\pi\)
\(338\) 0 0
\(339\) −9.00000 + 15.5885i −0.488813 + 0.846649i
\(340\) 0 0
\(341\) −10.0000 17.3205i −0.541530 0.937958i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −3.00000 5.19615i −0.161515 0.279751i
\(346\) 0 0
\(347\) −13.0000 + 22.5167i −0.697877 + 1.20876i 0.271325 + 0.962488i \(0.412538\pi\)
−0.969201 + 0.246270i \(0.920795\pi\)
\(348\) 0 0
\(349\) −18.0000 −0.963518 −0.481759 0.876304i \(-0.660002\pi\)
−0.481759 + 0.876304i \(0.660002\pi\)
\(350\) 0 0
\(351\) 45.0000 2.40192
\(352\) 0 0
\(353\) 2.50000 4.33013i 0.133062 0.230469i −0.791794 0.610789i \(-0.790853\pi\)
0.924855 + 0.380319i \(0.124186\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(360\) 0 0
\(361\) 7.50000 12.9904i 0.394737 0.683704i
\(362\) 0 0
\(363\) 42.0000 2.20443
\(364\) 0 0
\(365\) 6.00000 0.314054
\(366\) 0 0
\(367\) −3.50000 + 6.06218i −0.182699 + 0.316443i −0.942799 0.333363i \(-0.891817\pi\)
0.760100 + 0.649806i \(0.225150\pi\)
\(368\) 0 0
\(369\) −36.0000 62.3538i −1.87409 3.24601i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −8.00000 13.8564i −0.414224 0.717458i 0.581122 0.813816i \(-0.302614\pi\)
−0.995347 + 0.0963587i \(0.969280\pi\)
\(374\) 0 0
\(375\) 1.50000 2.59808i 0.0774597 0.134164i
\(376\) 0 0
\(377\) 35.0000 1.80259
\(378\) 0 0
\(379\) −20.0000 −1.02733 −0.513665 0.857991i \(-0.671713\pi\)
−0.513665 + 0.857991i \(0.671713\pi\)
\(380\) 0 0
\(381\) 18.0000 31.1769i 0.922168 1.59724i
\(382\) 0 0
\(383\) 6.00000 + 10.3923i 0.306586 + 0.531022i 0.977613 0.210411i \(-0.0674801\pi\)
−0.671027 + 0.741433i \(0.734147\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 6.00000 + 10.3923i 0.304997 + 0.528271i
\(388\) 0 0
\(389\) 7.50000 12.9904i 0.380265 0.658638i −0.610835 0.791758i \(-0.709166\pi\)
0.991100 + 0.133120i \(0.0424994\pi\)
\(390\) 0 0
\(391\) −14.0000 −0.708010
\(392\) 0 0
\(393\) 18.0000 0.907980
\(394\) 0 0
\(395\) −1.50000 + 2.59808i −0.0754732 + 0.130723i
\(396\) 0 0
\(397\) −11.5000 19.9186i −0.577168 0.999685i −0.995802 0.0915300i \(-0.970824\pi\)
0.418634 0.908155i \(-0.362509\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7.50000 + 12.9904i 0.374532 + 0.648709i 0.990257 0.139253i \(-0.0444700\pi\)
−0.615725 + 0.787961i \(0.711137\pi\)
\(402\) 0 0
\(403\) 10.0000 17.3205i 0.498135 0.862796i
\(404\) 0 0
\(405\) −9.00000 −0.447214
\(406\) 0 0
\(407\) 30.0000 1.48704
\(408\) 0 0
\(409\) −7.00000 + 12.1244i −0.346128 + 0.599511i −0.985558 0.169338i \(-0.945837\pi\)
0.639430 + 0.768849i \(0.279170\pi\)
\(410\) 0 0
\(411\) 12.0000 + 20.7846i 0.591916 + 1.02523i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 2.00000 + 3.46410i 0.0981761 + 0.170046i
\(416\) 0 0
\(417\) 27.0000 46.7654i 1.32220 2.29011i
\(418\) 0 0
\(419\) 24.0000 1.17248 0.586238 0.810139i \(-0.300608\pi\)
0.586238 + 0.810139i \(0.300608\pi\)
\(420\) 0 0
\(421\) −3.00000 −0.146211 −0.0731055 0.997324i \(-0.523291\pi\)
−0.0731055 + 0.997324i \(0.523291\pi\)
\(422\) 0 0
\(423\) 3.00000 5.19615i 0.145865 0.252646i
\(424\) 0 0
\(425\) −3.50000 6.06218i −0.169775 0.294059i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 37.5000 + 64.9519i 1.81052 + 3.13591i
\(430\) 0 0
\(431\) 12.5000 21.6506i 0.602104 1.04287i −0.390398 0.920646i \(-0.627663\pi\)
0.992502 0.122228i \(-0.0390040\pi\)
\(432\) 0 0
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) 0 0
\(435\) −21.0000 −1.00687
\(436\) 0 0
\(437\) 2.00000 3.46410i 0.0956730 0.165710i
\(438\) 0 0
\(439\) −13.0000 22.5167i −0.620456 1.07466i −0.989401 0.145210i \(-0.953614\pi\)
0.368945 0.929451i \(-0.379719\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3.00000 5.19615i −0.142534 0.246877i 0.785916 0.618333i \(-0.212192\pi\)
−0.928450 + 0.371457i \(0.878858\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −66.0000 −3.12169
\(448\) 0 0
\(449\) −9.00000 −0.424736 −0.212368 0.977190i \(-0.568118\pi\)
−0.212368 + 0.977190i \(0.568118\pi\)
\(450\) 0 0
\(451\) 30.0000 51.9615i 1.41264 2.44677i
\(452\) 0 0
\(453\) 28.5000 + 49.3634i 1.33905 + 2.31930i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 4.00000 + 6.92820i 0.187112 + 0.324088i 0.944286 0.329125i \(-0.106754\pi\)
−0.757174 + 0.653213i \(0.773421\pi\)
\(458\) 0 0
\(459\) −31.5000 + 54.5596i −1.47029 + 2.54662i
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) −36.0000 −1.67306 −0.836531 0.547920i \(-0.815420\pi\)
−0.836531 + 0.547920i \(0.815420\pi\)
\(464\) 0 0
\(465\) −6.00000 + 10.3923i −0.278243 + 0.481932i
\(466\) 0 0
\(467\) 5.50000 + 9.52628i 0.254510 + 0.440824i 0.964762 0.263123i \(-0.0847526\pi\)
−0.710253 + 0.703947i \(0.751419\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 15.0000 + 25.9808i 0.691164 + 1.19713i
\(472\) 0 0
\(473\) −5.00000 + 8.66025i −0.229900 + 0.398199i
\(474\) 0 0
\(475\) 2.00000 0.0917663
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 17.0000 29.4449i 0.776750 1.34537i −0.157056 0.987590i \(-0.550200\pi\)
0.933806 0.357780i \(-0.116466\pi\)
\(480\) 0 0
\(481\) 15.0000 + 25.9808i 0.683941 + 1.18462i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −6.50000 11.2583i −0.295150 0.511214i
\(486\) 0 0
\(487\) −11.0000 + 19.0526i −0.498458 + 0.863354i −0.999998 0.00178012i \(-0.999433\pi\)
0.501541 + 0.865134i \(0.332767\pi\)
\(488\) 0 0
\(489\) −42.0000 −1.89931
\(490\) 0 0
\(491\) 9.00000 0.406164 0.203082 0.979162i \(-0.434904\pi\)
0.203082 + 0.979162i \(0.434904\pi\)
\(492\) 0 0
\(493\) −24.5000 + 42.4352i −1.10342 + 1.91119i
\(494\) 0 0
\(495\) −15.0000 25.9808i −0.674200 1.16775i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0.500000 + 0.866025i 0.0223831 + 0.0387686i 0.877000 0.480490i \(-0.159541\pi\)
−0.854617 + 0.519259i \(0.826208\pi\)
\(500\) 0 0
\(501\) −4.50000 + 7.79423i −0.201045 + 0.348220i
\(502\) 0 0
\(503\) −3.00000 −0.133763 −0.0668817 0.997761i \(-0.521305\pi\)
−0.0668817 + 0.997761i \(0.521305\pi\)
\(504\) 0 0
\(505\) −18.0000 −0.800989
\(506\) 0 0
\(507\) −18.0000 + 31.1769i −0.799408 + 1.38462i
\(508\) 0 0
\(509\) −7.00000 12.1244i −0.310270 0.537403i 0.668151 0.744026i \(-0.267086\pi\)
−0.978421 + 0.206623i \(0.933753\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −9.00000 15.5885i −0.397360 0.688247i
\(514\) 0 0
\(515\) −6.50000 + 11.2583i −0.286424 + 0.496101i
\(516\) 0 0
\(517\) 5.00000 0.219900
\(518\) 0 0
\(519\) 21.0000 0.921798
\(520\) 0 0
\(521\) 11.0000 19.0526i 0.481919 0.834708i −0.517866 0.855462i \(-0.673273\pi\)
0.999785 + 0.0207541i \(0.00660670\pi\)
\(522\) 0 0
\(523\) −22.0000 38.1051i −0.961993 1.66622i −0.717486 0.696573i \(-0.754707\pi\)
−0.244507 0.969648i \(-0.578626\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 14.0000 + 24.2487i 0.609850 + 1.05629i
\(528\) 0 0
\(529\) 9.50000 16.4545i 0.413043 0.715412i
\(530\) 0 0
\(531\) 24.0000 1.04151
\(532\) 0 0
\(533\) 60.0000 2.59889
\(534\) 0 0
\(535\) 9.00000 15.5885i 0.389104 0.673948i
\(536\) 0 0
\(537\) 6.00000 + 10.3923i 0.258919 + 0.448461i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −3.50000 6.06218i −0.150477 0.260633i 0.780926 0.624623i \(-0.214748\pi\)
−0.931403 + 0.363990i \(0.881414\pi\)
\(542\) 0 0
\(543\) 12.0000 20.7846i 0.514969 0.891953i
\(544\) 0 0
\(545\) −5.00000 −0.214176
\(546\) 0 0
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) 0 0
\(549\) 12.0000 20.7846i 0.512148 0.887066i
\(550\) 0 0
\(551\) −7.00000 12.1244i −0.298210 0.516515i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −9.00000 15.5885i −0.382029 0.661693i
\(556\) 0 0
\(557\) 8.00000 13.8564i 0.338971 0.587115i −0.645269 0.763956i \(-0.723255\pi\)
0.984239 + 0.176841i \(0.0565879\pi\)
\(558\) 0 0
\(559\) −10.0000 −0.422955
\(560\) 0 0
\(561\) −105.000 −4.43310
\(562\) 0 0
\(563\) 2.00000 3.46410i 0.0842900 0.145994i −0.820798 0.571218i \(-0.806471\pi\)
0.905088 + 0.425223i \(0.139804\pi\)
\(564\) 0 0
\(565\) 3.00000 + 5.19615i 0.126211 + 0.218604i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 11.0000 + 19.0526i 0.461144 + 0.798725i 0.999018 0.0443003i \(-0.0141058\pi\)
−0.537874 + 0.843025i \(0.680772\pi\)
\(570\) 0 0
\(571\) −2.00000 + 3.46410i −0.0836974 + 0.144968i −0.904835 0.425762i \(-0.860006\pi\)
0.821138 + 0.570730i \(0.193340\pi\)
\(572\) 0 0
\(573\) −39.0000 −1.62925
\(574\) 0 0
\(575\) −2.00000 −0.0834058
\(576\) 0 0
\(577\) −18.5000 + 32.0429i −0.770165 + 1.33397i 0.167307 + 0.985905i \(0.446493\pi\)
−0.937472 + 0.348060i \(0.886840\pi\)
\(578\) 0 0
\(579\) 12.0000 + 20.7846i 0.498703 + 0.863779i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 15.0000 25.9808i 0.620174 1.07417i
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) −8.00000 −0.329634
\(590\) 0 0
\(591\) 12.0000 20.7846i 0.493614 0.854965i
\(592\) 0 0
\(593\) 13.5000 + 23.3827i 0.554379 + 0.960212i 0.997952 + 0.0639736i \(0.0203773\pi\)
−0.443573 + 0.896238i \(0.646289\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −6.00000 10.3923i −0.245564 0.425329i
\(598\) 0 0
\(599\) −7.50000 + 12.9904i −0.306442 + 0.530773i −0.977581 0.210558i \(-0.932472\pi\)
0.671140 + 0.741331i \(0.265805\pi\)
\(600\) 0 0
\(601\) −10.0000 −0.407909 −0.203954 0.978980i \(-0.565379\pi\)
−0.203954 + 0.978980i \(0.565379\pi\)
\(602\) 0 0
\(603\) 48.0000 1.95471
\(604\) 0 0
\(605\) 7.00000 12.1244i 0.284590 0.492925i
\(606\) 0 0
\(607\) 1.50000 + 2.59808i 0.0608831 + 0.105453i 0.894860 0.446346i \(-0.147275\pi\)
−0.833977 + 0.551799i \(0.813942\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.50000 + 4.33013i 0.101139 + 0.175178i
\(612\) 0 0
\(613\) 15.0000 25.9808i 0.605844 1.04935i −0.386073 0.922468i \(-0.626169\pi\)
0.991917 0.126885i \(-0.0404979\pi\)
\(614\) 0 0
\(615\) −36.0000 −1.45166
\(616\) 0 0
\(617\) 6.00000 0.241551 0.120775 0.992680i \(-0.461462\pi\)
0.120775 + 0.992680i \(0.461462\pi\)
\(618\) 0 0
\(619\) 13.0000 22.5167i 0.522514 0.905021i −0.477143 0.878826i \(-0.658328\pi\)
0.999657 0.0261952i \(-0.00833914\pi\)
\(620\) 0 0
\(621\) 9.00000 + 15.5885i 0.361158 + 0.625543i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −0.500000 0.866025i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 15.0000 25.9808i 0.599042 1.03757i
\(628\) 0 0
\(629\) −42.0000 −1.67465
\(630\) 0 0
\(631\) 7.00000 0.278666 0.139333 0.990246i \(-0.455504\pi\)
0.139333 + 0.990246i \(0.455504\pi\)
\(632\) 0 0
\(633\) −7.50000 + 12.9904i −0.298098 + 0.516321i
\(634\) 0 0
\(635\) −6.00000 10.3923i −0.238103 0.412406i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −9.00000 + 15.5885i −0.355479 + 0.615707i −0.987200 0.159489i \(-0.949015\pi\)
0.631721 + 0.775196i \(0.282349\pi\)
\(642\) 0 0
\(643\) −21.0000 −0.828159 −0.414080 0.910241i \(-0.635896\pi\)
−0.414080 + 0.910241i \(0.635896\pi\)
\(644\) 0 0
\(645\) 6.00000 0.236250
\(646\) 0 0
\(647\) 12.0000 20.7846i 0.471769 0.817127i −0.527710 0.849425i \(-0.676949\pi\)
0.999478 + 0.0322975i \(0.0102824\pi\)
\(648\) 0 0
\(649\) 10.0000 + 17.3205i 0.392534 + 0.679889i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −19.0000 32.9090i −0.743527 1.28783i −0.950880 0.309561i \(-0.899818\pi\)
0.207352 0.978266i \(-0.433515\pi\)
\(654\) 0 0
\(655\) 3.00000 5.19615i 0.117220 0.203030i
\(656\) 0 0
\(657\) −36.0000 −1.40449
\(658\) 0 0
\(659\) 15.0000 0.584317 0.292159 0.956370i \(-0.405627\pi\)
0.292159 + 0.956370i \(0.405627\pi\)
\(660\) 0 0
\(661\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(662\) 0 0
\(663\) −52.5000 90.9327i −2.03893 3.53153i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 7.00000 + 12.1244i 0.271041 + 0.469457i
\(668\) 0 0
\(669\) −28.5000 + 49.3634i −1.10187 + 1.90850i
\(670\) 0 0
\(671\) 20.0000 0.772091
\(672\) 0 0
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 0 0
\(675\) −4.50000 + 7.79423i −0.173205 + 0.300000i
\(676\) 0 0
\(677\) −14.5000 25.1147i −0.557280 0.965238i −0.997722 0.0674566i \(-0.978512\pi\)
0.440442 0.897781i \(-0.354822\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 13.5000 + 23.3827i 0.517321 + 0.896026i
\(682\) 0 0
\(683\) −6.00000 + 10.3923i −0.229584 + 0.397650i −0.957685 0.287819i \(-0.907070\pi\)
0.728101 + 0.685470i \(0.240403\pi\)
\(684\) 0 0
\(685\) 8.00000 0.305664
\(686\) 0 0
\(687\) −12.0000 −0.457829
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 22.0000 + 38.1051i 0.836919 + 1.44959i 0.892458 + 0.451130i \(0.148979\pi\)
−0.0555386 + 0.998457i \(0.517688\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −9.00000 15.5885i −0.341389 0.591304i
\(696\) 0 0
\(697\) −42.0000 + 72.7461i −1.59086 + 2.75546i
\(698\) 0 0
\(699\) −72.0000 −2.72329
\(700\) 0 0
\(701\) 35.0000 1.32193 0.660966 0.750416i \(-0.270147\pi\)
0.660966 + 0.750416i \(0.270147\pi\)
\(702\) 0 0
\(703\) 6.00000 10.3923i 0.226294 0.391953i
\(704\) 0 0
\(705\) −1.50000 2.59808i −0.0564933 0.0978492i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 12.5000 + 21.6506i 0.469447 + 0.813107i 0.999390 0.0349269i \(-0.0111198\pi\)
−0.529943 + 0.848034i \(0.677787\pi\)
\(710\) 0 0
\(711\) 9.00000 15.5885i 0.337526 0.584613i
\(712\) 0 0
\(713\) 8.00000 0.299602
\(714\) 0 0
\(715\) 25.0000 0.934947
\(716\) 0 0
\(717\) −13.5000 + 23.3827i −0.504167 + 0.873242i
\(718\) 0 0
\(719\) −7.00000 12.1244i −0.261056 0.452162i 0.705467 0.708743i \(-0.250737\pi\)
−0.966523 + 0.256581i \(0.917404\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −33.0000 57.1577i −1.22728 2.12572i
\(724\) 0 0
\(725\) −3.50000 + 6.06218i −0.129987 + 0.225144i
\(726\) 0 0
\(727\) 40.0000 1.48352 0.741759 0.670667i \(-0.233992\pi\)
0.741759 + 0.670667i \(0.233992\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 7.00000 12.1244i 0.258904 0.448435i
\(732\) 0 0
\(733\) −16.5000 28.5788i −0.609441 1.05558i −0.991333 0.131376i \(-0.958060\pi\)
0.381891 0.924207i \(-0.375273\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 20.0000 + 34.6410i 0.736709 + 1.27602i
\(738\) 0 0
\(739\) −25.5000 + 44.1673i −0.938033 + 1.62472i −0.168898 + 0.985634i \(0.554021\pi\)
−0.769135 + 0.639087i \(0.779313\pi\)
\(740\) 0 0
\(741\) 30.0000 1.10208
\(742\) 0 0
\(743\) 24.0000 0.880475 0.440237 0.897881i \(-0.354894\pi\)
0.440237 + 0.897881i \(0.354894\pi\)
\(744\) 0 0
\(745\) −11.0000 + 19.0526i −0.403009 + 0.698032i
\(746\) 0 0
\(747\) −12.0000 20.7846i −0.439057 0.760469i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1.50000 + 2.59808i 0.0547358 + 0.0948051i 0.892095 0.451848i \(-0.149235\pi\)
−0.837359 + 0.546653i \(0.815902\pi\)
\(752\) 0 0
\(753\) 9.00000 15.5885i 0.327978 0.568075i
\(754\) 0 0
\(755\) 19.0000 0.691481
\(756\) 0 0
\(757\) −40.0000 −1.45382 −0.726912 0.686730i \(-0.759045\pi\)
−0.726912 + 0.686730i \(0.759045\pi\)
\(758\) 0 0
\(759\) −15.0000 + 25.9808i −0.544466 + 0.943042i
\(760\) 0 0
\(761\) 9.00000 + 15.5885i 0.326250 + 0.565081i 0.981764 0.190101i \(-0.0608816\pi\)
−0.655515 + 0.755182i \(0.727548\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 21.0000 + 36.3731i 0.759257 + 1.31507i
\(766\) 0 0
\(767\) −10.0000 + 17.3205i −0.361079 + 0.625407i
\(768\) 0 0
\(769\) −34.0000 −1.22607 −0.613036 0.790055i \(-0.710052\pi\)
−0.613036 + 0.790055i \(0.710052\pi\)
\(770\) 0 0
\(771\) −54.0000 −1.94476
\(772\) 0 0
\(773\) −10.5000 + 18.1865i −0.377659 + 0.654124i −0.990721 0.135910i \(-0.956604\pi\)
0.613062 + 0.790034i \(0.289937\pi\)
\(774\) 0 0
\(775\) 2.00000 + 3.46410i 0.0718421 + 0.124434i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −12.0000 20.7846i −0.429945 0.744686i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 63.0000 2.25144
\(784\) 0 0
\(785\) 10.0000 0.356915
\(786\) 0 0
\(787\) 8.50000 14.7224i 0.302992 0.524798i −0.673820 0.738896i \(-0.735348\pi\)
0.976812 + 0.214097i \(0.0686810\pi\)
\(788\) 0 0
\(789\) 45.0000 + 77.9423i 1.60204 + 2.77482i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 10.0000 + 17.3205i 0.355110 + 0.615069i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 39.0000 1.38145 0.690725 0.723117i \(-0.257291\pi\)
0.690725 + 0.723117i \(0.257291\pi\)
\(798\) 0 0
\(799\) −7.00000